Power generation device simultaneously using solar energy and wind energy

文档序号:1394978 发布日期:2020-02-28 浏览:12次 中文

阅读说明:本技术 一种同时使用太阳能和风能的发电装置 (Power generation device simultaneously using solar energy and wind energy ) 是由 程鹏 李攀龙 李睿烨 李伟力 史超 梁宁 王晓超 成倩 于 2019-11-05 设计创作,主要内容包括:本发明公开了一种同时使用太阳能和风能的发电装置,包括太阳能电池、发电机、蓄电池、实时直流电流分流器模块;所述实时直流电流分流器模块包括控制器、传感器和两条并联的电阻支路;太阳能电池吸收太阳能转化为直流电,直流电输至实时直流分流器模块,实时直流分流器模块通过传感器检测发电机转速,并通过传感器检测太阳能电池输出的直流电流,实时直流分流器模块经过两条并联的电阻支路将电流分别输至发电机直流励磁绕组和蓄电池;蓄电池与发电机直流绕组相连。本发明综合利用风能和太阳能进行发电;具有调压范围大、变速恒压运行、输出端电力变换装置简单、控制策略简单、输出电压稳定的特点。(The invention discloses a power generation device simultaneously using solar energy and wind energy, which comprises a solar cell, a generator, a storage battery and a real-time direct current shunt module, wherein the solar cell is connected with the generator through a power supply; the real-time direct current shunt module comprises a controller, a sensor and two parallel resistance branches; the solar battery absorbs solar energy and converts the solar energy into direct current, the direct current is transmitted to the real-time direct current shunt module, the real-time direct current shunt module detects the rotating speed of the generator through the sensor and detects the direct current output by the solar battery through the sensor, and the real-time direct current shunt module respectively transmits the current to the direct current excitation winding of the generator and the storage battery through two parallel resistance branches; the storage battery is connected with the direct current winding of the generator. The invention comprehensively utilizes wind energy and solar energy to generate electricity; the voltage-regulating circuit has the characteristics of large voltage-regulating range, variable-speed constant-voltage operation, simple output end power conversion device, simple control strategy and stable output voltage.)

1. A power generation device simultaneously using solar energy and wind energy is characterized in that: the system comprises a solar cell, a hybrid excitation generator, a storage battery and a real-time direct current shunt module; the real-time direct current shunt module comprises a controller, a sensor and two parallel resistance branches; the solar battery absorbs solar energy and converts the solar energy into direct current, the direct current is transmitted to the real-time direct current shunt module, the real-time direct current shunt module detects the rotating speed of the hybrid excitation generator through the sensor and detects the direct current output by the solar battery through the sensor, and the real-time direct current shunt module respectively transmits the current to the direct current excitation winding of the hybrid excitation generator and the storage battery through two parallel resistance branches; the storage battery is connected with the direct current winding of the generator;

the real-time direct current shunt adjusts the resistance of two parallelly connected branch roads according to the exciting current that the real-time rotational speed of hybrid excitation generator corresponds, accomplishes the real-time reposition of redundant personnel to the electric current, and the exciting current that the real-time rotational speed of hybrid excitation generator corresponds satisfies and makes generator output voltage constant voltage, specifically does: the controller calculates to obtain required exciting current according to the real-time rotating speed of the hybrid excitation generator, and when the output current of the solar battery is larger than the exciting current required by the generator, the real-time direct current shunt inputs the current exceeding the requirement of the generator into the storage battery by adjusting the resistance of the two parallel branches;

when the direct current output by the solar battery is smaller than the exciting current required by the hybrid excitation generator, the real-time direct current shunt makes the branch resistance of the direct current excitation winding end zero by adjusting the resistance of the two parallel branches, and makes the branch of the storage battery end disconnected, and meanwhile, the storage battery inputs current to the direct current excitation winding in real time.

2. A power plant using both solar and wind energy, according to claim 1, characterized in that: and a power conversion device is added at the output side, and when no current is input into the direct-current excitation winding of the hybrid excitation generator, constant-voltage output is maintained through the power conversion device.

3. A power generation apparatus using both solar energy and wind energy according to claim 1 or 2, characterized in that: the hybrid excitation generator adopts a tangential magnetization permanent magnet generator, and a winding slot is arranged between two adjacent stator slots for placing a direct current excitation winding.

4. A power generation apparatus using both solar energy and wind energy according to claim 1 or 2, characterized in that: the hybrid excitation generator adopts a radial magnetized permanent magnet generator, the permanent magnet adopts a radial magnetized tile-shaped permanent magnet, the tile-shaped permanent magnet is attached to the surface of a motor rotor, rotor teeth are arranged between adjacent tile-shaped permanent magnets, winding slots are formed in the rotor teeth for placing direct current excitation windings, and the current directions of the adjacent direct current excitation windings are opposite.

5. A power generation apparatus using both solar energy and wind energy according to claim 1 or 2, characterized in that: the hybrid excitation generator adopts a radial magnetized permanent magnet generator, the permanent magnet adopts a radial magnetized tile-shaped permanent magnet, the tile-shaped permanent magnet is attached to the surface of a motor rotor, a protruded iron core is arranged on a rotor part between adjacent permanent magnets, and an excitation winding is wound on the iron core to form a magnetic pole.

Technical Field

The invention relates to a power generation device simultaneously utilizing two renewable energy sources, in particular to a power generation device simultaneously using solar energy and wind energy

Background

Energy and environment are urgent problems to be solved by human survival and development at present. China is a developing country with large energy consumption, the sustainable development of China is limited by energy bottlenecks, China is a country with abundant renewable resources, and therefore, the development and research of renewable energy resources have strategic significance and broad prospects.

Most of domestic and foreign scholars are dedicated to the development and research of one of renewable energy sources, such as wind power generation and solar power generation, or power generation by ocean energy, biomass energy, geothermal energy and the like. Due to the existence of natural instability factors, the single use of a renewable energy source can cause low system efficiency, high cost and difficult control. To comprehensively utilize renewable resources, wind-solar hybrid power generation systems were first proposed by danish scholars. At present, research in the field of comprehensive use of wind energy and solar energy is mainly focused on a wind-solar hybrid power generation system, the wind-solar hybrid system is a set of power generation application system, the system stores generated electric energy into a storage battery pack by using a solar cell array, a wind driven generator and a rectifying device (converting alternating current into direct current), when a user needs to use electricity, an inverter converts the direct current stored in the storage battery pack into alternating current to supply to an alternating current user, and a DC-DC power conversion device converts the direct current stored in the storage battery pack into electric energy which can be used by a direct current user.

The comprehensive utilization of renewable energy sources plays an important role in sustainable development of socioeconomic performance and environmental protection in China. In order to guarantee the quality of power supply, an energy storage device matched with the system power is required in the wind-solar hybrid power generation system. Compared with a single renewable energy power generation system, the wind-solar hybrid system only increases the energy obtained in a unit time, and how to efficiently and comprehensively use renewable energy remains a problem to be solved urgently.

For patent application No. CN201910597668.1, named as 'a novel wind driven generator', a gearbox is required, the operation reliability is poor, and frequent maintenance is required. For the patent with the application number of CN201521012710.2, named as "a wind-solar hybrid power supply system", an energy storage device is required to be used at the power output end, and the control strategy is also complicated. For the patent with the application number of CN201721801339.7, named as a solar photovoltaic power generation device based on a wind-solar complementary system, the wind-solar complementary system needs to supply power to users through an energy storage device, the energy storage device needs to be charged and discharged frequently, and energy cannot be utilized efficiently. For a plurality of related wind power generators, such as the patent application number CN205160230U named as 'a wind power generator', the generators can not comprehensively utilize wind energy and solar energy to generate electricity. For the patent with the application number of CN200510009774.1 named as an 'inner feed type induction generator', the generator can simultaneously use solar energy and wind energy, has a complex structure and two rotors, generates electromotive force in an armature winding after armature current is introduced through two times of electromagnetic induction, and has large energy loss and low efficiency; in addition, the generator cannot generate induced electromotive force when no armature current flows. For patent application No. CN201210016011.X entitled "matching method for adjusting air gap between rotor and armature of two-dimensional motor-generator", the patent mentions a two-dimensional motor-generator, which has complex structure and great difficulty in manufacturing process, and the matching method for adjusting the air gap is provided on the basis of the complex structure, so that the commercialization is difficult to realize.

Disclosure of Invention

Aiming at the prior art, the invention aims to provide a power generation device which adopts a hybrid excitation structure generator and comprehensively utilizes solar energy and wind energy, and has the advantages of large voltage regulation range, variable-speed constant-voltage operation, simple output end power conversion device, simple control strategy and stable output voltage.

In order to solve the technical problem, the invention provides a power generation device simultaneously using solar energy and wind energy, which comprises a solar cell, a hybrid excitation generator, a storage battery and a real-time direct current shunt module; the real-time direct current shunt module comprises a controller, a sensor and two parallel resistance branches; the solar battery absorbs solar energy and converts the solar energy into direct current, the direct current is transmitted to the real-time direct current shunt module, the real-time direct current shunt module detects the rotating speed of the hybrid excitation generator through the sensor and detects the direct current output by the solar battery through the sensor, and the real-time direct current shunt module respectively transmits the current to the direct current excitation winding of the hybrid excitation generator and the storage battery through two parallel resistance branches; the storage battery is connected with the direct current winding of the generator;

the real-time direct current shunt adjusts the resistance of two parallelly connected branch roads according to the exciting current that the real-time rotational speed of hybrid excitation generator corresponds, accomplishes the real-time reposition of redundant personnel to the electric current, and the exciting current that the real-time rotational speed of hybrid excitation generator corresponds satisfies and makes generator output voltage constant voltage, specifically does: the controller calculates to obtain required exciting current according to the real-time rotating speed of the hybrid excitation generator, and when the output current of the solar battery is larger than the exciting current required by the generator, the real-time direct current shunt inputs the current exceeding the requirement of the generator into the storage battery by adjusting the resistance of the two parallel branches;

when the direct current output by the solar battery is smaller than the exciting current required by the hybrid excitation generator, the real-time direct current shunt makes the branch resistance of the direct current excitation winding end zero by adjusting the resistance of the two parallel branches, and makes the branch of the storage battery end disconnected, and meanwhile, the storage battery inputs current to the direct current excitation winding in real time.

The invention also includes:

1. and a power conversion device is added at the output side, and when no current is input into the direct-current excitation winding of the hybrid excitation generator, constant-voltage output is maintained through the power conversion device.

2. The mixed excitation generator adopts a tangential magnetization permanent magnet generator, and a winding slot is arranged between two adjacent stator slots for placing a direct current excitation winding.

3. The hybrid excitation generator adopts a radial magnetized permanent magnet generator, the permanent magnet adopts a radial magnetized tile-shaped permanent magnet, the tile-shaped permanent magnet is attached to the surface of a motor rotor, rotor teeth are arranged between adjacent tile-shaped permanent magnets, winding slots are formed in the rotor teeth for placing direct current excitation windings, and the current directions of the adjacent direct current excitation windings are opposite.

4. The hybrid excitation generator adopts a radial magnetized permanent magnet generator, the permanent magnet adopts a radial magnetized tile-shaped permanent magnet, the tile-shaped permanent magnet is attached to the surface of a motor rotor, a protruded iron core is arranged on a rotor part between adjacent permanent magnets, and an excitation winding is wound on the iron core to form a magnetic pole.

The invention has the beneficial effects that:

the generator that this patent designed is mixed excitation generator structure, turns into mechanical energy with wind energy and drives the rotor rotation, turns into the direct current with solar energy, gives the generator excitation. The permanent magnet and the excitation winding are reasonably designed, and various mixed excitation structures can be provided. By adopting the design of a hybrid excitation structure, the air gap magnetic field can be adjusted, a wider voltage regulation range can be obtained, and the advantage of high efficiency of the permanent magnet generator can be inherited. The main magnetic circuit flux can be influenced by adjusting the exciting current when the wind speed changes so as to keep the output voltage stable.

The generator adopting the hybrid excitation structure design can simultaneously use two renewable energy sources of wind and light to generate electricity, and effectively improves the utilization effect of the renewable energy sources. For the direct-current excitation generator structure, the stability of output voltage can be adjusted by adjusting the size and the direction of exciting current generated by the solar cell, the voltage adjusting range is wide, variable-speed constant-voltage operation can be realized, the use of a power conversion device is greatly simplified at the output end, and related control strategies are also simplified.

The invention can comprehensively utilize wind energy and solar energy to generate electricity; when the external wind speed changes, the voltage output by the generator can be kept stable by adjusting the exciting current provided by the solar cell; the air gap magnetic field can be adjusted, and the power density of the motor is high. Three mixed excitation generator structures are proposed, and the mixed excitation generators with the three structures are three implementation modes for realizing the characteristics.

Drawings

FIG. 1 is a typical characteristic curve of a fan.

Fig. 2 shows a hybrid excitation generator structure of the first implementation.

Fig. 3 shows a second implementation of a hybrid excitation generator configuration.

Fig. 4 shows a third implementation of a hybrid excitation generator configuration.

Fig. 5 is a schematic view of the working principle of the power generation device.

Fig. 6 is a block diagram of a power generation device.

Detailed Description

The invention is further described below with reference to the accompanying drawings.

The invention designs a power generation device which adopts a hybrid excitation generator with a novel structure to realize the comprehensive utilization of two hybrid energy sources of wind and light to generate power. The generator is driven to rotate by mechanical energy provided by wind energy, and the direct current generated by the solar battery provides exciting current for the generator in real time. When the generator is electrified with direct current, the output voltage of the generator can be kept stable by adjusting the size and the direction of the exciting current. According to the intensity of solar energy, the corresponding exciting currents of the generator at different rotating speeds can be met in real time through the real-time direct current shunt.

The invention provides an implementation mode and a control strategy of various hybrid excitation structures of a wind driven generator in a power generation device, and aims to improve the effect of comprehensively utilizing renewable energy sources by simultaneously using wind energy and solar energy through an energy conversion device-a generator. The generator adopts a hybrid excitation structure, and can comprehensively use solar energy and wind energy. When wind and light exist simultaneously, the solar photovoltaic cell panel absorbs solar energy and converts the solar energy into direct current, when the generator is excited by the direct current converted by the solar cell, the air gap magnetic field can be adjusted, the voltage regulation range is wide, and when the wind speed changes, the excitation current can be adjusted according to the rotating speed of the wind turbine to maintain the stability of the output voltage of the generator. Typical characteristic curve of wind turbine is shown in figure 1As can be appreciated from FIG. 1, an optimum tip speed ratio λ is provided for any fixed pitch angle βmaxSo that the wind energy utilization coefficient C at this timepA maximum value is reached. According to the tip speed ratio formula lambda as omega R/upsilon, when the wind speed changes, the tip speed ratio lambda can be kept at the maximum value lambda as long as the rotating speed of the wind turbine is adjustedmaxThe wind power generation system is unchanged, so that the maximum wind energy utilization coefficient is obtained, namely the maximum output power can be obtained under different wind speeds. On the other hand, the direct current output by the solar panel is unstable, and when the direct current output at a certain moment is more than the value of the exciting current corresponding to the rotating speed of the generator at the moment when the output voltage is kept stable, the residual current is distributed to the storage battery through the real-time direct current shunt to be stored; when the direct current output by the solar energy can not provide enough exciting current at a certain moment, the deficient exciting current is supplemented in real time by the storage battery. The real-time direct current shunt is composed of a controller, a corresponding sensor and two branches connected with resistors in parallel, the real-time direct current shunt mainly detects the rotating speed of a generator and the current output by a solar battery through the corresponding sensor, and then a control chip adjusts the resistors of the two branches connected in parallel according to the exciting current required by the real-time rotating speed of the generator to complete the function of shunting the current in real time.

With reference to fig. 5 and 6, for the operation condition of the motor, the control strategy of the power generation device is specifically as follows: when the system detects that the external wind speed changes, the wind turbine changes the rotation speed omega according to the external wind speed change. The tip speed ratio formula lambda is omega R/upsilon, and the formula can be known as follows: when the wind speed changes, the tip speed ratio lambda can be kept at the maximum lambda as long as the rotating speed of the wind turbine is adjustedmaxThe maximum utilization factor is obtained, namely the maximum output power can be obtained under different wind speeds. Because the rotational speed of the wind turbine may cause the rotational speed of the generator rotor to change, thereby causing the output voltage of the generator to be unstable. In this case, the excitation current can be adjusted according to the change of the generator speed, from E0=4.44fNkw1Φ0It can be known that when the rotation speed is too high, the magnetic flux of the main magnetic circuit can be reduced by reducing the magnitude of the exciting current; by increasing the field current when the speed is too lowThe magnetic flux of the main magnetic circuit is increased to maintain the output voltage constant. When solar energy is not available, namely no current flows through the motor excitation winding, the output of the generator is unstable due to the change of wind speed, and the output voltage is stabilized by using a power conversion device at the output end of the generator, and the implementation process diagram is shown in fig. 5. The real-time direct current shunt is composed of a controller, a corresponding sensor and two branches connected with resistors in parallel, the real-time direct current shunt mainly detects the rotating speed of a generator and the current output by a solar battery through the corresponding sensor, and then a control chip adjusts the resistors of the two branches connected in parallel according to the exciting current required by the real-time rotating speed of the generator to complete the function of shunting the current in real time. When sunlight is sufficient, the current output by the solar cell is larger than the exciting current required by the motor, the real-time direct current shunt detects the rotating speed of the generator in real time, the controller calculates the required exciting current according to the rotating speed, then the resistance of the two parallel branches is adjusted, and the redundant direct current is stored in the storage battery in real time; when sunlight is weak, the direct current output by the solar cell is smaller than the exciting current required by the generator, the controller calculates the required exciting current in real time according to the current rotating speed of the generator, and adjusts the resistance of the two parallel branches to enable the resistance of the branch at the exciting winding end of the motor to be zero, and the branch at the storage battery end is disconnected while the storage battery inputs current to the exciting winding in real time; when no solar energy exists at night or in rainy days, the real-time direct current shunt detects that the solar battery does not output direct current, the controller adjusts the resistances of the two branches to disconnect the two branches, the storage battery outputs exciting currents required under different rotating speeds in real time, and the structural block diagram of the power generation device is shown in fig. 6.

The electricity generated by the photovoltaic cell is excited to the generator, and the wind energy is converted into mechanical energy to drive the generator rotor to rotate. According to formula E0=4.44fNkw1Φ0It can be known that the rotating speed of the generator rotor changes when the wind speed changes, and when the rotating speed of the rotor changes, the generator can keep constant voltage output only by adjusting the current, and the implementation process is shown in fig. 5. The generator shown in fig. 2-4 may implement the above-described process. Detailed description of the preferred embodiment 1:

A first hybrid excitation generator is shown in fig. 2, and is a tangential magnetization permanent magnet generator, in which a winding slot is opened between two stator slots 2 for placing an excitation winding 4. When direct current is introduced into the excitation winding 4, a magnetic field is generated around the excitation winding to influence main magnetic flux, so that the magnetic flux is regulated, the induced electromotive force of the armature winding 3 on the stator core 1 is influenced, and 7 is a rotating shaft. Because the excitation winding 4 is placed on the stator, the hybrid excitation motor with the structure does not need brushes and slip rings, and has simple structure and high stability. When the motor runs, the rotating speed changes along with the change of the wind speed, at the moment, the wind turbine can output the maximum power through a control strategy, and meanwhile, the exciting current of the generator is adjusted to keep the voltage of the generator stable. According to the excitation potential E of the synchronous machine0=4.44fNkw1Φ0It can be known that when the rotation speed is too high, the magnetic flux of the main magnetic circuit can be reduced by reducing the magnitude of the exciting current; when the rotating speed is too low, the magnetic flux of the main magnetic circuit can be increased by increasing the exciting current so as to maintain the output voltage constant. When no current flows into the generator, only the magnetic field generated by the permanent magnet 6 exists in the motor, the magnetic flux of the main magnetic circuit is not changed, and the constant-voltage output of the generator cannot be maintained due to the change of the rotating speed of the rotor, so that a power conversion device needs to be added on the output side to maintain the constant-voltage constant-frequency output. The specific implementation process is shown in fig. 5.

When the generator does not have direct current flowing, the generator rotor 5 rotates, the permanent magnet 6 also rotates along with the direct current, a rotating magnetic field is formed in the generator, the magnetic flux path sequentially comprises an N pole of the permanent magnet 6, a yoke part of the rotor 5, a main air gap, a tooth part and a yoke part of the stator 1, the main air gap, the yoke part of the rotor 5 and an S pole of the permanent magnet 6, the magnetic field in the generator is only generated by the permanent magnet 6 at the moment, the armature winding 3 on the stator 1 generates induced electromotive force, the induced electromotive force is unstable because the wind speed is unstable, and a power conversion device is required to be used at the output end to. When the generator is excited by positive direct current (assuming that the current vertical plane is positive inwards), an annular magnetic field is formed around the excitation winding, and the magnetic flux direction of the annular magnetic field is the tooth part and the yoke part of the stator 1, the main air gap, the yoke part of the rotor 5, the main air gap, the tooth part and the yoke part of the stator 1 and is an annular anticlockwise magnetic field. The magnetic field can enhance the original magnetic field, and can adjust the magnetic flux by adjusting the magnitude of the exciting current, thereby adjusting the magnitude of the output voltage. When the generator is internally excited by reverse direct current, an annular magnetic field can be formed around the excitation winding, the direction of the magnetic flux of the annular magnetic field is the tooth part and the yoke part of the stator 1, the main air gap, the yoke part of the rotor 5, the main air gap, the tooth part and the yoke part of the stator 1, and the annular magnetic field in the clockwise direction can weaken the original magnetic field, adjust the magnetic flux by adjusting the magnitude of the excitation current, and also adjust the magnitude of the output voltage. Through the process, in order to maintain the output voltage of the generator to be constant, direct current can be introduced, and the magnetic flux of the main magnetic circuit is adjusted by changing the magnitude and the direction of the exciting current so as to maintain the output voltage to be constant.

A second implementation is shown in fig. 3, which is similar to the first implementation, and the shape and position of the permanent magnet and the position of the excitation winding are modified accordingly. The permanent magnet of the structure adopts a radial magnetized tile-shaped permanent magnet 6, and the tile-shaped permanent magnet 6 is attached to the surface of a motor rotor 5. The magnetic polarities of the adjacent permanent magnets 6 are opposite to each other. Rotor teeth 9 are arranged between the adjacent tile-shaped permanent magnets 6, winding slots 8 are formed in the rotor teeth 9 and are used for embedding the excitation windings 4, and the current directions of the adjacent excitation windings 4 are opposite according to the winding mode and the current direction in the excitation windings 4. When direct current is introduced into the exciting winding 4, a magnetic field is generated around the exciting winding 4, and the magnetic flux of the main magnetic circuit can be adjusted by changing the magnitude and the direction of exciting current, so that the induced electromotive force of the armature winding 3 of the stator 1 is adjusted. This structure requires the use of brushes and slip rings because the field winding 4 is placed on the rotor 5. The control strategy is the same as the first implementation structure, and the implementation process is shown in fig. 5.

When the generator does not have direct current flowing, the rotor 5 of the generator rotates, the permanent magnet 6 also rotates along with the direct current, a rotating magnetic field is formed in the generator, the magnetic flux path sequentially comprises an N pole of the permanent magnet 6, a main air gap, a tooth part and a yoke part of the stator 1, the main air gap, an S pole of the permanent magnet 6, a yoke part of the rotor 5 and an N pole of the permanent magnet 6, at the moment, the magnetic field in the generator is only generated by the permanent magnet 6, the armature winding 3 on the stator 1 generates induced electromotive force, the induced electromotive force is unstable because the wind speed is unstable, and a power conversion device is needed to be used at the output end. When the generator is electrified with direct current, in order to strengthen the magnetic flux of the original main magnetic circuit, the direction of the exciting current is shown in figure 3, the direction of the magnetic flux path generated by the exciting current is consistent with the direction of the magnetic flux path of the permanent magnet 6, and when the magnitude of the exciting current is adjusted, the magnetic flux of the main magnetic circuit can be adjusted, so that the armature induced electromotive force can be adjusted. When the direct current supplied by the generator is opposite to the direction shown in fig. 3, the magnetic flux path generated by the exciting current is opposite to the magnetic flux path of the permanent magnet 6, so that the main magnetic flux can be weakened. In summary, the induced electromotive force can be adjusted by changing the magnitude and direction of the exciting current, so that the output voltage is kept stable.

In a third embodiment, as shown in fig. 4, the permanent magnet still uses a radially magnetized tile-shaped permanent magnet 6, but the arc length of the tile-shaped permanent magnet 6 is smaller so as to place the magnetic poles formed by the excitation windings. The generator structure still attaches four tile-type permanent magnets 6 to the surface of the rotor 5. In the generator, a protruded rectangular iron core 10 is arranged on a rotor part between part of adjacent permanent magnets 6, and an excitation winding 4 is wound on the rectangular iron core 10 to form a magnetic pole, so that the magnetic circuit of the adjacent permanent magnets is magnetized or demagnetized. When no exciting current flows through the generator exciting winding 4, the magnetic flux of the main magnetic circuit in the generator is provided by the permanent magnet 6. In order to adjust the magnitude of the air gap field and the magnetic flux of the main magnetic circuit inside the generator, direct current should be supplied to the field winding 4 to generate a magnetic field. When the magnetic flux of the main magnetic circuit in the generator is to be increased, the polarity of the iron core 10 should be the same as the magnetism of the adjacent permanent magnet 6, so that the direction of the magnetic field generated by the permanent magnet 6 is the same as the direction of the magnetic field generated by the field winding iron core 10. When the magnetic field inside the generator is to be weakened, the direction of the magnetic field generated by the permanent magnet 6 is opposite to the direction of the magnetic field generated by the field winding core 8 as long as the direction of the field current is reversed. The induced electromotive force of the armature winding 3 of the stator 1 can be adjusted by changing the magnitude and direction of the current. Because the field winding 4 is on the rotor 5, the generator requires the use of brushes and slip rings. The control strategy is the same as the first implementation structure, and the implementation process is shown in fig. 5.

When the generator is not excited by direct current, the magnetic field in the generator is only provided by the permanent magnet 6, the magnetic flux path is the same as the second structure, the magnetic flux path is the N pole of the permanent magnet 6, the main air gap, the tooth part and the yoke part of the stator 1, the main air gap, the S pole of the permanent magnet 6 and the N pole of the permanent magnet 6, the induced electromotive force is unstable because the wind speed is unstable, and a power conversion device is required to be used at the output end to keep the voltage constant. When the generator is electrified with direct current, in order to strengthen the magnetic flux of the original main magnetic circuit, the direction of the exciting current is shown in fig. 3, after the exciting winding is electrified, the polarity of each iron core is the same as that of the adjacent permanent magnet 6, so the generated magnetic flux path is the N pole and the air gap of the iron core 10, the tooth part and the yoke part of the stator 1, the air gap, the S pole of the iron core 10, the yoke part of the rotor 5 and the N pole of the iron core 10, when the exciting current is adjusted, the magnetic flux of the main magnetic circuit can be adjusted, and the armature induced electromotive force can be adjusted. When the direct current supplied by the generator is opposite to the direction shown in fig. 4, the magnetic flux path generated by the exciting current is opposite to the magnetic flux path of the permanent magnet 6, so that the main magnetic flux can be weakened. In summary, the induced electromotive force can be adjusted by changing the magnitude and direction of the exciting current, so that the output voltage is kept stable.

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种交流励磁同步调相机及其控制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类