Phenolic resin for oil-gas field drilling thickener and preparation method thereof

文档序号:1499664 发布日期:2020-02-07 浏览:14次 中文

阅读说明:本技术 油气田钻采增稠剂用酚醛树脂及其制备方法 (Phenolic resin for oil-gas field drilling thickener and preparation method thereof ) 是由 杨犁新 赵质斌 齐丽华 周凯荣 吴斌 钱庆 于 2019-11-11 设计创作,主要内容包括:一种油气田钻采增稠剂用酚醛树脂及其制备方法,步骤:按重量份数配比称取苯酚1份、甲醛0.9-1.3份、催化剂0.03-0.06份和改性稳定剂0.3-0.5份,得到原料;将原料中的苯酚、50-60%的甲醛以及50-60%的催化剂作为物料投入反应釜中搅拌均匀,加热,得到混合料;待反应釜内的物料温度升至80-90℃,开始滴加原料中的40-50%的甲醛及40-50%的催化剂,将改性稳定剂0.3-0.5份投入反应釜中并加热及搅拌,得到基料;缩聚反应;脱水;冷却,放料,得到产品。有效促进羟甲基化加成反应,极性较强的活性基团含量越多,树脂的极性越强,活性越好,且树脂分子量明显提高,分子量分布更趋合理。(A phenolic resin for a thickener for oil and gas field drilling and production and a preparation method thereof comprise the following steps: weighing 1 part of phenol, 0.9-1.3 parts of formaldehyde, 0.03-0.06 part of catalyst and 0.3-0.5 part of modified stabilizer according to the weight part ratio to obtain raw materials; putting phenol, 50-60% of formaldehyde and 50-60% of catalyst in the raw materials into a reaction kettle as materials, uniformly stirring, and heating to obtain a mixture; when the temperature of the materials in the reaction kettle rises to 80-90 ℃, dripping 40-50% of formaldehyde and 40-50% of catalyst in the raw materials, adding 0.3-0.5 part of modified stabilizer into the reaction kettle, heating and stirring to obtain a base material; performing polycondensation reaction; dehydrating; cooling and discharging to obtain the product. The hydroxymethylation addition reaction is effectively promoted, the more the content of active groups with stronger polarity is, the stronger the polarity of the resin is, the better the activity is, the molecular weight of the resin is obviously improved, and the molecular weight distribution is more reasonable.)

1. the phenolic resin for the oil-gas field drilling thickener is characterized by comprising the following raw materials in parts by weight: 1 part of phenol, 0.9-1.3 parts of formaldehyde and 0.03-0.06 part of catalyst; 0.3-0.5 part of modified stabilizer.

2. The phenolic resin for oil and gas field drilling and production thickener according to claim 1, characterized in that the phenol is industrial synthetic phenol prepared by an isopropyl benzene method or a sulfonation method and has a content of more than 99.5%.

3. The phenolic resin for the oil and gas field drilling and production thickener according to claim 1, characterized in that the formaldehyde is an industrial formaldehyde solution prepared by a methanol oxidation method and having a mass percentage of 44%.

4. The phenolic resin for oil and gas field drilling and production thickener according to claim 1, characterized in that the catalyst is a mixture of alkaline earth metal hydroxide and tertiary amine compound.

5. The phenolic resin for the oil and gas field drilling thickener according to claim 4, wherein the alkaline earth metal hydroxide is calcium hydroxide, the tertiary amine compound is isopropyl phthalate, and the weight ratio of the calcium hydroxide to the isopropyl titanate is 5-6: 1.

6. The phenolic resin for oil and gas field drilling and production thickener according to claim 1, characterized in that the modified stabilizer is polyethylene glycol 400.

7. The preparation method of the phenolic resin for the oil and gas field drilling and production thickener according to claim 1, which is characterized by comprising the following steps:

A) preparing materials, namely weighing 1 part of phenol, 0.9-1.3 parts of formaldehyde, 0.03-0.06 part of catalyst and 0.3-0.5 part of modified stabilizer according to the weight part ratio to obtain raw materials;

B) feeding, namely feeding phenol, 50-60% of formaldehyde and 50-60% of catalyst in the raw materials in the step A) into a reaction kettle with a stirring device and a jacket steam heating device provided with a steam valve as materials, uniformly stirring, then opening the steam valve for heating, and controlling the steam heating temperature and the steam heating time to obtain a mixture;

C) dropwise adding for reaction, namely after the temperature of the materials in the reaction kettle in the step B) rises to 80-90 ℃, beginning to dropwise add 40-50% of formaldehyde and 40-50% of catalyst in the raw materials in the step A) and controlling the dropwise adding time, after dropwise adding, adding 0.3-0.5 part of the modified stabilizer in the step A) into the reaction kettle, and continuously heating and stirring to obtain a base material;

D) a polycondensation reaction, namely when the temperature in the reaction kettle in the step C) is increased to 95-105 ℃, observing the backflow of the material liquid through a sight glass of the reaction kettle, closing a steam valve when the material liquid starts to flow back, continuing to stir, opening the steam valve again and controlling the pressure of steam when the material starts to emulsify through the sight glass, preserving the heat at the temperature of 110 ℃ of 100-;

E) dehydrating, namely, gradually increasing steam for heating, heating the polycondensation reaction material in the reaction kettle in the step D) to 140-;

F) and cooling, opening the stirring device again, opening a jacket cooling water valve of the reaction kettle, stopping stirring and closing the jacket cooling water valve after the temperature of the material to be cooled in the kettle is lower than 60 ℃, and discharging to obtain the phenolic resin for the oil and gas field drilling and production thickening agent.

8. The method for preparing the phenolic resin for the oil and gas field drilling and production thickener according to claim 7, characterized in that the steam heating temperature in the step B) is controlled to be 80-90 ℃, and the steam heating time is controlled to be 10-45 min.

9. The method for preparing the phenolic resin for the oil and gas field drilling and production thickener according to claim 7, characterized in that the dropping time is controlled to be 60-90min in the step C); the temperature for continuously heating is 95-105 ℃; the steam valve is opened again and the pressure of the steam is controlled to be 0.01MPa in the step D).

10. The method for preparing the phenolic resin for the oil and gas field drilling and production thickener according to claim 7, characterized in that the steam is gradually increased to 0.09-0.12MPa in the step E), and the dehydration amount is controlled to 10-15% of the total weight of the input materials.

Technical Field

The invention belongs to the technical field of high polymer materials, and particularly relates to phenolic resin for a thickener for oil and gas field drilling and production, and a preparation method thereof.

Background

The oil and gas field drilling and production thickening agent is used for drilling oil and gas fields, thickening mud and thickening cement mortar for well cementation. In recent years, with the development of oil exploration and development towards deep wells, ultra-deep wells, inclined wells and horizontal wells, the depth of an oil well is increased, the underground pressure is correspondingly increased, and the temperature is increased along with the increase of the depth of the oil well, specifically, the temperature and the pressure are respectively increased by 3 ℃ and 1-2MPa for every 100 meters of drilling depth.

The oil and gas field drilling and production thickening agent in the prior art generally has the defects that molecular chains tend to be disentangled, so that the consistency of a cement paste system is gradually thinned, and the stability is poor; under the condition of high temperature and pressure, the particle movement of cement mortar is intensified; sedimentation is accelerated in the process of perfusion, and the circulation stability is poor; the damage to stratum is large, the slurry is dispersed unevenly, the high-temperature thickening effect and the mixing and pumpability are poor, and the like, thereby affecting the drilling quality and efficiency and even leading to the out-of-control or failure of drilling.

The phenolic resin has hydrophilic groups in the molecular structure, so that the phenolic resin has better adsorption capacity for stabilizing a cement mortar system and various particles in a mortar solution, can play a role in stabilizing drilling cement mortar, can achieve the aim of using the phenolic resin with certain viscosity as an oil-gas drilling thickener, can play a role in reducing cement slurry leakage, preventing air leakage, improving the fluidity of cement slurry, increasing the consistence, viscosity and suspension capacity of the cement slurry along with a film (curing) protective layer formed on the surface of an oil-gas well wall by the cement mortar, and can realize effective sand suspension and separation of the cement slurry under certain concentration.

Technical information related to phenolic resins used in the drilling industry and methods for their preparation can be found in published chinese patent documents, for example CN102241804B recommends "a method for preparing a coupled phenolic resin for drilling fluids", according to the specification paragraph 0004 of the patent: adding 100 parts of phenol and 60-200 parts of formaldehyde in a mass ratio into a reaction kettle of a reflux cooler with a stirrer in sequence, heating to 80-100 ℃ under the action of A-type catalyst, stirring and reacting for 30-50 minutes, then adding B-type catalyst and 150-type 200 parts of sulfonate, reacting for 1-2 hours at 90-105 ℃, adding aminosilane coupling high molecular polymer, and continuing to react for 2-4 hours at 90-105 ℃ to obtain the finished product coupling phenolic resin, wherein the A-type catalyst is hydrochloric acid, p-toluenesulfonic acid or oxalic acid; the B catalyst is sodium hydroxide, magnesium hydroxide or potassium hydroxide. Although the technical effects described in paragraphs 0011 to 0014 of the specification can be achieved, the main effects of the resin prepared by the patent are to improve the cementing effect and the filtration reducing effect of the drilling fluid, and the resin prepared by the patent does not contribute to good thickening, compatibility and mixing performance and ideal sedimentation stability of the cement mortar system of the existing oil well; 50-100 parts of amino silane coupling polymer and 150-200 parts of sulfonate are used, firstly, the lowest addition amount of the amino silane coupling polymer and the sulfonate is 2 times more than the input amount of the main raw material phenol (100 parts), whether the generated product is in question in the phenolic resin category or not is questioned, and great trouble is brought to the subsequent waste water treatment, and the environmental protection is not facilitated; it is also questionable whether the coupling high molecular polymer can completely react with phenol and aldehyde at the temperature of 105 ℃ at most to synthesize resin; the phenolic resin is prepared into aqua or powder through a subsequent process and then is put into use, so that the processing difficulty is increased, the production efficiency and the use convenience are influenced, and the terminal product obtained by the patent does not belong to the category of the phenolic resin for the oil-gas drilling thickener. For another example, CN104788634B provides "a method for preparing a high temperature resistant modified sulfonated phenolic resin for drilling fluid", according to paragraph 0005 of the specification of the patent: firstly, the method 1) adds phenolic aldehyde and an acid catalyst to carry out stirring reaction; method 2) adding alkaline catalyst for reaction ", which plays a certain role in neutralization and loses the function of the catalyst to some extent; second, paragraph 007 of the specification: the method 2) is to react for 10-600min at the temperature of 50-100 ℃, and the temperature can not complete the polymerization reaction to prepare the resin product in the actual operation; third, paragraphs 0010, 0011, 0012 and 0013 in the specification: one or a mixture of several of such a plurality of phenolic, aldehyde and acid-base catalysts still conflict with each other in some categories, which is not practical in the material stage of development and test selection and even unthinkable in practice; and fourthly, the phenolic resin is used after being prepared into a product through a subsequent spray drying process, the processing difficulty and cost are increased, the subsequent three-waste treatment risk is caused, and the production efficiency and the use convenience are influenced.

Disclosure of Invention

The invention aims to provide a novel environment-friendly flame-retardant coating which is beneficial to avoiding pollution to the environment, is non-toxic and harmless, is not inflammable and explosive and ensures the use safety; the phenolic resin for the oil-gas field drilling thickener is beneficial to reflecting good compatibility, mixing property and reliability with the cement mortar system of the existing oil well and reflecting ideal thickening property and sedimentation stability.

The invention also provides a preparation method of the phenolic resin for the oil and gas field drilling and production thickening agent, the method has low-temperature polycondensation reaction, so that the energy consumption is saved, the resin viscosity is increased, and the fluidity is obviously improved.

In order to embody the primary task of the invention, the technical scheme provided by the invention is as follows: the phenolic resin for the oil-gas field drilling thickener is prepared from the following raw materials in parts by weight: 1 part of phenol, 0.9-1.3 parts of formaldehyde and 0.03-0.06 part of catalyst; 0.3-0.5 part of modified stabilizer.

In one embodiment of the present invention, the phenol is a commercially synthesized phenol prepared by the cumene process or the sulfonation process and having a content of 99.5% or more.

In another specific embodiment of the invention, the formaldehyde is an industrial formaldehyde solution prepared by a methanol oxidation method and having a mass percentage of 44%.

In yet another embodiment of the present invention, the catalyst is a mixture of an alkaline earth metal hydroxide and a tertiary amine compound.

In another specific embodiment of the present invention, the alkaline earth metal hydroxide is calcium hydroxide, the tertiary amine compound is isopropyl phthalate, and the weight ratio of calcium hydroxide to isopropyl titanate is 5-6: 1.

In yet another specific embodiment of the present invention, the modified stabilizer is polyethylene glycol 400.

In order to embody another task of the present invention, the technical solution provided by the present invention is: a preparation method of phenolic resin for a thickener for oil and gas field drilling and production comprises the following steps:

A) preparing materials, namely weighing 1 part of phenol, 0.9-1.3 parts of formaldehyde, 0.03-0.06 part of catalyst and 0.3-0.5 part of modified stabilizer according to the weight part ratio to obtain raw materials;

B) feeding, namely feeding phenol, 50-60% of formaldehyde and 50-60% of catalyst in the raw materials in the step A) into a reaction kettle with a stirring device and a jacket steam heating device provided with a steam valve as materials, uniformly stirring, then opening the steam valve for heating, and controlling the steam heating temperature and the steam heating time to obtain a mixture;

C) dropwise adding for reaction, namely after the temperature of the materials in the reaction kettle in the step B) rises to 80-90 ℃, beginning to dropwise add 40-50% of formaldehyde and 40-50% of catalyst in the raw materials in the step A) and controlling the dropwise adding time, after dropwise adding, adding 0.3-0.5 part of the modified stabilizer in the step A) into the reaction kettle, and continuously heating and stirring to obtain a base material;

D) a polycondensation reaction, namely when the temperature in the reaction kettle in the step C) is increased to 95-105 ℃, observing the backflow of the material liquid through a sight glass of the reaction kettle, closing a steam valve when the material liquid starts to flow back, continuing to stir, opening the steam valve again and controlling the pressure of steam when the material starts to emulsify through the sight glass, preserving the heat at the temperature of 110 ℃ of 100-;

E) dehydrating, namely, gradually increasing steam for heating, heating the polycondensation reaction material in the reaction kettle in the step D) to 140-;

F) and cooling, opening the stirring device again, opening a jacket cooling water valve of the reaction kettle, stopping stirring and closing the jacket cooling water valve after the temperature of the material to be cooled in the kettle is lower than 60 ℃, and discharging to obtain the phenolic resin for the oil and gas field drilling and production thickening agent.

In a more specific embodiment of the present invention, the temperature of the steam heating in step B) is controlled to be 80 to 90 ℃, and the time of the steam heating is controlled to be 10 to 45 min.

In still another specific embodiment of the present invention, the dropping time in step C) is controlled to 60 to 90 min; the temperature for continuously heating is 95-105 ℃; the steam valve is opened again and the pressure of the steam is controlled to be 0.01MPa in the step D).

In a still more specific embodiment of the present invention, said first gradual increase of steam in step E) is a gradual increase of steam pressure from 0.09MPa to 0.12MPa, said controlled dewatering amount is a controlled dewatering amount of 10% to 15% of the total weight of the input material.

The technical scheme provided by the invention has the technical effects that: because the molecular structure of the phenolic resin has hydrophilic groups, the effect of hydrophilicity (the water solubility ratio reaches 7.6) is better than lipophilicity, the hydroxymethylation addition reaction is effectively promoted, the more the content of active groups with stronger polarity is, the stronger the polarity of the resin is, the better the activity is, the molecular weight of the resin is obviously improved, the molecular weight distribution is more reasonable, the active ingredients of the phenolic resin reach 40%, and the weight average molecular weight is more than 1800 Mw; because the modified stabilizer is added in the formula, the modified polyurethane has excellent thickening effect and better high-temperature resistance stability, and the frictional resistance and the efficiency are obviously improved; the resin can also play a role in reducing cement slurry leakage and preventing air leakage as a film (solidified) protective layer is formed on the surface of the oil gas well wall by the cement mortar, has better adsorption capacity on various particles in a mortar solution, can stabilize the drilling cement mortar, and can realize effective sand suspension and separation of cement mortar slurry under a certain concentration; the used raw materials do not cause pollution to the environment, are non-toxic, harmless, non-flammable and non-explosive, so the coating has good use safety; the preparation method provided by the invention has the advantages that the phenolic ratio, the selection amount of the catalyst and the modification stabilizer and the determination of the process parameters are reasonable, and the polycondensation reaction can be carried out at a lower temperature, so that the fluidity can be improved by 10-20% while the resin viscosity is increased by 20%, the thickening and the suspension capacity of the cement mortar are increased, the compatibility, the mixing performance, the pumpability and the sedimentation stability in the pouring process of the cement mortar with an oil well are better, and the method also has a good energy-saving effect.

Detailed Description

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种具有紫外吸收功能的新型苯并噁嗪树脂及其一步法制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!