Stator lamination fixing device

文档序号:1316140 发布日期:2020-07-10 浏览:22次 中文

阅读说明:本技术 定子层叠固定装置 (Stator lamination fixing device ) 是由 P·P·钟 于 2018-09-12 设计创作,主要内容包括:本公开的实施例提出了用于形成定子的方法和设备。一种示例性的设备包括平面环,该平面环限定了与内半径边缘相邻的中空中心部分,所述内半径边缘包括多条间隔开的轨道,该多个间隔开的轨道从内半径边缘沿平面环的面径向向外延伸。该设备还包括多根竖直杆,所述多根竖直杆中的每一根在所述多条间隔开的轨道之一处可移除地附接到平面环。所述设备还包括可移除地附接到所述多根竖直杆的至少一个支撑环,该至少一个支撑环沿着内径向表面和顶表面二者之一附接到所述多根竖直杆中的每一根。(Embodiments of the present disclosure propose methods and apparatus for forming a stator. An exemplary apparatus includes a planar ring defining a hollow central portion adjacent an inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring. The apparatus also includes a plurality of vertical rods, each of the plurality of vertical rods removably attached to the planar ring at one of the plurality of spaced apart rails. The apparatus also includes at least one support ring removably attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface.)

1. An apparatus for forming a stator, the apparatus comprising:

a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring;

a plurality of vertical rods, each of the plurality of vertical rods removably attachable to the planar ring at one of the plurality of spaced apart rails; and

at least one support ring removably attached to the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface.

2. The apparatus of claim 1, wherein the at least one support ring comprises two support rings, and wherein a first support ring is removably attached to each of the plurality of vertical rods at the inner radius surface and the second support ring is removably attached to each of the plurality of vertical rods at the top surface.

3. The apparatus of claim 1, wherein the plurality of vertical rods are slidably attached to the planar ring at the plurality of spaced apart rails.

4. The apparatus of claim 1, wherein each of the plurality of vertical rods is removably attached to the planar ring at the plurality of spaced apart rails by bolts.

5. The apparatus of claim 1, wherein the planar ring, the plurality of vertical rods, and the at least one support ring are operable to removably retain a stator.

6. The apparatus of claim 1, wherein each of the plurality of vertical rods is operable to be removed from the planar ring while a stator is retained on the planar ring and around the plurality of vertical rods.

7. A method of forming, the method of forming comprising:

(a) providing a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring;

(b) providing a plurality of vertical rods, each of the plurality of vertical rods removably attached to a planar ring at one of the plurality of spaced apart rails; and

(c) providing at least one support ring removably attached to the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface.

8. The method of claim 7, wherein the at least one support ring comprises two support rings, and wherein a first support ring is removably attached to each of the plurality of vertical rods at the inner radius surface and the second support ring is removably attached to each of the plurality of vertical rods at the top surface.

9. The method of claim 7, wherein the plurality of vertical rods are slidably attached to the planar ring at the plurality of spaced apart rails.

10. The method of claim 7, wherein each of the plurality of vertical rods is removably attached to the planar ring at the plurality of spaced apart rails by bolts.

11. The method of claim 7, wherein the planar ring, the plurality of vertical rods, and the at least one support ring are operable to removably retain a stator.

12. A method of manufacturing, the method of manufacturing comprising:

(a) providing a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring;

(b) slidably attaching a plurality of vertical rods to each of the plurality of spaced apart rails, each of the plurality of vertical rods removably attached to the planar ring at one of the plurality of spaced apart rails;

(c) removably attaching at least one support ring to each of the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface;

(d) forming a stator on the planar ring around the plurality of vertical rods; and

(e) slidably removing the plurality of vertical rods from the planar ring.

13. The method of claim 12, wherein each of the plurality of vertical rods is removably attached to the planar ring at the plurality of spaced apart rails by bolts.

Technical Field

Exemplary embodiments of the present disclosure relate to methods and apparatus for a stator lamination fixture. Embodiments of the present disclosure relate more particularly to methods and apparatus for a stator lamination fixture operable to form a stator.

Background

Disclosure of Invention

In view of the foregoing, it is an object of the present disclosure to provide a method and apparatus for forming a stator.

A first exemplary embodiment of the present disclosure provides an apparatus. The apparatus comprises: a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring; and a plurality of vertical rods, each vertical rod of the plurality of vertical rods removably attached to the planar ring at one of the plurality of spaced apart rails. The apparatus also includes at least one support ring removably attached to the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface.

A second exemplary embodiment of the present disclosure provides a method of forming. The method comprises the following steps: providing a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring; providing a plurality of vertical rods, each of the plurality of vertical rods removably attached to the planar ring at one of the plurality of spaced apart rails. The method also provides providing at least one support ring removably attached to the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface.

A third exemplary embodiment of the present disclosure provides a manufacturing method. The method comprises the following steps: providing a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring; slidably attaching a plurality of vertical rods to each of the plurality of spaced apart rails, each of the plurality of vertical rods being removably attachable to the planar ring at one of the plurality of spaced apart rails. The method also includes removably attaching at least one support ring to each of the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface. The method also includes forming a stator on the planar ring around the plurality of vertical rods and slidably removing the plurality of vertical rods from the planar ring.

Embodiments of the present disclosure will be described below, but it should be understood that the present disclosure is not limited to the described embodiments and various modifications may be made to the present invention without departing from the basic principles. Accordingly, the scope of the present disclosure is to be determined solely by the appended claims.

Drawings

FIG. 1 is a top perspective view of an exemplary fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 2 is a bottom perspective view of an exemplary fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 3 is a top perspective view of an exemplary fixation device in another configuration suitable for performing an exemplary embodiment of the present disclosure;

FIG. 4 is another top perspective view of an exemplary fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 5 is a side view of an exemplary ring of a fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 6 is a top perspective view of an exemplary ring of a fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 7 is an isolated view of an exemplary fixture and stator suitable for carrying out exemplary embodiments of the present disclosure;

FIG. 8 is a side perspective view of an exemplary fixture and stator suitable for carrying out exemplary embodiments of the present disclosure;

FIG. 9 is a side cross-sectional view of an exemplary fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 10 is a close-up side cross-sectional view of an exemplary fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 11 is a close-up perspective view of a ring and vertical rod of an exemplary fixation device suitable for performing an exemplary embodiment of the present disclosure;

FIG. 12 is a logic flow diagram in accordance with methods and apparatus for performing exemplary embodiments of the present disclosure;

fig. 13 is another logic flow diagram in accordance with methods and apparatus for performing exemplary embodiments of the present disclosure.

Detailed Description

Magnetic motors have a variety of geometries. One geometry is a linear magnetic motor. In a linear magnetic motor, the shaft is driven to move linearly (i.e., as a linear translation) relative to the stator. Another geometry is a rotary magnetic motor. In a rotary magnetic motor, a rotor is driven to rotate relative to a stator. Conventional rotary electromagnetic motors typically include a stator assembly, and a rotor driven to rotate relative to the stator assembly. Typically, the rotor is at least partially surrounded by a stator, and the rotor generates a magnetic field as a result of having a series of interior permanent magnets. The stator generates a magnetic field through a series of coils or windings. By timing the current in the coils relative to the position and/or momentum of the rotor, the interaction of the magnetic forces from the rotor and from the stator will cause the rotor to rotate. Therefore, in the magnetic motor, a magnetic field is formed in both the rotor and the stator. A force is generated between these two magnetic fields and thus a torque is generated on the motor rotor or shaft. The rotor moves through the magnetic field of the stator due to the magnetic force generated by the energized coils in the stator. Accordingly, conventional electric motors include a generally cylindrical outer stator core, stator coils wound within the stator core, and an inner rotor having permanent magnets and moving relative to the stator core to provide movement through interaction with the stator magnetic field.

The stator typically includes at least one coil wound in at least one stator core. The purpose of the stator coils is to generate magnetic flux that interacts with the permanent magnets on the rotor. Various stator assembly configurations are known. The stator may be constructed by stacking modular parts or may be formed from radially extending laminations and by other methods. The stator core is typically composed of a number of thin metal plates (called laminations). The laminations serve to reduce the energy loss that would occur if a solid core were used.

Embodiments of the present disclosure provide a stator fixture that includes removable vertical rods that allow a stator to be formed and then removed from the stator fixture, thereby reducing the risk of damage to the stator. Embodiments of the present disclosure provide a stator fixture having vertical rods that may be secured to a planar ring in a configuration and slidably removed radially inward from the planar ring after a stator core has been formed around the vertical rods on the planar ring.

Referring to fig. 1, a side perspective view of a stator fixture 100 is shown. The stator fixture 100 includes a plurality of vertical rods 102, the plurality of vertical rods 102 slidably removably attached to the ring 104 at tracks 112. Each of the vertical rods 102, when secured to the ring 104 (as shown in fig. 1, 2, and 8), provides a template around which to build or construct the stator laminations 106 (as shown in fig. 7 and 8). In other words, the stator laminations 106 can be built, constructed, or formed around the vertical rods 102 on the rings 104 to form the stator core 108. The vertical rod 102 is removably and slidably attached to the ring 104 along a track 112 such that the vertical rod may be fixedly attached to the ring 104 at one location (e.g., by using screws/bolts 110). Vertical rod 102 is also slidably removable from ring 104 by sliding radially inward relative to ring 104 in a second position (e.g., when screw/bolt 110 is removed). Vertical rod 102 may be fixedly attached to ring 104 by any known removable means, such as screws and/or bolts 110.

Ring 104 is a planar ring that defines a hollow center portion located near the inner radius edge. The inner radius edge includes a plurality of rails 112 extending radially outward along the face of the ring 104. The tracks 112 provide slots or areas for the vertical rods 102 to slide radially therethrough so that the vertical rods can be fixedly attached to the ring 104 and slidably removed from the ring 104. The track 112 includes a plurality of holes 124, the plurality of holes 124 operable to interact with the screws/bolts 110 for removably securing the vertical rod 102 to the ring 104.

The stator fixture 100 may also include one or more support rings 114 (shown in fig. 1 and 2) and a top support ring 116 (shown in fig. 1 and 2). The support ring 114 is removably secured to the vertical rod 102 using screws/bolts 110 and a ring bracket 120. The ring bracket 120 is removably secured to the inner surface of the vertical rod 102 using screws/bolts 110. The ring holder 120 provides a planar surface operable to maintain the position of the support ring 114. The ring holder 120 is removably secured to the vertical rod 102 such that the support ring 114 is substantially prevented from moving closer to the ring 104 by the ring holder 120. The support ring 114 helps prevent the vertical rods 102 from buckling or bending and thereby helps maintain the relative distance between each of the vertical rods 102. The top support ring 116 is removably attached to the vertical rod 102 by using screws/bolts 110 and top pins 118 extending from the ends of the vertical rod 102. Similar to the support rings 114, the top support ring 116 helps prevent the vertical rods 102 from buckling or bending and helps maintain the relative distance between each of the vertical rods 102. In other words, the support ring 114 and the top support ring 114 maintain substantially the same relative distance between the vertical rods 102 as found at the point of contact between the vertical rods 102 and the ring 104.

The vertical rods 102, the rings 104, the support rings 114, and the top support ring 116 are operable in combination to maintain the position of each stator lamination 106 of the stator core 108 within a given stack of laminations 106 such that the stator laminations 106 do not move relative to one another. The vertical rods 102, rings 104, support rings 114, and top support rings 116 also maintain the position of each lamination 106 during construction of the stacked stator core 108.

Referring to fig. 2, a bottom perspective view of an exemplary stator fixture 100 is depicted. The holes 124 shown in fig. 2 are operable to interact with the screws/bolts 110 to removably secure the vertical rods 102 to the rings 104 along the tracks 112. It should be understood that the holes 124 shown in fig. 2 provide a passageway from the top end of the ring 104 to the bottom end of the ring 104, embodiments include holes 124 that provide a passageway only from the top end of the ring 104, and thus the holes 124 do not pass through the entire ring 104.

Referring to fig. 3, the stator fixture 100 is shown without the support ring 114 and the top support ring 116. It can be seen that the top end of the vertical rod 102 includes a top pin 118 operable to intersect a corresponding hole in the top support ring 116. Embodiments of the top pin 118 provide a means for easily positioning the top support ring 116 on the vertical rod to removably maintain the position of the top support ring 116 on the vertical rod 102 while the top support ring 116 is secured by the bolt/screw 110.

Referring to fig. 4, a top perspective view of the stator fixture 100 is shown without the support ring 114 and the top support ring 116. Shown in fig. 4 is a ring bracket 120 fixedly attached to vertical rod 102 along a radially inner surface of vertical rod 102. Each ring holder 120 has a top planar surface, and at least one screw/bolt 110 and corresponding screw/bolt hole operable to removably secure the support ring 114 to the ring holder 120. Also shown in fig. 4 are screws/bolts 110 and screw/bolt holes at the top end of the vertical rod 110.

Fig. 5 shows a side view of the ring 104. Fig. 6 shows a top perspective view of the ring 104. As shown in fig. 5, the ring 104 includes a track 112 that extends radially outward from the inner edge 602 toward the outer edge 604 on the top planar surface of the ring 104. Also shown within each track 112 is a hole 124, which hole 124 is operable to couple to a screw/bolt 110 for removably securing the vertical rod 104 to the ring 104.

Referring to fig. 7, an isolated view of the stator fixture 100 and the lamination core 108 is shown. As shown in fig. 7, once the stator core 108 is constructed on the stator fixture 100, the vertical rods 102 are operable to slidingly disengage radially inward from the ring 104 and the rails 112. After removing the vertical rods 102 (along with the support ring 114 and the top support ring 116), the stator core 108 is removed from the ring 104. Referring to fig. 8, a stator fixture 100 is shown in which a lamination core 108 surrounds the vertical rods 102 above the rings 104.

Referring now to fig. 9, a cross-sectional side view of the stator fixture 100 is depicted. As shown, the ring 104 includes a track 112 for retaining and removably securing the vertical rod 102 to the ring 104. The illustrated rail 112 provides a slot or notch such that the vertical rod 102 may slidably move through the rail 112. This is illustrated in fig. 10, which shows a close-up side view of the vertical rod 102 and the ring 104. As shown, vertical rod 102 may be moved through rail 112 in the direction indicated by arrow 1002. A partially removed view of vertical rod 102 removed from track 112 is shown in fig. 11. It should be appreciated that the embodiments of the vertical rod 102, the ring 104, and the track 112 provide that the vertical rod 102 can move radially inward in any direction, and that they need not slide directly radially inward.

Referring now to fig. 12, a logic flow diagram is shown in accordance with an exemplary process for providing the stator fixture 100. The process begins at block 1202 where the block 1202 indicates (a) providing a planar ring defining a hollow center portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring; (b) providing a plurality of vertical rods, each vertical rod of the plurality of vertical rods removably attached to a planar ring at one of the plurality of spaced apart rails; and (c) providing at least one support ring removably attached to the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along an inner radial surface and a top surface. The process next continues at block 1204, where the at least one support ring includes two support rings, and where a first support ring is removably attached to each of the plurality of vertical rods at an inner radius surface and a second support ring is removably attached to each of the plurality of vertical rods at a top surface.

After block 1204, block 1206 specifies wherein the plurality of vertical rods are slidably attached to the planar ring at the plurality of spaced apart rails. Block 1208 then involves wherein each of the plurality of vertical rods is removably attached to the planar ring at the plurality of spaced apart rails by bolts. Block 1210 recites wherein the planar ring, the plurality of vertical rods, and the at least one support ring are operable to removably retain a stator.

Referring to fig. 13, another logic flow diagram is shown in accordance with an exemplary process for providing a stator fixture 100. Block 1302 specifies (a) providing a planar ring defining a hollow central portion adjacent an inner radius edge, the inner radius edge including a plurality of spaced apart rails extending radially outward from the inner radius edge along a face of the planar ring; (b) slidably attaching a plurality of vertical rods to each of the plurality of spaced apart rails, each of the plurality of vertical rods removably attached to the planar ring at one of the plurality of spaced apart rails; (c) removably attaching at least one support ring to each of the plurality of vertical rods, the at least one support ring attached to each of the plurality of vertical rods along one of an inner radial surface and a top surface; (d) forming a stator on the planar ring around the plurality of vertical rods; and (e) slidably removing the plurality of vertical rods from the planar ring. Following block 1302, block 1304 sets forth wherein each of the plurality of vertical rods is removably attached to the planar ring at the plurality of spaced apart rails by a bolt.

It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used alone, or in combination with one or more features of any other of the embodiments. The presently disclosed embodiments are therefore considered in all respects to be illustrative. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the disclosure, which is defined in the accompanying claims.

19页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电动机及其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!