具有两个或多个阀构件
一种基于双蒸发温度的加氢预冷系统及其控制方法
本发明公开一种基于双蒸发温度的加氢预冷系统及其控制方法,系统包括高压氢气管线,高压氢气管线输出端与预冷系统输入端连接,预冷系统包括制冷主机,所述制冷主机通过管线分别与第一换热器和第二换热器连接,第一换热器和第二换热器分别布设于高压氢气管线输送前侧和输送后侧;本发明将部分预冷负荷利用较高温度制冷剂进行吸收,剩余预冷负荷用低压蒸发温度制冷剂吸收,在保证氢气预冷设定温度情况下,提高了制冷系统整体蒸发温度及COP,从而降低能耗,并采用制冷剂直接储能和满液蒸发换热,大大提高了换热系数和预冷速度。

2021-10-29

访问量:59

阀装置
用于制冷循环的阀装置具备主体(100)、阀室(10)内的阀芯(13、15)以及用于使阀芯(13、15)移动的阀部件(X1),阀部件(X1)具有:基部,该基部形成有供制冷剂流通的制冷剂室、与制冷剂室连通的第一制冷剂孔以及与制冷剂室连通的第二制冷剂孔;驱动部,该驱动部当自身的温度发生变化时进行位移;放大部,该放大部对驱动部的由温度的变化引起的位移进行放大;以及可动部,该可动部被传递由放大部放大后的位移而移动,从而对经由制冷剂室的第一制冷剂孔与第二制冷剂孔之间的制冷剂的流量进行调整,第一制冷剂孔和第二制冷剂孔中的一方与阀装置的外部的流路连通,另一方与阀室(10)连通。

2021-10-15

访问量:61

一种基于相变蓄热的空气源热泵型电动汽车热管理系统
本发明提供一种基于相变蓄热的空气源热泵型电动汽车热管理系统,仅通过控制八个简单阀门,即可以满足五个温度工况及三个行驶工况的全工况需求。本发明在动力总成热管理子系统内增设了相变蓄热模块,可以高效回收系统中各部件产生的余热,并在合适的时候释放余热,克服了能量在供需上存在的数量、形态和时间的差异,可以实现高效制热及制冷。采用空气源热泵的方式,由空气源、系统余热、少量电能提供低温热源,可以实现不同低温工况的需求,并有效提高能源利用效率。本发明将三个子系统进行有机整合,阀门控制可操作性强、组成部件结构紧凑、集成度高;其中,相变蓄热模块的增设可以减小前端散热器面积,从而可以减小迎风面积、降低风阻、提高续航里程。

2021-10-15

访问量:60

一种基于相变蓄热的水环热泵型电动汽车热管理系统
本发明涉及一种基于相变蓄热的水环热泵型电动汽车热管理系统,采用相变蓄热技术和水环热泵技术耦合的方式,动力总成散热子系统的输出端连接至比例三通阀的输入端,比例三通阀的第一输出端连接至相变蓄热器的输入端,第二输出端连接至第二电磁阀的输入端,相变蓄热器的输出端连接至第二电磁阀的输入端。与现有技术相比,本发明可以高效回收系统产生的余热,并在合适的时候释放余热,克服能量在供需上存在的数量、形态和时间的差异。相变蓄热单元的增设不仅可以实现低温下高效制热,避免在低温下使用空气源热泵造成的结霜、热效率低、甚至无法运行等问题,还可以实现高温下高效冷却,从而减小前端散热器面积、降低风阻、提高续航里程。

2021-09-24

访问量:35

一种多热源热泵型电动汽车热管理系统
本发明提供一种多热源热泵型电动汽车热管理系统,仅通过控制五个简单阀门,即可以满足六个温度工况及三个行驶工况的全工况需求。本发明采用空气源热泵结合水环热泵的方式,由空气源、系统余热、少量电能提供低温热源,形成多热源热泵,可以实现不同低温工况的需求,并有效提高能源利用效率;在极端低温工况下,切换成水环热泵模式运行,可以避免由空气源热泵造成的如无法运行热泵、结霜等一系列问题。本发明将乘员舱热管理、电池热管理、动力总成热管理三个子系统进行有机整合,阀门控制可操作性强、组成部件结构紧凑、集成度高;其中,乘员舱热管理系统采用水冷冷凝器作为制冷回路的放热装置,可以解决目前使用冷凝器普遍存在的问题。

2021-09-24

访问量:32

一种基于相变蓄热的多热源热泵型电动汽车热管理系统
本发明提供一种基于相变蓄热的多热源热泵型电动汽车热管理系统,在动力总成散热管路内增设了相变蓄热单元,克服了能量在供需上存在的数量、形态和时间的差异,可以实现电动汽车高效制热及制冷,此外,采用空气源热泵结合水环热泵的方式,在极端低温工况下,切换成水环热泵模式运行,可以避免由空气源热泵造成的一系列问题。本发明将三个电动汽车热管理子系统进行有机整合,阀门控制可操作性强、组成部件结构紧凑、集成度高;其中,乘员舱热管理采用水冷冷凝器作为制冷回路的放热装置,可以解决目前使用冷凝器普遍存在的体型较大、占用空间较多的问题;另外,相变蓄热器可以减小前端散热器面积,从而可以减小迎风面积、降低风阻、提高续航里程。

2021-09-24

访问量:46

注册成为会员可查看更多数据。
技术分类