Flow velocity measuring device based on Magnus effect and measuring method thereof

文档序号:1111740 发布日期:2020-09-29 浏览:32次 中文

阅读说明:本技术 一种基于马格努斯效应的流速测量装置及其测量方法 (Flow velocity measuring device based on Magnus effect and measuring method thereof ) 是由 陈荣钱 吴林宽 邱若凡 尤延铖 于 2020-07-17 设计创作,主要内容包括:本发明公开一种基于马格努斯效应的流速测量装置及其测量方法,涉及流体速度测量领域,该装置包括外壳和内部中空的圆柱;外壳一端固定设置有控制设备,另一端开口,外壳内设置有通过固定轴承与控制设备连接的直流电机;圆柱一端固定连接有硬长杆,硬长杆远离圆柱的一端与直流电机固定连接;外壳的开口端内壁处均匀环设有多个压力传感器,压力传感器均分别与硬长杆侧壁无应力接触;本发明基于该装置的测量方法包括步骤一;确定测量装置总体结构;步骤二;布置压力传感器;步骤三;根据传感器数据计算圆柱受力;步骤四;处理与修正所得数据。本发明不仅能够测量流体速度的大小,还能实现速度方向的测量,而且测速装置小型方便,生产和维护成本低。(The invention discloses a flow velocity measuring device based on a Magnus effect and a measuring method thereof, which relate to the field of fluid velocity measurement, and the device comprises a shell and a cylinder with a hollow interior; one end of the shell is fixedly provided with a control device, the other end of the shell is provided with an opening, and a direct current motor connected with the control device through a fixed bearing is arranged in the shell; one end of the cylinder is fixedly connected with a hard long rod, and one end of the hard long rod, which is far away from the cylinder, is fixedly connected with a direct current motor; a plurality of pressure sensors are uniformly and annularly arranged on the inner wall of the opening end of the shell, and the pressure sensors are respectively in stress-free contact with the side wall of the hard long rod; the measuring method based on the device comprises the following steps of; determining the overall structure of the measuring device; step two; arranging a pressure sensor; step three; calculating the cylinder stress according to the sensor data; step four; the resulting data is processed and corrected. The invention can not only measure the fluid speed, but also realize the measurement of the speed direction, and the speed measuring device is small and convenient, and has low production and maintenance cost.)

1. A flow velocity measurement device based on the Magnus effect is characterized in that: comprises a shell and a cylinder with a hollow inner part; one end of the shell is fixedly provided with control equipment, the other end of the shell is provided with an opening, a direct current motor is arranged in the shell, and the direct current motor is connected with the control equipment through a fixed bearing; one end of the cylinder is fixedly connected with a hard long rod, and the hard long rod is superposed with the central line of the cylinder; one end of the hard long rod, which is far away from the cylinder, penetrates through the shell and is fixedly connected with the direct current motor; the inner wall of the opening end of the shell is uniformly provided with a plurality of pressure sensors in a surrounding mode, and the pressure sensors are in stress-free contact with the side wall of the hard long rod respectively.

2. The magnus effect based flow velocity measurement device of claim 1, wherein: the cylinder is made of metal materials; the length of the cylinder is greater than the diameter of the cylinder.

3. A flow velocity measurement method based on the Magnus effect is characterized in that: the method comprises the following steps:

step one; determining the overall structure of the measuring device;

step two; arranging a pressure sensor;

step three; calculating the cylinder stress according to the sensor data;

step four; the resulting data is processed and corrected.

4. The magnus effect based flow velocity measurement method of claim 3, characterized in that: the third step comprises; establishing a rectangular coordinate system by taking the axis center of the cylinder as an origin, and under the rectangular coordinate system, taking the incoming flow direction as a zero-degree angle and the azimuth angle of one of the pressure sensors as theta1Another pressure sensor has an azimuth angle theta2The two pressure sensors are respectively subjected to a force with the magnitude of P1And P2(ii) a The distance between the middle point of the cylinder and the fixed bearing and the distance between the sensor and the fixed bearing are respectively L1And L2(ii) a The respective vector coordinates can be obtained asAnd

Figure FDA0002588753660000012

The stress direction of the cylinder is theta ═ thetaa

5. The magnus effect based flow velocity measurement of claim 3The method is characterized in that: the fourth step comprises: firstly, the cylinder is rotated to obtain the stress of the cylinderThen the cylinder is static and does not rotate, and the inflow impulse force is obtained by the pressure sensorBoth of them are subjected to vector subtractionObtaining precise magnus forces

Technical Field

The invention relates to the field of fluid velocity measurement, in particular to a flow velocity measuring device based on a Magnus effect and a measuring method thereof.

Background

How to measure the flow velocity of the fluid has important significance for the current fluid mechanics experiment, geological hydrology monitoring, factory pipeline flow monitoring and the like, and is an essential technology in production and scientific research work. How to determine the flow rate of a fluid is an important task, and how to measure the flow rate efficiently, conveniently and accurately is the focus of research.

There are many methods and instruments for measuring the fluid velocity, but each has advantages and disadvantages, and is not completely suitable for fluid velocity measuring devices in various situations. Common flow rate measuring devices such as an electromagnetic flow rate meter are expensive and cannot measure the flow rate of non-conductive substances, and a common turbine mechanical flow rate meter has the defects of complex structure, poor precision, heavy structure and the like. Further, there are a venturi flow meter, a throttle flow meter, and the like, but these flow meters can only measure the flow velocity of an internal flow. Therefore, the existing flow rate measuring devices are in need of further improvement.

Disclosure of Invention

The invention aims to provide a flow velocity measuring device based on the Magnus effect and a measuring method thereof, which are used for solving the problems in the prior art, can measure the velocity of fluid, can also realize the measurement of the velocity direction, and are small and convenient in a speed measuring device and low in production and maintenance cost.

In order to achieve the purpose, the invention provides the following scheme:

the invention provides a flow velocity measuring device based on the Magnus effect, which comprises a shell and a cylinder with a hollow interior; one end of the shell is fixedly provided with control equipment, the other end of the shell is provided with an opening, a direct current motor is arranged in the shell, and the direct current motor is connected with the control equipment through a fixed bearing; one end of the cylinder is fixedly connected with a hard long rod, and the hard long rod is superposed with the central line of the cylinder; one end of the hard long rod, which is far away from the cylinder, penetrates through the shell and is fixedly connected with the direct current motor; the inner wall of the opening end of the shell is uniformly provided with a plurality of pressure sensors in a surrounding mode, and the pressure sensors are in stress-free contact with the side wall of the hard long rod respectively.

Optionally, the cylinder is made of a metal material; the length of the cylinder is greater than the diameter of the cylinder.

The invention also provides a flow velocity measuring method based on the Magnus effect, which comprises the following steps:

step one; determining the overall structure of the measuring device;

step two; arranging a pressure sensor;

step three; calculating the cylinder stress according to the sensor data;

step four; the resulting data is processed and corrected.

Optionally, the third step includes; establishing a rectangular coordinate system by taking the axis center of the cylinder as an origin, and under the rectangular coordinate system, taking the incoming flow direction as a zero-degree angle and the azimuth angle of one of the pressure sensors as theta1Another pressure sensor has an azimuth angle theta2The two pressure sensors are respectively subjected to a force with the magnitude of P1And P2(ii) a The distance between the middle point of the cylinder and the fixed bearing and the distance between the pressure sensor and the fixed bearing are respectively L1And L2(ii) a The respective vector coordinates can be obtained asAndvector synthesis to obtain

Figure BDA0002588753670000023

The stress of the pressure sensor can be obtained according to the methodThe stress direction of the pressure sensor is thetaa(ii) a The force of the cylinder can be known according to the lever principle

Figure BDA0002588753670000025

The stress direction of the cylinder is theta ═ thetaa

Optionally, the fourth step includes: firstly, the cylinder is rotated to obtain the stress of the cylinderThen the cylinder is static and does not rotate, and the inflow impulse force is obtained by the pressure sensorBoth of them are subjected to vector subtraction

Figure BDA0002588753670000028

Obtaining precise magnus forces

Figure BDA0002588753670000029

Compared with the prior art, the invention has the following technical effects:

according to the principle of fluid mechanics, for the problem of circumferential flow around a cylinder, if there is a circumferential volume around the cylinder, the cylinder is subjected to a transverse force, and the simplest way to create the circumferential volume around the cylinder is to rotate the cylinder. It is known from the magnus effect that the constant rotation of the cylinder generates additional force on the cylinder. The principle of the invention is therefore that of arranging the rotating cylinder in a flowing fluid. If the rotation angular velocity, radius and length of the cylinder are known, the magnus force is also determined, the direction is perpendicular to the incoming flow velocity and is positioned in the plane formed by the incoming flow velocity and the rotation angular velocity vector of the cylinder. Therefore, the speed direction and the size of the flowing fluid can be reversely deduced only by measuring the force size and the force direction of the cylinder. The measuring device and the measuring method based on the technical proposal have the advantages of simple structure, convenient technical realization, no need of an additional complex control system, small influence on fluid, capability of measuring the velocity of the fluid and the velocity direction, low production and maintenance cost and potential speed measuring device.

Drawings

In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without inventive exercise.

FIG. 1 is a schematic structural diagram of a flow velocity measuring device based on the Magnus effect according to the present invention;

FIG. 2 is a schematic diagram of a pressure sensor arrangement of the magnus effect based flow velocity measurement device of the present invention;

wherein, 1 is the cylinder, 2 is hard stock, 3 is pressure sensor, 301 is first pressure sensor, 302 is the second pressure sensor, 4 is direct current motor, 5 is fixing bearing, 6 is controlgear, 7 is the shell.

Detailed Description

The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

The invention aims to provide a flow velocity measuring device based on the Magnus effect and a measuring method thereof, which are used for solving the problems in the prior art, can measure the velocity of fluid, can also realize the measurement of the velocity direction, and are small and convenient in a speed measuring device and low in production and maintenance cost.

In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in further detail below.

The Magnus Effect (Magnus Effect) means that a rotating object will generate an additional force in the fluid. This is because the rotation of the object drives the surrounding fluid to rotate, so that the fluid velocity on one side of the object increases and the fluid velocity on the other side decreases. According to Bernoulli's principle, the fluid velocity is increased, the pressure intensity is reduced, the fluid velocity is reduced, the pressure intensity is increased, so that a pressure difference exists between the rotating object in the transverse direction to form a transverse force, the fluid velocity can be measured by the Magnus effect, and the flow velocity measuring device based on the method is simple in structure.

The invention accordingly provides a flow velocity measuring device based on the magnus effect, as shown in fig. 1, comprising a housing 7 and a cylinder 1 with a hollow interior; one end of the shell 7 is fixedly provided with a control device 6, the other end of the shell is provided with an opening, a direct current motor 4 is arranged in the shell 7, and the direct current motor 4 is connected with the control device 6 through a fixed bearing 5; one end of the cylinder 1 is fixedly connected with a hard long rod 2, and the hard long rod 2 is superposed with the central line of the cylinder 1; one end of the hard long rod 2, which is far away from the column 1, penetrates through the shell 7 and is fixedly connected with the direct current motor 4; the inner wall of the opening end of the shell 7 is uniformly provided with a plurality of pressure sensors 3 in a surrounding mode, and the pressure sensors 3 are in stress-free contact with the side wall of the hard long rod 2 respectively.

The invention also provides a flow velocity measuring method based on the Magnus effect, which comprises the following steps:

step one; determining the overall structure

The flow velocity measuring device adopts the hollow cylinder and uses the metal material, so that the weight can be reduced under the condition that the strength of the cylinder 1 is enough. The diameter of the cylinder 1 is dimensioned such that the length of the cylinder is greater than the diameter for generating a greater magnus force. The hard long rod 2 is connected with the coaxial direct current motor. A coaxial dc motor 4 is fixed in the upper housing with a fixed bearing 5 and the cylinder 1 is connected to an upper control device 6 by a stiff long rod 2. As long as it is ensured that it is stationary with respect to the cylinder 1 and that the rigid long rod 2 and the coaxial dc motor 4 are considered to be rigidly connected. The direct current motor 4 is fixed on the control equipment by connecting a fixed bearing 5, and meanwhile, the fixed point is used as a lever fulcrum and ensures that the direct current motor 4 is coaxial with the cylinder 1.

Step two; arranging pressure sensors

As shown in fig. 2, a plurality of pressure sensors 3 are arranged at a fixed uniform angle along 360 degrees around a long rigid rod 2, and each pressure sensor 3 is equally spaced. The pressure sensor 3 may be fixed in various ways as long as it just contacts the long rigid rod 2 without generating stress. When the cylinder 1 is subjected to a force due to the magnus effect, the pressure sensor 3 is subjected to corresponding pressure data according to the lever principle and correspondingly transmitted back to the control circuit.

Step three; calculating cylinder stress from sensor data

According to the theory of fluid mechanics, for a cylinder 1 rotating in the incoming flow, firstly, the amount of the cylinder ring is calculated to know:

wherein v istR omega is the tangential velocity of the wall surface of the cylinder 1; r is the radius of the cylinder 1; ω is the angular velocity of rotation of the cylinder 1. According to the kutta-jukowski theorem, the magnus forces experienced are:

F/L=ρV=ρV2πr2ω

with the axis center as the origin, a coordinate system can be set to calculate the data returned by the pressure sensor 3 to obtain the stress. Taking fig. 2 as an example, when the first pressure sensor 301 and the second pressure sensor 302 are subjected to pressure, the direction opposite to the incoming flow is taken as an x-axis zero-degree angle in a rectangular coordinate system, and the azimuth angle of the first pressure sensor 301 is taken as θ1The azimuth angle of the second pressure sensor 302 is θ2Each applied force is P1And P2. The distance between the center of the cylinder and a fixed point of the fixed bearing 5 and the distance between the two pressure sensors and the fixed point of the fixed bearing 5 are respectively L1And L2. The respective vector coordinates are:

vector synthesis is carried out to obtain:

the stress of the sensor can be obtained as follows:

Figure BDA0002588753670000054

the direction of the force applied to the pressure sensor 3 is:

Figure BDA0002588753670000055

according to the lever principle, the stress of the cylinder 1 is as follows:

Figure BDA0002588753670000056

the stress direction of the cylinder 1 is as follows:

θ=θa

the stress of the cylinder 1 is obtained, and the incoming flow speed can be reversely deduced through a formula after correction.

Step four; processing the obtained data

Under the condition that the rotation angular velocity of the cylinder 1 is constant and the radius and the length are known, the Magnus force applied to the cylinder 1 is only related to the density and the flow velocity of the fluid, the direction of the force is perpendicular to the incoming flow velocity vector and the rotation angular velocity vector of the cylinder, and the Magnus force is only in proportion to the flow velocity because the flow density can be considered as a constant under the condition of low speed. Therefore, the magnitude and direction of the fluid velocity can be obtained only by measuring the magnitude and direction of the force applied to the cylinder 1.

Since the impact of the incoming flow on the cylinder 1 can also generate force, the actual speed measurement is divided into two steps, firstly, the cylinder 1 is rotated to obtain the force applied to the cylinder 1

Figure BDA0002588753670000061

Then the cylinder 1 is static and does not rotate, and the inflow impulse force is obtained by the pressure sensor 3

Figure BDA0002588753670000062

Both of them are subjected to vector subtractionPrecise Magnus force can be obtained

Figure BDA0002588753670000064

Velocity of incoming flow VIt can be represented by the formula F/L ═ ρ V=ρV2πr2ω is inversely derived:

Figure BDA0002588753670000065

the principle and the implementation mode of the invention are explained by applying a specific example, and the description of the embodiment is only used for helping to understand the method and the core idea of the invention; meanwhile, for a person skilled in the art, according to the idea of the present invention, the specific embodiments and the application range may be changed. In view of the above, the present disclosure should not be construed as limiting the invention.

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种风速传感器及风速检测装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!