Power transmission system for remote control submersible

文档序号:1143960 发布日期:2020-09-11 浏览:4次 中文

阅读说明:本技术 一种用于遥控潜水器动力传输系统 (Power transmission system for remote control submersible ) 是由 齐心 崔胜国 苏辰长 欧阳赛赛 孔范东 张斌 于 2020-05-21 设计创作,主要内容包括:本发明公开一种遥控潜水器的动力传输系统,具体地说遥控潜水器的动力传输系统是将水面动力电安全合理地传输到水下的潜水器系统中,该动力传输系统不仅要考虑到降低超长铠缆的损耗、补偿铠缆损耗的压降,还要具备完善的安全保护功能,包括接地保护、绝缘监视、漏电保护、联动互锁,以及电压、电流、功率的检测与监视等。本发明具有超常距离高效率输电、自动电压补偿、保护功能完善等优点。(The invention discloses a power transmission system of a remote-control submersible, in particular to a power transmission system of a remote-control submersible which safely and reasonably transmits power electricity on the water surface to a submersible system under water. The invention has the advantages of super-normal distance high-efficiency power transmission, automatic voltage compensation, perfect protection function and the like.)

1. A power transmission system for a remotely operated vehicle, comprising:

the water surface power supply system is used for carrying out frequency conversion and voltage boosting on input alternating current and then transmitting the alternating current to the underwater unit power supply system through the armored umbilical cable for power supply;

and the underwater unit power supply system is used for reducing the voltage of the alternating current supplied by the water surface power supply system and outputting direct current for the propeller and the control system to use after rectification and filtering processing.

2. The power transmission system for a remotely operated vehicle as described in claim 1 wherein said surface power supply system comprises: the device comprises an LC filter 1, a rectifying module, a filter capacitor bank, an IGBT full-bridge inversion module, an LC filter 2 and an isolation boosting transformer which are connected in sequence; and the isolation boosting transformer is connected with an underwater unit power supply system through a cable.

3. The remotely operated vehicle power transmission system of claim 1, wherein the subsea unit power supply system comprises: the underwater step-down transformer, the three-phase rectifier module and the filter capacitor are connected in sequence; the underwater step-down transformer is connected with the isolation step-up transformer through a cable.

4. The power transmission system of claim 1, wherein the surface power system is configured to convert 380VAC/50Hz three-phase ac power to 380VAC/4000Hz three-phase ac power.

5. The power transmission system for the remotely operated vehicle as claimed in claim 1, wherein the underwater unit power supply system converts the 4000VAC/400Hz ac power into 220VAC/400Hz, 130VAC/400Hz multi-path output three-phase ac power through the water step-down transformer, and the two 220VAC/400Hz three-phase ac power outputs one 600VDC and 130VAC/400Hz three-phase ac power after rectification and filtering and outputs 175VDC after rectification and filtering.

6. The remotely operated vehicle power transmission system of claim 1, wherein the surface power supply system further comprises a master drive board connected to the IGBT full bridge inverter module via signal lines.

7. A power transmission system for a remotely operated vehicle as described in claim 2 wherein a contactor module is provided between said LC filter 1 and the input power source; and a contactor is arranged on each phase power line, and the contactor is connected with an input contactor and a current-limiting resistor in series in parallel.

8. The remotely operated vehicle power transmission system of claim 2, wherein the rectifier module is a full bridge rectifier circuit.

9. A remotely operated vehicle power transmission system as claimed in claim 2, wherein the filter bank comprises three capacitor branches and a resistor branch connected in parallel, each capacitor branch having two capacitors connected in series, each resistor branch having two resistors connected in series, the node between the two resistors in the resistor branch being connected to the node between the two capacitors in each capacitor branch.

Technical Field

The invention relates to the technical field of underwater robot power supply, in particular to a power transmission system of a remote control submersible.

Background

The remote control submersible is a typical representative of underwater unmanned operation technology, has multiple purposes of safe search and rescue, pipeline inspection, scientific research and teaching, energy industry and the like, is an important technical means for realizing deep sea development and ocean utilization by human beings, and is one of the leading edges of the current deep sea high-technology development.

The power transmission system of the remote-control submersible provides energy for the submersible, the power transmission system of the high-power large-depth remote-control submersible is the key and difficult point of submersible design, and the problems of heating of the super-long armored cable, unstable underwater power supply voltage of the super-long armored umbilical cable and the like need to be solved, so that the high-efficiency practical power transmission system is very necessary for the remote-control submersible.

Disclosure of Invention

The invention aims to provide a power transmission system of a remote-control submersible vehicle. The power transmission system can transmit 380VAC/50Hz power provided by a mother ship to a submersible system through the armor cables after frequency conversion and boosting, and by the mode, the electric energy attenuation caused by the long armor cables can be reduced, and the size and the weight of the underwater transformer are effectively reduced.

The technical scheme adopted by the invention for realizing the purpose is as follows:

a power transmission system for a remotely operated vehicle, comprising:

the water surface power supply system is used for carrying out frequency conversion and voltage boosting on input alternating current and then transmitting the alternating current to the underwater unit power supply system through the armored umbilical cable for power supply;

and the underwater unit power supply system is used for reducing the voltage of the alternating current supplied by the water surface power supply system and outputting direct current for the propeller and the control system to use after rectification and filtering processing.

The surface power supply system comprises: the device comprises an LC filter 1, a rectifying module, a filter capacitor bank, an IGBT full-bridge inversion module, an LC filter 2 and an isolation boosting transformer which are connected in sequence; and the isolation boosting transformer is connected with an underwater unit power supply system through a cable.

The underwater unit power supply system includes: the underwater step-down transformer, the three-phase rectifier module and the filter capacitor are connected in sequence; the underwater step-down transformer is connected with the isolation step-up transformer through a cable.

The water surface power supply system is used for converting 380VAC/50Hz three-phase alternating current into 380VAC/4000Hz three-phase alternating current.

The power supply system of the underwater unit converts 4000VAC/400Hz alternating current into 220VAC/400Hz, 220VAC/400Hz and 130VAC/400Hz multi-path output three-phase alternating current through a water descending voltage transformer, and the two paths of 220VAC/400Hz three-phase alternating current output one path of 600VDC and 130VAC/400Hz three-phase alternating current after rectification and filtering and output 175VDC after rectification and filtering.

The water surface power supply system further comprises a master control driving board connected with the IGBT full-bridge inverter module through a signal line.

A contactor module is arranged between the LC filter 1 and an input power supply; and a contactor is arranged on each phase power line, and the contactor is connected with an input contactor and a current-limiting resistor in series in parallel.

The rectification module is a full-bridge rectification circuit.

The filter capacitor bank comprises three capacitor branches and a resistor branch which are connected in parallel, each capacitor branch is provided with two capacitors connected in series, each resistor branch is provided with two resistors connected in series, and a node between the two resistors on the resistor branch is respectively connected with a node between the two capacitors on each capacitor branch.

The invention has the following beneficial effects and advantages:

1. the invention is transmitted under the condition of high voltage (4000V), greatly reduces the current passing through the overlong armor cable, reduces the energy lost on the armor cable, reduces the heating of the armor cable and improves the efficiency of the system.

2. The invention can greatly reduce the volume and weight of the underwater transformer by increasing the frequency to 400Hz, thereby reducing the size of the whole submersible vehicle.

3. The invention can automatically compensate the voltage through the change of the electric power of the load.

Drawings

FIG. 1 is a schematic diagram of a water surface power supply system design;

FIG. 2 is a schematic circuit diagram of a design of a water surface power supply system;

FIG. 3 is a schematic diagram of a subsea unit power supply system design;

FIG. 4 is a three-phase full-bridge rectification diagram;

fig. 5 is a three-phase full-bridge rectification waveform diagram.

Detailed Description

The present invention will be described in further detail with reference to the accompanying drawings and examples.

A power transmission system of a remote-control submersible comprises a water surface power supply system and an underwater unit power supply system.

The water surface power supply system mainly comprises an input LC filter, a full-bridge rectifier module, a direct-current filter capacitor bank, a full-bridge inverter, an LC filter, an output isolation boosting transformer, a main control circuit board and the like; the underwater unit power supply system mainly comprises an underwater step-down transformer, a three-phase rectifier module, a filter capacitor, a power supply control board and the like.

380VAC/50Hz three-phase alternating current is converted into 380VAC/400Hz three-phase alternating current through a variable frequency power supply, namely a water surface power supply system.

The 380VAC/400Hz three-phase alternating current is converted into 4000VAC/400Hz high-voltage three-phase alternating current through a step-up transformer.

The variable frequency power supply has various protection functions such as overvoltage, overcurrent, undervoltage, short circuit, overheating, insulation, an alarm, an isolating switch and the like;

the variable frequency power supply is provided with an RS485 output interface and can monitor 380VAC/50Hz alternating voltage, current, 4000VAC/400Hz alternating voltage, current, and state information of the variable frequency power supply and the booster transformer;

the variable frequency power supply has the function of voltage compensation according to the load power change condition;

the 4000VAC/400Hz alternating current is transmitted in a long distance and then converted into low-voltage multi-output three-phase alternating current of 220VAC/400Hz, 220VAC/400Hz and 130VAC/400Hz through a step-down transformer.

The low-voltage three-phase alternating current outputs 600VDC and 175VDC after being rectified, filtered and the like to respectively supply power to the propulsion system and the control system.

The water surface power supply system mainly boosts 380VAC/50Hz alternating current into 4000VAC/400Hz alternating current through a variable frequency power supply in a variable frequency mode, and transmits the alternating current to the underwater vehicle for power supply through an armored umbilical cable.

The main circuit of the power supply is designed by adopting the working principle of AC-DC-AC and mainly comprises an input LC filter, a rectifier, a DC filter capacitor bank, an inverter, an output isolation transformer, an AC filter capacitor bank and the like.

The underwater power supply system mainly converts a 4000V/400Hz alternating current power supply supplied by the water surface into two paths of 220VAC and one path of 130VAC voltage power supplies through a step-down transformer, and outputs one path of 600VDC and one path of 175VDC after rectification and filtering for a propeller and a control system to use.

The water surface power supply system boosts the 380VAC/50Hz alternating current into 4000VAC/400Hz alternating current through a variable frequency power supply in a variable frequency mode, and the alternating current is transmitted to the underwater vehicle through an armored umbilical cable to supply power.

The main circuit of the power supply is designed by adopting the working principle of AC-DC-AC and mainly comprises an input LC filter, a rectifier, a DC filter capacitor bank, an inverter, an output isolation transformer, an AC filter capacitor bank and the like. The water surface variable frequency power supply design schematic diagram is shown in fig. 1 and fig. 2.

The first stage AC-DC is a rectifying part. The three-phase input passes through the LC filter, the output of the filter is buffered by the current-limiting resistor, and then converted into direct-current voltage by the full-bridge rectifier module and the filter capacitor bank.

The second stage DC-AC is the inverting part. A high-power Insulated Gate Bipolar Transistor (IGBT) is used as an inversion switching element, and a modulation wave (reference sine wave voltage source) is compared with a carrier wave (reference triangular wave voltage source) by utilizing an advanced sine wave modulation technology (SPWM). When the carrier wave is intersected with the modulation wave, the switching action moment and the switching on-off state of the IGBT of the inverter switching tube are determined by the intersection point, and a series of positive and negative rectangular pulse voltage waveforms (SPWM waveforms) with different widths are obtained. The pulse sequence features that the pulse sequence has equal amplitude and different width, and the width varies according to sine law. The output pulse width modulation wave is filtered by an LC filter circuit to obtain pure sine wave alternating current voltage. The output is provided with an isolation step-up transformer, so that the stability of the whole machine is improved.

The underwater power supply system steps down 4000VAC to 220VAC and 130VAC through the water step-down transformer, finally outputs 600VDC and 175VDC to supply power to the thruster and the control system through functions of rectification, filtering and the like, and a schematic diagram of the underwater unit power supply system is shown in FIG. 3.

After the voltage of the underwater transformer is reduced, three windings are used for providing 3 paths of alternating current power output. And performing three-phase full-bridge rectification on the power output of each winding to form pulsating direct-current voltage output. The three-phase full-bridge rectification principle diagram and the waveform diagram are shown in fig. 4 and fig. 5.

In fig. 5 Ur is a rectified waveform. According to a three-phase rectification calculation formula.

Figure BDA0002501270460000051

Ur is the line voltage of the three-phase alternating current after rectification, U is the line voltage of the three-phase alternating current before rectification, and omega is the angular frequency of the three-phase alternating current before rectification.

In FIG. 5, Ua、Ub、UcAre respectively a waveform diagram of three-phase alternating current before rectificationτIs a rectified waveform diagram u0Is a rectified and filtered waveform diagram.

According to the above derivation, the average value of the rectified pulsating dc voltage is 1.35U. Therefore, the equivalent average direct-current voltages of the three output windings are respectively:

group 1: u1 ═ 220 × 1.35 ═ 297VDC

Group 2: u2 ═ 220 × 1.35 ═ 297VDC

Group 3: u3 ═ 130 × 1.35 ═ 175VDC

The voltage value is an average voltage, the voltage value still fluctuates within a certain range according to the waveform rectified by the three-phase alternating current, and the fluctuation range of the voltage can be further reduced by adopting the filter capacitor. In the design, two 3300Uf/450V voltage-resistant electrolytic capacitors are adopted to respectively perform power supply filtering on the rectified output voltages of the group 1 and the group 2 so as to reduce the fluctuation range of 600VDC power supply voltage and improve the input quality of a power supply of the propeller, thereby improving the control precision of the propeller.

In conclusion, the power transmission system of the remote-control submersible provided by the invention reduces the loss in the power transmission link, solves the heating problem of the long armor cable, ensures the stability of power supply of underwater equipment through the voltage compensation function and provides a stable and efficient power transmission method for the remote-control submersible in a high-voltage intermediate-frequency transmission mode.

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种变流器控制方法及装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!