High-speed transmission FFC

文档序号:1143164 发布日期:2020-09-11 浏览:16次 中文

阅读说明:本技术 一种高速传输ffc (High-speed transmission FFC ) 是由 石晗 于 2020-06-22 设计创作,主要内容包括:本发明涉及连接线技术领域,尤其是指一种高速传输FFC,包括依次贴合的第一屏蔽层、第一绝缘层、导体层、第二绝缘层以及第二屏蔽层,所述导体层包括若干第一导体,若干所述第一导体间隔设置,所述第一导体的横截面为圆形。本发明提供的一种高速传输FFC,第一导体采用形状为圆形的铜线,可以大大提高信号等的传输速度,增加了FFC柔性扁平电缆的应用范围。(The invention relates to the technical field of connecting wires, in particular to a high-speed transmission FFC (flexible flat cable) which comprises a first shielding layer, a first insulating layer, a conductor layer, a second insulating layer and a second shielding layer which are sequentially attached, wherein the conductor layer comprises a plurality of first conductors, the first conductors are arranged at intervals, and the cross sections of the first conductors are circular. According to the high-speed transmission FFC provided by the invention, the first conductor adopts the copper wire in the shape of a circle, so that the transmission speed of signals and the like can be greatly improved, and the application range of the FFC flexible flat cable is enlarged.)

1. The utility model provides a high-speed transmission FFC, includes first shielding layer, first insulating layer, conductor layer, second insulating layer and the second shielding layer of laminating in proper order, first shielding layer and second shielding layer signal connection, its characterized in that: the conductor layer includes a plurality of first conductors, and a plurality of first conductor interval sets up, the cross section of first conductor is circular.

2. The FFC of claim 1, wherein: the first conductor comprises a first front end portion, a first middle end portion and a first rear end portion which are sequentially connected, the first middle end portion is wrapped between a first insulating layer and a second insulating layer, and the first front end portion and the first rear end portion are exposed outside the first insulating layer and the second insulating layer.

3. The FFC of claim 1, wherein: the conductor layer further comprises a plurality of second conductors, the cross sections of the second conductors are rectangular, and the plurality of second conductors and the plurality of first conductors are arranged in an inserting mode.

4. A high speed transmission FFC according to claim 3, wherein: the second conductor is including the second front end portion, tip and second rear end portion in the second that connect gradually, the tip parcel is between first insulating layer and second insulating layer in the second, tip and second rear end portion all expose outside first insulating layer and second insulating layer before the second.

5. The FFC of claim 2, wherein: the first front end part and/or the first rear end part of at least one first conductor comprises a first shielding conductor and a second shielding conductor, and the first shielding conductor is in signal connection with the second shielding conductor; the first shielding conductor is in signal connection with the first shielding layer or the second shielding conductor is in signal connection with the second insulating layer.

6. The FFC of claim 4, wherein: the second front end part and/or the second rear end part of at least one second conductor comprises a third shielding conductor and a fourth shielding conductor, and the third shielding conductor is in signal connection with the fourth shielding conductor; the third shielding conductor is in signal connection with the first shielding layer or the fourth shielding conductor is in signal connection with the second insulating layer.

7. A high speed transmission FFC according to claim 1, 3, 5 or 6 wherein: the high-speed transmission FFC further comprises a protective sleeve, the inner surface of the protective sleeve is conductive, the outer surface of the protective sleeve is insulating, the protective sleeve is sleeved on the outer surfaces of the first shielding layer and the second shielding layer, and the first shielding layer and the second shielding layer are connected with the inner surface of the protective sleeve through signals.

8. The FFC of claim 7, wherein: the first shielding layer is provided with an upper conductive part, the second shielding layer is provided with a lower conductive part, and the upper conductive part and the lower conductive part are in signal connection with the inner surface of the protective sleeve.

9. The FFC of claim 1, wherein: the first shielding layer and the second shielding layer are both aluminum foil composite layers.

10. A high speed transmission FFC according to claim 3, wherein: the first conductor is made of tinned copper wires, silvered copper wires or bare copper wires, and the second conductor is made of tinned copper wires, silvered copper wires or bare copper wires.

Technical Field

The invention relates to the technical field of connecting wires, in particular to a high-speed transmission FFC.

Background

FFC flexible flat cable, also called winding displacement, is one kind with insulating material and extremely thin flat copper line, the novel signal cable that forms through high-tech automation equipment production line pressfitting has advantages such as soft, bending folding at will, thickness is thin, small, the heat dissipation is fast, and what present FFC is more is that be arranged in electronic product such as computer, printer.

However, in the server or the server, there is a great demand for high-speed data transmission, so that data lines such as coaxial cables are basically applied to data transmission of the server or the server at present, and the cables have large volume, slow heat dissipation and inconvenient use. Therefore, it is a problem to be solved at present how to improve the data transmission speed of the FFC so as to apply the advantages of the FFC to a server or a server.

Disclosure of Invention

The invention provides a high-speed transmission FFC aiming at the problems in the prior art, wherein a first conductor adopts a copper wire with a circular shape, so that the transmission speed of signals and the like can be greatly improved, and the application range of the FFC flexible flat cable is enlarged.

In order to solve the technical problems, the invention adopts the following technical scheme: the utility model provides a high-speed transmission FFC, is including the first shielding layer, first insulating layer, conductor layer, second insulating layer and the second shielding layer of laminating in proper order, first shielding layer and second shielding layer signal connection, the conductor layer includes a plurality of first conductors, and is a plurality of first conductor interval sets up, the cross section of first conductor is circular.

Preferably, the conductor layer further includes a plurality of second conductors, the cross section of each second conductor is rectangular, and the plurality of second conductors and the plurality of first conductors are arranged in an alternating manner.

Preferably, the first conductor comprises a first front end portion, a first middle end portion and a first rear end portion which are sequentially connected, the first middle end portion is wrapped between the first insulating layer and the second insulating layer, and the first front end portion and the first rear end portion are both exposed out of the first insulating layer and the second insulating layer; the second conductor is including the second front end portion, tip and second rear end portion in the second that connect gradually, the tip parcel is between first insulating layer and second insulating layer in the second, tip and second rear end portion all expose outside first insulating layer and second insulating layer before the second.

Preferably, the first front end and/or the first rear end of the at least one first conductor comprises a first shielding conductor and a second shielding conductor, and the first shielding conductor is in signal connection with the second shielding conductor; the first shielding conductor is in signal connection with the first shielding layer or the second shielding conductor is in signal connection with the second insulating layer.

Preferably, the second front end and/or the second rear end of the at least one second conductor includes a third shielding conductor and a fourth shielding conductor, and the third shielding conductor is in signal connection with the fourth shielding conductor; the third shielding conductor is in signal connection with the first shielding layer or the fourth shielding conductor is in signal connection with the second insulating layer.

Preferably, the high-speed transmission FFC further comprises a protective sleeve, wherein the inner surface of the protective sleeve is conductive, the outer surface of the protective sleeve is insulating, the protective sleeve is sleeved on the outer surfaces of the first shielding layer and the second shielding layer, and the first shielding layer and the second shielding layer are connected with the inner surface of the protective sleeve through signals.

Preferably, the first shielding layer is provided with an upper conductive part, the second shielding layer is provided with a lower conductive part, and the upper conductive part and the lower conductive part are both in signal connection with the inner surface of the protective sleeve.

Preferably, the first shielding layer and the second shielding layer are both aluminum foil composite layers.

Preferably, the first conductor is made of a tinned copper wire, a silvered copper wire or a bare copper wire, and the second conductor is made of a tinned copper wire, a silvered copper wire or a bare copper wire.

Preferably, the protective sleeve is made of aluminum foil mylar or silver-plated aluminum foil mylar or copper-plated aluminum foil mylar.

The invention has the beneficial effects that:

according to the high-speed transmission FFC provided by the invention, the first conductors of the conductor layer are all made of the copper wires in the shape of the circle, so that the capacitance effect of the conductor layer can be reduced, the data transmission speed is further improved, compared with flat copper wires, the transmission speed of signals can be greatly improved through the round copper wires, the high-speed transmission FFC can be applied to a server or a server, the application range of a flexible flat cable of the FFC is increased, meanwhile, compared with a cable, the FFC has a better heat dissipation effect, the server or the server can work more stably, and the round copper wires are not provided with structures such as corner edges and the like, and can be better pressed with the first insulating layer and the second insulating layer.

Drawings

FIG. 1 is a schematic structural diagram of the present invention.

Fig. 2 is a front view of fig. 1.

Fig. 3 is an exploded view of the present invention.

Fig. 4 is a schematic diagram of a structure with a first conductor and a second conductor of the present invention.

Fig. 5 is a schematic structural diagram of a third shielding conductor, a fourth shielding conductor and an upper conductive portion according to the present invention.

FIG. 6 is a schematic view of the connection structure between the upper overlapped conductor and the upper conductive part according to the present invention.

Fig. 7 is a schematic view of the structure of the present invention with a protective sheath.

Fig. 8 is a schematic view of the structure of the first shield conductor and the second shield conductor of the present invention.

Fig. 9 is a cross-sectional view at AA in fig. 8.

The reference numerals in fig. 1 to 9 include:

1-first shield, 11-upper conductive part, 2-first insulating layer, 3-second insulating layer, 4-second shield, 5-first conductor, 51-first front end, 52-first middle end, 53-first rear end, 54-first shield, 55-second shield, 6-second conductor, 61-second front end, 62-second middle end, 63-second rear end, 64-third shield, 65-fourth shield, 7-protective jacket.

Detailed Description

In order to facilitate understanding of those skilled in the art, the present invention will be further described with reference to the following examples and drawings, which are not intended to limit the present invention. The present invention is described in detail below with reference to the attached drawings.

The high-speed transmission FFC provided by the present embodiment, as shown in fig. 1 and fig. 2, includes a first shielding layer 1, a first insulating layer 2, a conductor layer, a second insulating layer 3, and a second shielding layer 4 which are sequentially attached to each other, where the first shielding layer 1 is in signal connection with the second shielding layer 4, the conductor layer includes a plurality of first conductors 5, and a plurality of the first conductors 5 are arranged at intervals, and a cross section of the first conductor 5 is circular. Preferably, the first conductor 5 is made of a tinned copper wire, a silver-plated copper wire, or a bare copper wire. Wherein, first shielding layer 1 through hot melt adhesive or self-adhesive with the laminating of first insulating layer 2, second shielding layer 4 through hot melt adhesive or self-adhesive with the laminating of second insulating layer 3, first insulating layer 2 and second insulating layer 3 all through the hot melt adhesive with the conductor layer laminating, of course, except hot melt adhesive and self-adhesive, also can use other can realize the bonding and be applicable to the adhesive in the structure of FFC flexible flat cable.

Specifically, the first conductor 5 of conductor layer all uses the shape to be circular shape copper line, can reduce the capacitive effect of conductor layer, and then improve data transmission speed, so compare in flat copper line, the transmission speed of signal can be improved greatly to circular shape copper line, thereby can use this high-speed transmission FFC in server or the server, the range of application of the flexible flat cable of FFC has been increased, FFC is compared in the cable simultaneously, better radiating effect has, can make the work of server or server more stable, and, circular copper line does not have structures such as edge limit, can be better with first insulating layer 2 and the pressfitting of second insulating layer 3.

Preferably, the first shielding layer 1 and the second shielding layer 4 are made of a material with a low dielectric constant, for example, an aluminum foil composite material is used, which can effectively reduce the dielectric constant from the conductor layer to the first shielding layer 1 or the second shielding layer 4, so as to further reduce the capacitance effect between the first conductor 5 and the first conductor 5, thereby having a good high-speed data transmission effect, and reducing the heating condition between the first shielding layer 1, the first insulating layer, the conductor layer, the second insulating layer and the second shielding layer 4, so that the FFC of the embodiment has a function of high-speed data transmission and a good heat dissipation function, and is more suitable for devices such as a server or a server.

In the FFC for high-speed transmission provided by this embodiment, as shown in fig. 3 and 4, the conductor layer further includes a plurality of second conductors 6, the cross section of the second conductors 6 is rectangular, and the plurality of second conductors 6 and the plurality of first conductors 5 are arranged in an alternating manner. Preferably, the second conductor 6 is made of a tinned copper wire, a silver-plated copper wire or a bare copper wire.

Specifically, the circular first conductors 5 and the flat second conductors 6 are arranged alternately, and the arrangement sequence is determined according to the actual product; in fact, each first conductor 5 and each second conductor 6 transmit different signals, and signal transmission of some electronic products may involve high speed and normal speed, so that if the conductor layers are all arranged as the first conductors 5 with a circular shape or all arranged as the second conductors 6 with a flat shape, the conductor layers are not suitable, and therefore, according to the actual product, the structure that the conductor layers are arranged as the combination of the first conductors 5 and the second conductors 6 can meet different requirements of the product.

In the FFC for high-speed transmission provided by the present embodiment, as shown in fig. 1, fig. 3 and fig. 4, the first conductor 5 includes a first front end portion 51, a first middle end portion 52 and a first rear end portion 53 which are connected in sequence, the first middle end portion 52 is wrapped between the first insulating layer 2 and the second insulating layer 3, and both the first front end portion 51 and the first rear end portion 53 are exposed outside the first insulating layer 2 and the second insulating layer 3; the second conductor 6 comprises a second front end part 61, a second middle end part 62 and a second rear end part 63 which are connected in sequence, the second middle end part 62 is wrapped between the first insulating layer 2 and the second insulating layer 3, and the second front end part 61 and the second rear end part 63 are exposed out of the first insulating layer 2 and the second insulating layer 3.

Specifically, both ends of the first conductor 5 and the second conductor 6 are exposed and not contacted with the first insulating layer 2 and the second insulating layer 3, and the conducting wires of the FFC flexible flat cable in the prior art are only exposed out of one side, so that the FFC flexible flat cable in the prior art is usually connected to a circuit board or a product through a corresponding connector, which results in the need to produce a corresponding connector to use the FFC flexible flat cable. The high-speed transmission FFC directly exposes the two ends of the first conductor 5 and the second conductor 6, can be directly welded on a circuit board, and does not need to pass through a connector, so that the high-speed transmission FFC is more convenient to use, the use of the connector is reduced, and certain production cost can be saved.

In the FFC for high-speed transmission provided in this embodiment, as shown in fig. 5 to 9, the first front end 51 and/or the first rear end 53 of at least one first conductor 5 includes a first shielding conductor 54 and a second shielding conductor 55, and the first shielding conductor 54 is in signal connection with the second shielding conductor 55; the first shield conductor 54 is in signal connection with the first shield layer 1 or the second shield conductor 55 is in signal connection with the second insulating layer.

When the second conductors 6 are provided, the second front end portion 61 and/or the second rear end portion 63 of at least one second conductor 6 includes a third shielding conductor 64 and a fourth shielding conductor 65, and the third shielding conductor 64 is in signal connection with the fourth shielding conductor 65; the third shield conductor 64 is in signal connection with the first shield layer 1 or the fourth shield conductor 65 is in signal connection with the second insulating layer.

Specifically, in order to improve the EMI (electromagnetic shielding) resistance of the high-speed FFC, taking the first conductor 5 as an example, as shown in fig. 8 and 9, the first shielding conductor 54 and the second shielding conductor 55 are disposed on the first conductor 5, and the first shielding conductor 54 and the second shielding conductor 55 may be in a parallel positional relationship or a positional relationship other than the parallel positional relationship, as long as the signal connection between the first shielding conductor 54 and the second shielding conductor 55 can be realized, and any one of the first shielding conductor 54 and the second shielding conductor 55 is in signal connection with the first shielding layer 1 or the second shielding layer 4.

In this embodiment, the first shielding layer 1 and the second shielding layer 4 are both aluminum foil composite layers, a laser method is adopted to burn off a PET (polyester resin) on the surfaces of the first shielding layer 1 and the second shielding layer 4 to expose aluminum layers, that is, an upper conductive part 11 and a lower conductive part (not shown in the drawing) are exposed aluminum layers, then the first shielding conductor 54 or the second shielding conductor 55 is turned back to contact the exposed aluminum layers, so as to realize signal connection, finally, the protective sleeve 7 is sleeved outside the first shielding layer 1 and the second shielding layer 4, the protective sleeve 7 is made of mylar or silver-plated aluminum foil mylar or copper-plated aluminum foil mylar, so that the inner surface of the protective sleeve 7 is conductive, the outer surface is insulating, so as to realize the function of signal connection between the first shielding layer 1 and the second shielding layer 4, and simultaneously, the first shielding conductor 54 or the second shielding conductor 55 and the exposed aluminum layer are both protected in the protective sheath 7, and the inner surface of the protective sheath 7 is attached to the first shielding conductor 54 or the second shielding conductor 55 or the exposed aluminum layer, so that the first shielding conductor 54 or the second shielding conductor 55 is in normal contact with the aluminum layer.

Of course, when the second conductor 6 is provided, the third shield conductor 64 and the fourth shield conductor 65 may be provided on the second conductor 6, and the third shield conductor 64 and the fourth shield conductor 65 may be in a superposed relationship, as shown in fig. 5 to 7, or may be in a positional relationship other than the superposed relationship, as long as the effect of signal connection between the third shield conductor 64 and the fourth shield conductor 65 is satisfied. The use method and use effect of the third shielding conductor 64 and the fourth shielding conductor 65 are the same as those of the first shielding conductor 54 and the second shielding conductor 55, and the EMI resistance of the FFC of the embodiment is improved, so that the FFC flexible flat cable is more stable in use, and the stability of signal transmission of a product is further improved.

In addition, the first shielding conductor 54, the second shielding conductor 55, the third shielding conductor 64 and the fourth shielding conductor 65 may be provided in one or more numbers, and may be provided according to actual requirements.

Although the present invention has been described with reference to the above preferred embodiments, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种超高弹耐扭转消防员用步话机弹簧线及其生产方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!