Urban rail transit fault distance measuring system and method

文档序号:1262369 发布日期:2020-08-25 浏览:10次 中文

阅读说明:本技术 城市轨道交通故障测距系统及方法 (Urban rail transit fault distance measuring system and method ) 是由 方伟 黄依婷 李斌 于 2019-09-23 设计创作,主要内容包括:本发明公开了一种城市轨道交通故障测距系统及方法,该系统通过沿接触轨设置的多个光感传感器采集光信号,并设有光纤交换机将光信号转化为脉冲电流信号之后上传至工作站,工作站筛选出两个最强的脉冲电流信号,进而根据这两个脉冲电流信号对应的光感传感器确定出故障点所在区间,该方法对光感传感器进行编号,同时将接触轨分段为多个较短的监测区间,将光感传感器设置在每个监测区间的两端,通过工作站分析出相应编号的光感传感器从而确定监测区间,排运营人员在该监测区间进行排查即可得知具体故障点。本发明可大幅缩短故障排查的区间,降低故障排除的难度和工作量。(The invention discloses an urban rail transit fault location system and method, wherein a plurality of light-sensitive sensors arranged along a contact rail are used for acquiring light signals, an optical fiber switch is arranged to convert the light signals into pulse current signals and then transmit the pulse current signals to a workstation, the workstation screens out two strongest pulse current signals, and further determines a section where a fault point is located according to the light-sensitive sensors corresponding to the two pulse current signals. The invention can greatly shorten the troubleshooting interval and reduce the difficulty and workload of troubleshooting.)

1. The utility model provides an urban rail transit trouble ranging system, includes a plurality of monitoring points that the length direction of following subway orbital contact rail equidistant set up, its characterized in that still includes UPS power, workstation, fiber switch, monitoring unit and a plurality of light sense sensor, every the light sense sensor sets up one respectively monitoring point department, the light sense sensor all connects through the shielded wire monitoring unit, monitoring unit passes through control optical cable and connects fiber switch, fiber switch pass through the ethernet with the workstation is connected, the UPS power with the workstation is connected and is used for the workstation power supply.

2. The urban rail transit fault location system according to claim 1, wherein a protective cover is arranged on the outer side of the contact rail along the length direction of the contact rail, and the light sensor is arranged on the inner side of the protective cover.

3. A method for fault location using the system of claim 1, comprising the steps of:

step a: measuring and marking the length between each monitoring point and the interval starting point by taking the interval starting point of fault distance measurement as a zero point, and uploading the marked length to the workstation;

step b: numbering each light sensation sensor, uploading the number to the workstation, and associating the number of each light sensation sensor with the mark length corresponding to the monitoring point where the light sensation sensor is located in the workstation;

step c: monitoring an optical signal on the contact rail through the light sensor, uploading the monitored optical signal to the monitoring unit, converting the optical signal received by the monitoring unit into a pulse current signal through the optical fiber switch, and uploading the pulse current signal to the workstation;

step d: the work station analyzes the serial numbers of the light-sensitive sensors corresponding to the two pulse current signals with the maximum signal intensity, and the mark lengths associated with the two serial numbers are obtained;

step e: and d, arranging an operator to check in the area between the two mark lengths obtained in the step d and determining an accurate fault point.

Technical Field

The invention relates to the technical field of rail transit fault detection, in particular to an urban rail transit fault distance measuring method.

Background

In recent years, the urban scale and economic construction of China are rapidly developed and gradually become the fastest-developing countries of urban rail transit in the world, and more subways and light rail lines are put into construction and operation. Most of the power supply of the urban rail transit train adopts a contact rail (also called a third rail) to supply power, and the train obtains electric energy by contacting the third rail through a collector shoe.

In the actual operation process, if foreign matters exist in the subway rail running interval or the collector shoe is not well contacted with the contact rail, short circuit can be caused in the interval. Once a short-circuit event occurs, no effective measures are taken to locate a fault point at the present stage, and the fault point must be found and eliminated by depending on patrol of operators in an interval. However, the interval of a common subway station is about 1.5km, and the patrol of fault points is carried out in such a long interval, which brings great difficulty to operators, particularly, the third rail is often installed beside the traveling rail, and the upper part of the third rail is covered with a protective cover, so that the patrol difficulty is increased.

Disclosure of Invention

The invention aims to provide a fault location system and method for urban rail transit, which can be used for identifying when a contact rail has a short-circuit fault, quickly locating the fault in a shorter interval, shortening the interval for troubleshooting by operators, reducing the difficulty of troubleshooting and bringing great convenience to the operators.

In order to achieve the purpose, the invention provides the following technical scheme: the urban rail transit fault distance measuring method comprises a plurality of monitoring points which are arranged at equal intervals along the length direction of a contact rail of a subway rail, and is characterized by further comprising a UPS (uninterrupted power supply), a workstation, an optical fiber switch, a monitoring unit and a plurality of light sensation sensors, wherein each light sensation sensor is arranged at one monitoring point respectively, each light sensation sensor is connected with the monitoring unit through a shielding wire, the monitoring unit is connected with the optical fiber switch through a control optical cable, the optical fiber switch is connected with the workstation through an Ethernet, and the UPS is connected with the workstation and used for supplying power to the workstation.

According to an embodiment of the invention, for the urban rail transit fault distance measuring system, a protective cover is arranged on the outer side of the contact rail along the length direction of the contact rail, and the light sensor is arranged on the inner side of the protective cover.

A method for fault location by using the system is characterized by comprising the following steps:

step a: measuring and marking the length between each monitoring point and the interval starting point by taking the interval starting point of fault distance measurement as a zero point, and uploading the marked length to the workstation;

step b: numbering each light sensation sensor, uploading the number to the workstation, and associating the number of each light sensation sensor with the mark length corresponding to the monitoring point where the light sensation sensor is located in the workstation;

step c: monitoring an optical signal on the contact rail through the light sensor, uploading the monitored optical signal to the monitoring unit, converting the optical signal received by the monitoring unit into a pulse current signal through the optical fiber switch, and uploading the pulse current signal to the workstation;

step d: the work station analyzes the serial numbers of the light-sensitive sensors corresponding to the two pulse current signals with the maximum signal intensity, and the mark lengths associated with the two serial numbers are obtained;

step e: and d, arranging an operator to check in the area between the two mark lengths obtained in the step d and determining an accurate fault point.

Compared with the prior art, the invention has the beneficial effects that:

the method can identify when the contact rail has a short-circuit fault, quickly locate the fault in a shorter interval, shorten the interval for troubleshooting by operators, reduce the troubleshooting difficulty and bring great convenience to the operators. The scheme is applicable to rail transit lines of various voltage classes and systems, has strong practicability, is more convenient for newly-built lines and stock market transformation, and has wide market demand.

Drawings

FIG. 1 is a schematic structural diagram of an urban rail transit fault location system according to the present invention;

Detailed Description

The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

Referring to fig. 1, the present invention provides a technical solution: the utility model provides an urban rail transit fault range finding method, includes along the contact of subway track, a plurality of monitoring points that 1's length direction equidistant set up, its characterized in that still includes UPS power 2, workstation 3, optical fiber switch 4, monitoring unit 5 and a plurality of light sense sensor 6, every light sense sensor 6 sets up one respectively monitoring point department, light sense sensor 6 all connects through shielded wire 7 monitoring unit 5, monitoring unit 5 passes through the control optical cable and connects optical fiber switch 4, optical fiber switch 4 pass through the ethernet with workstation 3 is connected, UPS power 2 with workstation 3 is connected and is used for workstation 3 supplies power.

As shown in figure 1, the subway track comprises a running rail 8 for a train to run, a contact rail 1 is arranged beside the running rail 8 in parallel through an insulator 9, when the train runs on the running rail 8, collector shoes at the bottom of the train are simultaneously lapped on the contact rail 1 to supply power to the train, when the contact rail has a short-circuit fault, a short-circuit point can generate strong electric arc light, according to the characteristics, the contact rail is segmented into a plurality of short sections through a plurality of light-sensitive sensors according to the installation mode of the contact rail, the light-sensitive sensors collect light signals in the sections in real time and convert the collected light signals into pulse current signals through an optical fiber switch to be transmitted to a workstation, the workstation analyzes the pulse current signals to obtain two pulse current signals with the maximum intensity, a disconnection point is located between two monitoring points corresponding to the two pulse current signals, and an operator can directly perform fault troubleshooting between the two monitoring points, the troubleshooting difficulty is reduced, and great convenience is brought to operators. The scheme is applicable to rail transit lines of various voltage classes and systems, has strong practicability, is more convenient for newly-built lines and stock market transformation, and has wide market demand.

According to an embodiment of the invention, for the urban rail transit fault distance measuring system, a protective cover is arranged on the outer side of the contact rail along the length direction of the contact rail, and the light sensor is arranged on the inner side of the protective cover.

A method for fault location by using the system is characterized by comprising the following steps:

step a: taking the starting point of the fault location interval as a zero point, measuring and marking the length between each monitoring point and the starting point of the interval, and uploading the marked length to the workstation, for example, taking 100m as an interval unit, starting from the starting point of the interval, taking a plurality of points which are 100m, 200m, 300m and 400m away from the starting point of the interval as monitoring points, and setting a photosensitive sensor at each monitoring point;

step b: numbering each light-sensitive sensor, uploading the number to the workstation, associating the number of each light-sensitive sensor with the mark length corresponding to the monitoring point where the light-sensitive sensor is located in the workstation, for example, taking Arabic numerals as the numbers, sequentially marking the light-sensitive sensors on each monitoring point from the starting point of the interval to the back as a No. 1 sensor, a No. 2 sensor, a No. 3 sensor and a No. 4 sensor, after uploading to the workstation, associating the No. 1 sensor with the monitoring point at 100m, associating the No. 2 sensor with the monitoring point at 200m, and so on;

step c: monitoring an optical signal on the contact rail through the light sensor, uploading the monitored optical signal to the monitoring unit, converting the optical signal received by the monitoring unit into a pulse current signal through the optical fiber switch, and uploading the pulse current signal to the workstation;

step d: the numbers of the light-sensitive sensors corresponding to the two pulse current signals with the maximum signal intensity are obtained through the workstation, the mark lengths associated with the two numbers are obtained, and if the two pulse current signals with the maximum signal intensity are sent by the No. 5 sensor and the No. 6 sensor, the light signals received by the No. 5 sensor and the No. 6 sensor are proved to be the strongest, the short-circuit fault point can be judged to be between the monitoring point at 500m and the monitoring point at 600 m;

step e: arranging the operator to perform troubleshooting in the area between the two mark lengths obtained in the step d to determine an accurate fault point, and combining the above steps, only arranging the operator to perform troubleshooting between two monitoring points of 500m and 600m to find out a specific fault point.

In the above embodiment, after a short-circuit fault occurs in a contact rail, a fault point can be quickly located between two monitoring points, and an operator can find out a specific fault point only by performing troubleshooting between the two monitoring points, wherein the troubleshooting interval distance is 100m, whereas in the conventional method, the operator needs to perform troubleshooting between two stations after the fault occurs, and the troubleshooting interval distance is about 1.5 Km.

Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高速铁路轨道状况动态监测装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!