Audio data processing method and device and electronic equipment

文档序号:156449 发布日期:2021-10-26 浏览:40次 中文

阅读说明:本技术 音频数据处理方法和装置、电子设备 (Audio data processing method and device and electronic equipment ) 是由 凌华东 于 2021-07-16 设计创作,主要内容包括:本申请涉及一种音频数据处理方法,应用于音频播放设备,包括:获取所述音频播放设备对应的当前音频播放模式;若所述当前音频播放模式为主动降噪模式,则采集环境声,对所述环境声的预设频段信号进行特征分析,得到所述环境声对应的第一低频段信号特征值;针对所述音频播放设备播放的音频信号的预设频段信号进行特征分析,得到所述音频信号对应的第二低频段信号特征值;若所述第一低频段信号特征值大于第一预设阈值,则基于所述第二低频段信号特征值调整所述音频播放设备的后馈降噪参数。本申请还公开了一种音频数据处理装置、电子设备以及计算机可读存储介质,提高了音频的播放质量。(The application relates to an audio data processing method, which is applied to audio playing equipment and comprises the following steps: acquiring a current audio playing mode corresponding to the audio playing equipment; if the current audio playing mode is the active noise reduction mode, acquiring environmental sound, and performing characteristic analysis on a preset frequency band signal of the environmental sound to obtain a first low-frequency band signal characteristic value corresponding to the environmental sound; performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal; and if the first low-frequency band signal characteristic value is larger than a first preset threshold value, adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value. The application also discloses an audio data processing device, electronic equipment and a computer readable storage medium, which improve the playing quality of the audio.)

1. An audio data processing method applied to an audio playing device is characterized by comprising the following steps:

acquiring a current audio playing mode corresponding to the audio playing equipment;

if the current audio playing mode is the active noise reduction mode, acquiring environmental sound, and performing characteristic analysis on a preset frequency band signal of the environmental sound to obtain a first low-frequency band signal characteristic value corresponding to the environmental sound;

performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal;

and if the first low-frequency band signal characteristic value is larger than a first preset threshold value, adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value.

2. The method according to claim 1, wherein after performing feature analysis on the preset frequency band signal of the audio signal played by the audio playing device to obtain a second low frequency band signal feature value corresponding to the audio signal, the method further comprises:

and if the first low-frequency band signal characteristic value is smaller than or equal to a first preset threshold value, closing the feedback noise reduction of the audio playing equipment.

3. The method of claim 1, wherein if the first low-band signal characteristic value is greater than a first preset threshold, adjusting the feedback noise reduction parameter of the audio playback device based on the second low-band signal characteristic value comprises:

if the second low-frequency band signal characteristic value is smaller than or equal to the human ear perceptible value, taking the default feedback noise reduction parameter as a target feedback noise reduction parameter;

and if the second low-frequency band signal characteristic value is greater than the value which can be sensed by the human ear, obtaining target feedback noise reduction quantity based on the feedforward noise reduction quantity and the environmental sound preset frequency band noise quantity, and obtaining target feedback noise reduction parameters according to the target feedback noise reduction quantity.

4. The method of claim 1, wherein obtaining target feedforward noise reduction parameters according to the target feedforward noise reduction amount comprises:

obtaining the maximum compensatable feedback noise reduction quantity;

when the target feedback noise reduction amount is less than or equal to the maximum compensatable feedback noise reduction amount, obtaining the target feedback noise reduction parameter according to the target feedback noise reduction amount;

and when the target feedback noise reduction amount is larger than the maximum compensatable feedback noise reduction amount, obtaining the target feedback noise reduction parameter according to the maximum compensatable feedback noise reduction amount.

5. The method according to claim 3 or 4, wherein the target feedback noise reduction amount is calculated by the following formula:

and | the feedforward noise reduction amount + the target feedback noise reduction amount | the noise amount of the preset frequency band of the environmental sound |.

6. The method according to claim 1, wherein after the obtaining of the current audio playing mode corresponding to the audio playing device, the method further comprises:

if the current audio playing mode is a transparent mode, performing characteristic analysis on the audio signal played by the audio playing equipment to obtain a third low-frequency-band signal characteristic value corresponding to the audio signal;

and adjusting the permeability parameter of the audio playing device based on the relation between the third low-frequency band signal characteristic value and a second preset threshold value.

7. The method of claim 6, wherein the adjusting the pass-through parameter of the audio playing device based on the relationship between the third low-frequency band signal feature value and a second preset threshold comprises:

if the third low-frequency band signal characteristic value is smaller than or equal to the human ear perceptible value, taking the default feedback through parameter as a target through parameter;

and if the third low-frequency-band signal characteristic value is greater than the value which can be sensed by the human ear, closing the feed-back pass-through of the audio playing equipment, and taking the feed-forward pass-through parameter as a target pass-through parameter.

8. An audio data processing device applied to an audio playing device, comprising:

the acquisition module is used for acquiring a current audio playing mode corresponding to the audio playing equipment;

the mode determining module is used for entering the environment analysis module if the current audio playing mode is the active noise reduction mode;

the environment analysis module is used for acquiring environment sound and performing characteristic analysis on a preset frequency band signal of the environment sound to obtain a first low-frequency band signal characteristic value corresponding to the environment sound;

the audio analysis module is used for performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal;

and the noise reduction parameter adjusting module is used for adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value if the first low-frequency band signal characteristic value is greater than a first preset threshold value.

9. The apparatus of claim 8, further comprising: a transparent parameter adjusting module, wherein the mode determining module is further configured to enter the transparent parameter adjusting module if the current audio playing mode is a transparent mode;

the transparent parameter adjusting module is used for performing characteristic analysis on the audio signal played by the audio playing device to obtain a third low-frequency-band signal characteristic value corresponding to the audio signal, and adjusting the transparent parameter of the audio playing device based on the relation between the third low-frequency-band signal characteristic value and a second preset threshold value.

10. An electronic device comprising a memory and a processor, the memory having stored therein a computer program that, when executed by the processor, causes the processor to perform the steps of the method according to any one of claims 1 to 7.

11. A computer-readable storage medium, on which a computer program is stored, which, when being executed by a processor, carries out the steps of the method according to any one of claims 1 to 7.

Technical Field

The present application relates to the field of electronic device technologies, and in particular, to an audio data processing method and apparatus, an electronic device, and a computer-readable storage medium.

Background

In recent years, with the development of electronic device technology, audio playing devices are also continuously improved, and for example, earphones have a plurality of different playing modes. The corresponding processing parameters in different playing modes all affect the quality of the played audio.

However, the related technical solutions usually compensate the audio loss through the equalizer, and when the compensation digital gain is too large, large distortion and noise are easily generated; overload distortion noise may also be generated when the music sound pressure level is large.

Disclosure of Invention

The embodiment of the application provides an audio data processing method, an audio data processing device, an electronic device and a computer readable storage medium, and the feedback noise reduction parameters of an audio playing device are adjusted according to the characteristics of ambient sound and the characteristics of an audio signal played by the device, so that the influence degree of feedback noise reduction on the quality of the audio signal is reduced.

In a first aspect, an embodiment of the present application provides an audio data processing method. The method is applied to the audio playing device and comprises the following steps:

acquiring a current audio playing mode corresponding to the audio playing equipment;

if the current audio playing mode is the active noise reduction mode, acquiring environmental sound, and performing characteristic analysis on a preset frequency band signal of the environmental sound to obtain a first low-frequency band signal characteristic value corresponding to the environmental sound;

performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal;

and if the first low-frequency band signal characteristic value is larger than a first preset threshold value, adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value.

In a second aspect, an embodiment of the present application provides an audio data processing apparatus. The device is applied to audio playing equipment and comprises:

the acquisition module is used for acquiring a current audio playing mode corresponding to the audio playing equipment;

the mode determining module is used for entering the environment analysis module if the current audio playing mode is the active noise reduction mode;

the environment analysis module is used for acquiring environment sound and performing characteristic analysis on a preset frequency band signal of the environment sound to obtain a first low-frequency band signal characteristic value corresponding to the environment sound;

the audio analysis module is used for performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal;

and the noise reduction parameter adjusting module is used for adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value if the first low-frequency band signal characteristic value is greater than a first preset threshold value.

In a third aspect, an embodiment of the present application provides an electronic device. The electronic device comprises a memory and a processor, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the processor is enabled to execute the following steps:

acquiring a current audio playing mode corresponding to the audio playing equipment;

if the current audio playing mode is the active noise reduction mode, acquiring environmental sound, and performing characteristic analysis on a preset frequency band signal of the environmental sound to obtain a first low-frequency band signal characteristic value corresponding to the environmental sound;

performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal;

and if the first low-frequency band signal characteristic value is larger than a first preset threshold value, adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value.

In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the processor is caused to execute the following steps:

acquiring a current audio playing mode corresponding to the audio playing equipment;

if the current audio playing mode is the active noise reduction mode, acquiring environmental sound, and performing characteristic analysis on a preset frequency band signal of the environmental sound to obtain a first low-frequency band signal characteristic value corresponding to the environmental sound;

performing characteristic analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal;

and if the first low-frequency band signal characteristic value is larger than a first preset threshold value, adjusting the feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value.

The audio data processing method, the audio data processing device, the electronic device and the computer-readable storage medium are applied to an audio playing device, a current audio playing mode corresponding to the audio playing device is obtained, if the current audio playing mode is an active noise reduction mode, environmental sound is collected, a preset frequency band signal of the environmental sound is subjected to characteristic analysis, a first low-frequency band signal characteristic value corresponding to the environmental sound is obtained, the characteristic analysis is performed on the preset frequency band signal of the audio signal played by the audio playing device, and a second low-frequency band signal characteristic value corresponding to the audio signal is obtained; if the first low-frequency band signal characteristic value is larger than the first preset threshold value, the feedback noise reduction parameter of the audio playing device is adjusted based on the second low-frequency band signal characteristic value, under the active noise reduction mode, under the condition that the characteristics of the environment sound meet the preset conditions, different feedback noise reduction parameters are correspondingly set for different second low-frequency band signal characteristic values, so that the feedback noise reduction parameter can be dynamically adjusted according to the characteristics of the environment sound and the audio signal, the influence degree of feedback noise reduction on the quality of the audio signal is reduced, distortion and noise are reduced, and the playing quality of the audio is improved.

Drawings

In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present application, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.

FIG. 1 is a diagram of an exemplary audio data processing method;

FIG. 2 is a block diagram of a portion of the structure of a handset associated with an electronic device as provided in one embodiment;

FIG. 3 is a flow diagram illustrating a method for processing audio data in one embodiment;

FIG. 4 is a diagram illustrating loudness values corresponding to low frequency bands of an ambient sound signal in one embodiment;

FIG. 5 is a flowchart illustrating adjusting a feedback noise reduction parameter of an audio playback device based on a second low-band signal feature value according to an embodiment;

FIG. 6 is a flowchart illustrating an audio data processing method according to another embodiment;

FIG. 7 is a flowchart illustrating adjusting a pass-through parameter of an audio playback device based on a relationship between a characteristic value of a third low-band signal and a second predetermined threshold in an embodiment;

FIG. 8 is a flow diagram of a method for audio data processing in one particular embodiment;

FIG. 9 is a block diagram showing the structure of an audio data processing apparatus according to an embodiment;

fig. 10 is a block diagram showing an internal configuration of an electronic apparatus in one embodiment.

Detailed Description

In order to make the objects, technical solutions and advantages of the present application more apparent, the present application is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the present application and are not intended to limit the present application.

FIG. 1 is a diagram illustrating an exemplary audio data processing method. As shown in fig. 1, the application environment includes an audio playing device 102 and a terminal 104, wherein the audio playing device 102 and the terminal 104 may be separable or integrated. The audio playing device 102 may be a headset, such as a bluetooth headset, a wired headset, or the like, wherein the audio playing device 102 may include a feed-forward microphone and a feed-back microphone. The terminal 104 may be a personal computer, a notebook computer, a smart phone, a tablet computer, a portable wearable device, and the like, but is not limited thereto.

In a possible implementation manner, fig. 2 is a block diagram of a partial structure of a mobile phone related to an electronic device provided in an embodiment of the present application. Referring to fig. 2, the handset includes: a Radio Frequency (RF) circuit 210, a memory 220, an input unit 230, a display unit 240, a bluetooth module 250, an audio circuit 260, a wireless fidelity (WIFI) module 270, a processor 280, and a power supply 290. Where the input unit 230 includes at least a video input device, such as a camera, those skilled in the art will appreciate that the handset configuration shown in fig. 2 is not intended to be limiting, and may include more or fewer components than those shown, or some components in combination, or a different arrangement of components. Wherein bluetooth module 250 supports bluetooth functionality. The bluetooth technology is a radio technology supporting short-distance communication of devices, and can perform wireless information interaction among various wireless terminal devices including smart phones, personal computers, notebook computers, tablet computers, portable wearable devices, wireless earphones, wireless sound boxes and the like.

FIG. 3 is a flow diagram of a method for audio data processing in one embodiment. The audio data processing method shown in fig. 3 can be applied to the audio playing device 102, and includes:

step 310, obtaining a current audio playing mode corresponding to the audio playing device.

The current audio playing mode is used for describing an audio quality mode of the audio playing device when playing audio, and the audio quality effects corresponding to different current audio playing modes are different.

Specifically, whether the audio playing device plays audio is judged, if so, a current audio playing mode is obtained, wherein the current audio playing mode comprises an Active Noise reduction (ANC) mode and a transparent mode, the ANC mode is an Active Noise reduction mode, in the ANC mode, ambient sound of a user wearing the audio playing device is actively reduced, and the user wearing the audio playing device can perceive ambient sound reduction. The transparent mode is that when wearing audio playback equipment, pick up ambient sound through the microphone, produce ambient sound compensation signal through DSP for the user perception arrive ambient sound with when not wearing unanimous, do not wear the perception effect of earphone. It is understood that the current audio playing mode may have other audio playing modes according to the configuration of the audio playing device.

In step 320, if the current audio playing mode is the active noise reduction mode, go to step S330.

Specifically, if the audio playing device is not playing audio, or is not in the active noise reduction mode, or is not in the transparent mode, the feedback noise reduction parameter or the transparent parameter is not changed, and a default parameter is adopted, and the default parameter may adopt the active noise reduction mode or the feedback parameter with the optimal transparent effect. The default parameters are feedback parameters which are used for debugging out the loss of playing audio and only give priority to an active noise reduction mode or a through effect to be optimal in project debugging. Parameter debugging is to continuously debug and find an optimal set of parameters in a laboratory in the development stage of audio playing equipment. The optimal effect is that the active and objective tests are passed, the more noise reduction is performed in the active noise reduction mode, the better the noise reduction is, and the closer the permeability is to the environmental sound, the better the permeability is. If the current audio playing mode is the active noise reduction mode, step S330 is performed to adjust the feedback noise reduction parameter according to the environmental sound and the signal characteristic of the audio signal played by the audio playing device in the preset low frequency segment to obtain the target feedback noise reduction parameter.

And 330, collecting the environment sound, and performing characteristic analysis on the preset frequency band signal of the environment sound to obtain a first low-frequency band signal characteristic value corresponding to the environment sound.

The preset frequency band can be customized according to needs, for example, the preset frequency band is a 50 Hz-700 Hz frequency band.

Specifically, the ambient sound may be collected by a microphone, for example, the ambient sound may be collected by a feedforward microphone, and the ambient sound may be subjected to characteristic analysis to obtain a preset frequency band signal, for example, a low frequency band signal characteristic of 50Hz to 700 Hz. The method of feature analysis can be customized. In one embodiment, the frequency response distribution data of the ambient sound signal is obtained by performing fast fourier transform or wavelet transform on the collected ambient sound signal, as shown in fig. 4, which is a schematic diagram of loudness values corresponding to 20Hz to 20KHz of the ambient sound signal. According to the frequency response distribution data of the environmental sound signals, the first low-frequency band signal characteristic value of a low-frequency band, such as a 50 Hz-700 Hz frequency band, is obtained, and the specific characteristic extraction mode can be customized, such as the characteristic value is a maximum value or an average value. In one embodiment, the average is the noise sum divided by the statistical number, e.g., in the low band, taking one value every 10Hz, taking 65 values, the average is the sum of 65 values divided by 65.

Step 340, performing characteristic analysis on a preset frequency band signal of the audio signal played by the audio playing device to obtain a second low frequency band signal characteristic value corresponding to the audio signal.

The preset frequency band can be customized according to needs, for example, the preset frequency band is a 50 Hz-700 Hz frequency band. It is understood that the preset frequency band of the audio signal may be the same frequency band as the preset frequency band of the ambient sound in the previous step or a different frequency band.

Specifically, the method for analyzing the characteristics may be customized, and may be the same as or different from the method for analyzing the characteristics of the preset frequency band signal of the environmental sound in the previous step. In one embodiment, the audio signal played by the audio playing device is subjected to fast fourier transform or wavelet transform to obtain frequency response distribution data of the audio signal. And obtaining a second low-frequency band signal characteristic value of a low-frequency band, such as a 50 Hz-700 Hz frequency band, according to the frequency response distribution data of the audio signal, wherein the specific characteristic extraction mode can be customized, and the characteristic value is a maximum value or an average value.

In step 350, if the first low-frequency band signal characteristic value is greater than the first preset threshold, the feedback noise reduction parameter of the audio playing device is adjusted based on the second low-frequency band signal characteristic value.

The feedback noise reduction parameters comprise the gain of the feedback microphone, the filter parameters of the feedback path and the like.

Specifically, the first preset threshold may be self-defined as needed, and according to the feature value of the ambient sound signal, when the ambient sound signal is in a low frequency band and is large, the feature value of the first low frequency band signal is larger than the first preset threshold, and if the first preset threshold is a noise reduction value of feedforward noise reduction in the low frequency band, the feedforward noise reduction alone cannot completely eliminate the low frequency band ambient sound signal, and then the feedforward noise reduction parameter needs to be adjusted by combining the feature value of the second low frequency band signal. The method for adjusting the feedback noise reduction parameter of the audio playing device by combining the second low-frequency signal characteristic value can be customized. The second low-frequency signal characteristic value can be compared with a second preset threshold value, and the feedback noise reduction parameter of the audio playing device is adjusted according to the comparison result, wherein the second preset threshold value can be self-defined as required, so that the feedback noise reduction parameter can be dynamically adjusted according to the characteristics of the environmental sound and the audio signal, the influence on the sound quality is reduced, and the distortion and the noise are reduced. In one embodiment, the second low-frequency signal characteristic value may be matched with a preset characteristic value interval, and different characteristic value intervals correspond to different manners of adjusting the feedback noise reduction parameter of the audio playing device, so that a corresponding manner of adjusting the feedback noise reduction parameter of the audio playing device according to a target characteristic value interval in which the second low-frequency signal characteristic value is currently located is determined.

The audio data processing method in this embodiment is applied to an audio playing device, and is configured to acquire a current audio playing mode corresponding to the audio playing device, acquire an ambient sound if the current audio playing mode is an active noise reduction mode, perform feature analysis on a preset frequency band signal of the ambient sound to obtain a first low-frequency band signal feature value corresponding to the ambient sound, perform feature analysis on the preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal feature value corresponding to the audio signal; if the first low-frequency band signal characteristic value is larger than the first preset threshold value, the feedback noise reduction parameter of the audio playing device is adjusted based on the second low-frequency band signal characteristic value, under the active noise reduction mode, under the condition that the characteristics of the environment sound meet the preset conditions, different feedback noise reduction parameters are correspondingly set for different second low-frequency band signal characteristic values, so that the feedback noise reduction parameter can be dynamically adjusted according to the characteristics of the environment sound and the audio signal, the influence degree of feedback noise reduction on the quality of the audio signal is reduced, distortion and noise are reduced, and the playing quality of the audio is improved.

The above embodiments mainly describe how to dynamically adjust the feedback noise reduction parameter according to the characteristics of the environmental sound and the audio signal in the active noise reduction mode of the audio playing device, so as to reduce the influence degree of the feedback noise reduction on the quality of the audio signal, reduce the influence on the sound quality, reduce distortion and noise, and improve the playing quality of the audio. In addition, in other embodiments of the present application, how to perform noise reduction when the first low-frequency band signal characteristic value corresponding to the ambient sound is smaller than or equal to the first preset threshold is also described. Step 340 is followed by: and if the first low-frequency band signal characteristic value is less than or equal to a first preset threshold value, closing the feedback noise reduction of the audio playing equipment.

Specifically, according to a first low-frequency band signal characteristic value corresponding to the ambient sound signal, when the ambient sound signal is small in a low frequency band, that is, the ambient signal of the low frequency band is smaller than or equal to a first preset threshold, where the first preset threshold is self-defined, and if the first preset threshold is a noise reduction value of feedforward noise reduction in the low frequency band, the feedforward noise reduction can be used alone to eliminate the ambient sound signal of the low frequency band, and in this case, the feedback noise reduction of the audio playing device is turned off without distinguishing the audio signal characteristic condition.

In this embodiment, by comparing the first low-frequency band signal characteristic value corresponding to the environmental acoustic signal with the first preset threshold, the small environmental acoustic signal of the low-frequency band is automatically identified, and the feedforward noise reduction is not required to be performed, and the low-frequency band environmental acoustic signal can be eliminated by using the feedforward noise reduction alone, so that the feedback noise reduction of the audio playing device is closed, and the quality influence of the feedback noise reduction on the audio signal is avoided.

The foregoing embodiment mainly explains that the audio playing device can automatically identify an ambient sound signal with a smaller low frequency band according to a first low frequency band signal characteristic value corresponding to the ambient sound, close the feedback of the audio playing device to reduce noise, quickly complete noise reduction determination, and avoid the quality influence of the feedback noise reduction on the audio signal. On the basis of the above embodiment, as shown in fig. 5, step 350 includes:

in step 351, if the characteristic value of the second low-frequency band signal is less than or equal to the value perceptible by the human ear, the default feedback noise reduction parameter is used as the target feedback noise reduction parameter.

The human ear perceptible value can be set according to the perception of multiple persons by playing the sweep-frequency signals of different low frequency bands in the audio playing device in the development stage of the whole machine.

Specifically, according to the second low-frequency band signal characteristic value corresponding to the audio signal, when the audio signal is smaller in the low-frequency band, that is, the second low-frequency band signal characteristic value corresponding to the audio signal of the low-frequency band is smaller than a value perceptible by the human ear, in this case, the effect of the feedback noise reduction on the tone quality can be ignored, and therefore, the target feedback noise reduction parameter setting only needs to adopt the original default parameter, and the parameter can adopt the feedback noise reduction parameter with the optimal ANC active noise reduction effect. When the audio signal is small in the low frequency band, for example, the average value of the signal intensity of the sound source signal in the low frequency band + the volume gain is smaller than-56 dB, -56 is the corresponding gain of the low frequency average value of the sound source + the volume level, for example, the average value of the low frequency band of the sound source is-50 dB, the volume is 13 levels, the volume is 16 levels in total, each level of attenuation is calculated by 2dB, -56 is determined according to the specific product design, the volume level and each level of attenuation are also determined according to the product design, and at this time, when the low frequency band of the audio signal does not reach the value which can be perceived by human ears, the music low frequency band signal is considered to be small. At this time, the influence of the feedback noise reduction on the sound quality can be ignored, so the original default parameters are adopted for the feedback noise reduction parameter setting.

And step 352, if the characteristic value of the second low-frequency band signal is greater than the value perceptible by human ears, obtaining target feedback noise reduction amount based on the feedforward noise reduction amount and the noise amount of the preset frequency band of the environmental sound, and obtaining target feedback noise reduction parameters according to the target feedback noise reduction amount.

Specifically, when the ambient sound signal is large in the low frequency band, that is, the first low frequency band signal characteristic value is greater than the first preset threshold value, and simultaneously, when the music signal is large in the low frequency band, that is, the second low frequency band signal characteristic value is greater than the value that can be perceived by the human ear, at this moment, the feedback noise reduction has a large influence on the sound quality, and the noise reduction amount of the feedback noise reduction needs to be adjusted by adjusting the feedback noise reduction parameter according to the noise reduction requirement of the ambient low frequency band. The target feedback noise reduction amount is obtained based on the feedforward noise reduction amount and the noise amount of the preset frequency band of the environmental sound, and a specific calculation formula can be defined according to requirements, wherein the feedforward noise reduction amount is determined according to the debugging stage of the audio playing equipment, namely the noise reduction amount when the feedforward microphone is opened singly, and the maximum noise reduction amount is generally 25 dB. The noise amount of the preset frequency band of the environmental sound is changed according to the environmental sound, wherein the preset frequency band can be customized, if the preset frequency band is a low frequency band, the noise amount of the preset frequency band of the environmental sound can be collected through the feedforward microphone. In one embodiment, the target feedback noise reduction parameter may be determined according to a relationship between the required feedback noise reduction and the maximum compensatable feedback noise reduction. The maximum compensatable feedback noise reduction amount is predetermined, the feedback noise reduction can damage the sound quality, the more the feedback noise reduction is, the more the sound quality low-frequency loss is, and when the loss is caused, the loss needs to be compensated through an EQ equalizer, the more the compensation is, namely the EQ gain is larger, the distortion is larger, and when the general distortion exceeds 10%, a user can obviously perceive the distortion. Therefore, it is necessary to ensure that distortion is within an acceptable range, and EQ compensation is at a maximum, when the corresponding feedback noise reduction amount is the maximum compensatable feedback noise reduction amount. In one embodiment, a matching relationship between the feedback noise reduction amount and the feedback noise reduction parameter may be obtained in advance, and the target feedback noise reduction parameter corresponding to the target feedback noise reduction amount may be determined according to the matching relationship.

In this embodiment, according to the second low-frequency band signal characteristic value corresponding to the audio signal, when the audio signal is smaller in the low-frequency band, that is, smaller than or equal to the human ear perceptible value, and when the audio signal is larger in the low-frequency band, that is, larger than the human ear perceptible value, the feedback noise reduction parameters are respectively determined in different manners, so that the feedback noise reduction parameters can be determined adaptively, the influence of the feedback noise reduction on the audio tone quality is reduced, and the audio playing quality is intelligently improved.

In one embodiment, the maximum compensatable feedback noise reduction is obtained; when the target feedback noise reduction amount is less than or equal to the maximum compensatable feedback noise reduction amount, obtaining the target feedback noise reduction parameter according to the target feedback noise reduction amount; and when the target feedback noise reduction amount is larger than the maximum compensatable feedback noise reduction amount, obtaining the target feedback noise reduction parameter according to the maximum compensatable feedback noise reduction amount. When the required feedback noise reduction is not more than the maximum compensatable feedback noise reduction, setting target feedback noise reduction parameters according to the target feedback noise reduction; and when the required feedback noise reduction amount is larger than the maximum compensatable feedback noise reduction amount, setting target feedback noise reduction parameters according to the maximum compensatable feedback noise reduction amount.

The matching relationship between the feedback noise reduction amount and the feedback noise reduction parameter can be predetermined, the feedback noise reduction parameter needs to be objectively debugged in the earphone development stage, the feedback noise reduction amount is correspondingly obtained, and a corresponding matching relationship table is output in the development stage.

Specifically, when the required feedback noise reduction amount, that is, the target feedback noise reduction amount is less than or equal to the maximum compensatable feedback noise reduction amount, the target feedback noise reduction parameter is set according to the target feedback noise reduction amount. And when the required feedback noise reduction amount is larger than the maximum compensatable feedback noise reduction amount, setting target feedback noise reduction parameters according to the maximum compensatable feedback noise reduction amount. And obtaining feedback noise reduction parameters corresponding to different feedback noise reduction quantities according to the matching relation between the feedback noise reduction quantities and the feedback noise reduction parameters.

In this embodiment, the target feedback noise reduction amount is compared with the maximum compensatable feedback noise reduction amount, and according to the comparison result, the target feedback noise reduction parameter is determined in different manners, so that the feedback noise reduction parameter can be determined adaptively, the influence of the feedback noise reduction on the tone quality of the audio is reduced, and the playing quality of the audio is intelligently improved.

The foregoing embodiment mainly explains that the audio playing device may automatically determine the target feedback noise reduction parameter in different manners according to the second low-frequency band signal characteristic value corresponding to the audio signal, so that the feedback noise reduction parameter can be determined adaptively, the influence of the feedback noise reduction on the audio quality is reduced, and the audio playing quality is intelligently improved. In addition, how to calculate the target feedback noise reduction amount is also described in other embodiments of the application. On the basis of the above embodiment, the target feedback noise reduction amount is calculated by the following formula: and | the feedforward noise reduction amount + the target feedback noise reduction amount | the noise amount of the preset frequency band of the environmental sound |.

Specifically, when the feedforward noise reduction amount and the preset ambient sound frequency band noise amount are known, the target feedback noise reduction amount can be calculated by substituting the formula | feedforward noise reduction amount + target feedback noise reduction amount | | | the preset ambient sound frequency band noise amount |, where | | represents an absolute value.

In the embodiment, the target feedback noise reduction amount can be quickly calculated according to the feedforward noise reduction amount and the noise amount of the environmental sound preset frequency band through a formula, and convenience and accuracy of determining the target feedback noise reduction amount are improved.

The embodiment mainly explains that the target feedback noise reduction amount can be quickly calculated through a formula, so that the convenience and the accuracy of determining the target feedback noise reduction amount are improved. In addition, in other embodiments of the present application, how to adjust the transparent parameter of the audio playing device according to the characteristics of the audio signal played by the audio playing device if the current audio playing mode is the transparent mode is also described. On the basis of the foregoing embodiment, after step 320, as shown in fig. 6, step 360 is further included, if the current audio playing mode is the transparent mode, performing feature analysis on a preset frequency band signal of an audio signal played by an audio playing device to obtain a third low frequency band signal feature value corresponding to the audio signal; and adjusting the permeability parameter of the audio playing device based on the relation between the third low-frequency band signal characteristic value and the second preset threshold value.

The preset frequency band can be customized according to needs, for example, the preset frequency band is a 50 Hz-700 Hz frequency band. It can be understood that the preset frequency band of the audio signal in the transparent mode may be the same frequency band as the preset frequency band of the ambient sound in the active noise reduction mode in the above step, or the preset frequency band of the audio signal in the active noise reduction mode, or a different frequency band. The second preset threshold can be customized as required, and in one embodiment, the second preset threshold is a value perceptible by human ears.

Specifically, the method for feature analysis may be customized, and may be the same as or different from the method for performing feature analysis on the preset frequency band signal of the ambient sound in the active noise reduction mode and performing feature analysis on the preset frequency band signal of the audio signal in the active noise reduction mode. In one embodiment, in the transparent mode, the audio signal played by the audio playing device is subjected to fast fourier transform or wavelet transform to obtain frequency response distribution data of the audio signal. And obtaining a third low-frequency band signal characteristic value of a low-frequency band, such as a 50 Hz-700 Hz frequency band, according to the frequency response distribution data of the audio signal, wherein the specific characteristic extraction mode can be customized, and the characteristic value is a maximum value or an average value. In one embodiment, when the third low-frequency signal characteristic value is less than or equal to the second preset threshold, the transparent parameter of the audio playing device is determined in a first mode, and when the third low-frequency signal characteristic value is greater than the second preset threshold, the transparent parameter of the audio playing device is determined in a second mode, wherein the first mode and the second mode are different modes. The transparent parameters are corresponding parameters in the transparent mode.

In this embodiment, according to the third low-frequency band signal eigenvalue that audio signal corresponds, when audio signal is less at the low-frequency band and when audio signal is great at the low-frequency band, adopt different modes to confirm the penetrating parameter of audio playback equipment respectively for penetrating parameter can self-adaptive's determination, reduces penetrating parameter and to the tone quality influence of audio frequency, and intelligence improves the broadcast quality of audio frequency.

The above embodiment mainly explains that the audio playing device can automatically adopt different modes to determine the transparent parameters according to the characteristic values of the second low-frequency-band signals corresponding to the audio signals, so that the transparent parameters can be determined in a self-adaptive manner, the influence of the transparent parameters on the tone quality of the audio is reduced, and the playing quality of the audio is intelligently improved. In addition, in other embodiments of the present application, how to adjust the pass-through parameter of the audio playing device according to the relationship between the characteristic value of the third low-frequency band signal and the second preset threshold is also described. On the basis of the foregoing embodiment, as shown in fig. 7, adjusting the pass-through parameter of the audio playing device based on the relationship between the characteristic value of the third low-frequency band signal and the second preset threshold includes:

and step 710, if the third low-frequency band signal characteristic value is less than or equal to the human ear perceptible value, taking the default feedback through parameter as the target through parameter.

Specifically, according to the third low-frequency-band signal characteristic value corresponding to the audio signal, when the audio signal is small in the low frequency band, that is, the second low-frequency-band signal characteristic value corresponding to the audio signal of the low frequency band is smaller than a value that can be sensed by the human ear, under such a condition, the influence of feed-back on the sound quality can be ignored, and therefore, the target feed-through parameter setting only needs to adopt the original default parameter, and the parameter can adopt the feed-back pass parameter with the optimal feed-through effect.

And step 720, if the characteristic value of the third low-frequency band signal is greater than the value which can be sensed by the human ear, closing the feed-back pass-through of the audio playing equipment, and taking the feed-forward pass-through parameter as a target pass-through parameter.

Specifically, according to the third low-frequency-band signal characteristic value corresponding to the audio signal, when the audio signal is larger in the low frequency band, that is, the third low-frequency-band signal characteristic value corresponding to the audio signal of the low frequency band is larger than the value that can be sensed by the human ear, under such a condition, the influence of the feed-back pass parameter on the sound quality is larger, so that the feed-back pass of the audio playing device is closed, and the feed-forward pass parameter is used as the target pass-through parameter.

In this embodiment, the third low-frequency band signal characteristic value corresponding to the audio signal is compared with the human ear perceptible value, the default feed-back pass-through parameter or the feed-back pass-through for closing the audio playing device is selected according to the comparison result, the feed-forward pass-through parameter is selected, when the audio signal is smaller or larger in the low-frequency band, the matched target pass-through parameter is selected in a self-adaptive manner, the target pass-through parameter is dynamically set, the influence of the pass-through parameter on the tone quality is reduced, and the audio playing quality is improved.

In a specific embodiment, the audio playing device is a headset, and an audio data processing method is provided. Fig. 8 is a schematic flow chart, which specifically includes the following steps:

1, judging whether an earphone worn by a user plays music or not, and whether the earphone is in an ANC active noise reduction mode or a transparent mode or not.

2, if the earphone is not playing music or in ANC or transparent mode, the feedback parameter is not changed, default parameter is adopted, and the parameter can adopt active noise reduction mode or feedback parameter with optimal transparent effect.

3, if the earphone plays music and is in ANC mode, then step 4 is entered, and if the earphone plays music and is in transparent mode, then step 7 is entered.

And 4, acquiring environmental sound through a feedforward microphone, and performing characteristic analysis on the environmental sound to obtain signal characteristics of a low-frequency band such as a 50 Hz-700 Hz frequency band, namely a first low-frequency band signal characteristic value corresponding to the environmental sound.

Specifically, an environment sound signal is acquired through a feedforward microphone, and the acquired environment sound signal is subjected to fast fourier transform or wavelet transform, so that frequency response distribution data of the environment sound signal can be obtained, and a maximum value or an average value is obtained according to the frequency response distribution condition of the environment sound signal, so that a signal characteristic value of a low frequency band, such as a 50 Hz-700 Hz frequency band, is obtained, namely a first low frequency band signal characteristic value corresponding to the environment sound. Fig. 8 is a schematic view of the flow of ambient sound collection and analysis.

And 5, performing characteristic analysis on the played music signal to obtain the signal characteristic of the low frequency band of the music signal, such as the frequency band of 50 Hz-700 Hz, namely the characteristic value of a second low frequency band signal corresponding to the music signal.

Specifically, fast fourier transform or wavelet transform is performed on the music signal, so that frequency response distribution data of the music signal can be obtained, and a maximum value or an average value is obtained according to the frequency response distribution condition of the music signal, so that a signal characteristic value of a low frequency band, such as a 50 Hz-700 Hz frequency band, is obtained, that is, a second low frequency band signal characteristic value corresponding to the music signal.

6. And adjusting corresponding feedback noise reduction parameters according to the first low-frequency-band signal characteristic value corresponding to the environment sound and the second low-frequency-band signal characteristic value corresponding to the music signal.

In the active noise reduction mode, the method for adjusting the feedback noise reduction parameter is shown in table 1, and is divided into two cases:

in the first case, according to the first low-frequency band signal characteristic value of the ambient sound signal, when the ambient sound signal is small in the low-frequency band, that is, the ambient signal in the low-frequency band is less than or equal to the noise reduction value of the feedforward noise reduction in the low-frequency band, the feedforward noise reduction alone can be used to eliminate the ambient sound signal in the low-frequency band.

In the second case, according to the first low-frequency band signal characteristic value of the ambient sound signal, when the ambient sound signal is larger in the low-frequency band, that is, the ambient signal of the low-frequency band is larger than the noise reduction value of the feedforward noise reduction in the low-frequency band, that is, the feedforward noise reduction alone is used to eliminate the ambient sound signal of the low-frequency band, at this time, according to the second low-frequency band signal characteristic value of the music signal, when the music signal is smaller in the low-frequency band, that is, the music signal does not reach the perceptible value of human ears in the low-frequency band, at this time, the influence of the feedforward noise reduction on the tone quality can be ignored, therefore, the feedback noise reduction parameter setting can be the original default parameter, and the parameter can be the feedback noise reduction parameter with the optimal ANC effect.

When the environmental sound signal is great at the low band, simultaneously, when the music signal is great at the low band, when second low band signal eigenvalue is greater than the human ear perceptible value, the feedback is fallen and is fallen the influence of making an uproar great to tone quality, needs to fall the demand of making an uproar according to the environmental low band, falls the volume of making an uproar through adjusting the feedback and falling the parameter of making an uproar, through following formula:

| feedforward noise reduction amount + target feedback noise reduction amount | (ambient sound preset frequency band noise amount |)

According to the calculation mode, the feedforward noise reduction amount is known, the noise amount of the preset frequency band of the environmental sound is also known, the required feedback noise reduction amount, namely the target feedback noise reduction amount, can be obtained, and when the required feedback noise reduction amount is smaller than or equal to the maximum compensatable feedback noise reduction amount, the feedback noise reduction parameter is set according to the required feedback noise reduction amount; and when the required feedback noise reduction amount is larger than the maximum compensatable feedback noise reduction amount, setting the feedback noise reduction parameters according to the maximum compensatable feedback noise reduction amount.

TABLE 1

7. In a transparent mode, performing feature analysis on an audio signal played by the audio playing device to obtain a third low-frequency-band signal feature value corresponding to the audio signal, and adjusting a transparent parameter of the audio playing device based on a relation between the third low-frequency-band signal feature value and a second preset threshold, wherein a method for specifically adjusting the transparent parameter is divided into two cases as shown in table 2:

under the first condition, according to the third low-frequency band signal eigenvalue of the music signal, when the music signal is smaller in the low-frequency band and the low-frequency band of the music signal does not reach the value that can be sensed by the human ear, at this moment, the influence of the feedback transparent parameter on the tone quality can be ignored, therefore, the transparent parameter setting adopts the original default parameter, and the parameter can adopt the feedback transparent parameter with the optimal transparent effect.

Under the second condition, according to the third low-frequency band signal characteristic value of the music signal, when the low-frequency band of the music signal is larger than the value which can be sensed by the human ear, at the moment, the influence of the feed-back transparent parameter on the tone quality is larger, so that the feed-back transparent is closed, and only the feed-forward transparent parameter is used.

TABLE 2

In this embodiment, in the active noise reduction mode, the feedforward microphone collects the ambient noise, performs characteristic analysis on the ambient noise, and meanwhile, comprehensively plays the spectral distribution of the music signal, and adaptively determines the feedback noise reduction parameter, thereby reducing the influence degree of the feedback noise reduction on the music signal. Under the penetrating mode, according to the relation of the characteristic value of the music signal and the value that the ears can sense, the penetrating parameter is determined in a self-adaptive mode, so that the influence degree of penetrating on the music signal is reduced, the tone quality effect of music is intelligently improved, and the playing effect of the music is improved.

It should be understood that although the steps in the flowcharts of fig. 3, 6, and 8 are shown in order as indicated by the arrows, the steps are not necessarily performed in order as indicated by the arrows. The steps are not performed in the exact order shown and described, and may be performed in other orders, unless explicitly stated otherwise. Moreover, at least some of the steps in fig. 3, 6, and 8 may include multiple sub-steps or multiple stages, which are not necessarily performed at the same time, but may be performed at different times, and the order of performing the sub-steps or stages is not necessarily sequential, but may be performed alternately or alternatingly with other steps or at least some of the sub-steps or stages of other steps.

Fig. 9 is a block diagram of an audio data processing apparatus 900 according to an embodiment. As shown in fig. 9, an audio data processing apparatus 900 applied to an audio playing device includes: an acquisition module 902, a mode determination module 904, an environment analysis module 906, an audio analysis module 908, and a noise reduction parameter adjustment module 910. Wherein:

an obtaining module 902, configured to obtain a current audio playing mode corresponding to the audio playing device.

A mode determining module 904, configured to enter an environment analysis module if the current audio playing mode is the active noise reduction mode.

And the environment analysis module 906 is configured to collect environment sound, perform characteristic analysis on the preset frequency band signal of the environment sound, and obtain a first low-frequency band signal characteristic value corresponding to the environment sound.

The audio analysis module 908 is configured to perform feature analysis on a preset frequency band signal of an audio signal played by the audio playing device to obtain a second low frequency band signal feature value corresponding to the audio signal.

The noise reduction parameter adjusting module 910 is configured to adjust a feedback noise reduction parameter of the audio playing device based on the second low-frequency band signal characteristic value if the first low-frequency band signal characteristic value is greater than a first preset threshold.

The audio data processing apparatus 900 in this embodiment is applied to an audio playing device, acquires a current audio playing mode corresponding to the audio playing device, acquires an ambient sound if the current audio playing mode is an active noise reduction mode, performs characteristic analysis on a preset frequency band signal of the ambient sound to obtain a first low-frequency band signal characteristic value corresponding to the ambient sound, and performs characteristic analysis on the preset frequency band signal of an audio signal played by the audio playing device to obtain a second low-frequency band signal characteristic value corresponding to the audio signal; if the first low-frequency band signal characteristic value is larger than the first preset threshold value, the feedback noise reduction parameter of the audio playing device is adjusted based on the second low-frequency band signal characteristic value, under the active noise reduction mode, under the condition that the characteristics of the environment sound meet the preset conditions, different feedback noise reduction parameters are correspondingly set for different second low-frequency band signal characteristic values, so that the feedback noise reduction parameter can be dynamically adjusted according to the characteristics of the environment sound and the audio signal, the influence degree of feedback noise reduction on the quality of the audio signal is reduced, distortion and noise are reduced, and the playing quality of the audio is improved. .

In one embodiment, the apparatus further comprises:

a feedback noise reduction closing module 912, configured to close feedback noise reduction of the audio playing device if the first low-frequency band signal feature value is less than or equal to a first preset threshold.

In this embodiment, by comparing the first low-frequency band signal characteristic value corresponding to the environmental acoustic signal with the first preset threshold, the small environmental acoustic signal of the low-frequency band is automatically identified, and the feedforward noise reduction is not required to be performed, and the low-frequency band environmental acoustic signal can be eliminated by using the feedforward noise reduction alone, so that the feedback noise reduction of the audio playing device is closed, and the quality influence of the feedback noise reduction on the audio signal is avoided.

In one embodiment, the noise reduction parameter adjustment module 910 is further configured to take the default feedback noise reduction parameter as the target feedback noise reduction parameter if the second low-frequency band signal characteristic value is less than or equal to the human ear perceptible value; and if the characteristic value of the second low-frequency band signal is greater than the value which can be sensed by the human ear, obtaining target feedback noise reduction quantity based on the feedforward noise reduction quantity and the noise quantity of the environmental sound preset frequency band, and obtaining target feedback noise reduction parameters according to the target feedback noise reduction quantity.

In this embodiment, according to the second low-frequency band signal characteristic value corresponding to the audio signal, when the audio signal is smaller in the low-frequency band, that is, smaller than or equal to the human ear perceptible value, and when the audio signal is larger in the low-frequency band, that is, larger than the human ear perceptible value, the feedback noise reduction parameters are respectively determined in different manners, so that the feedback noise reduction parameters can be determined adaptively, the influence of the feedback noise reduction on the audio tone quality is reduced, and the audio playing quality is intelligently improved.

In one embodiment, the noise reduction parameter adjustment module 910 is further configured to obtain a maximum compensatable feedback noise reduction amount; when the target feedback noise reduction amount is less than or equal to the maximum compensatable feedback noise reduction amount, obtaining the target feedback noise reduction parameter according to the target feedback noise reduction amount; and when the target feedback noise reduction amount is larger than the maximum compensatable feedback noise reduction amount, obtaining the target feedback noise reduction parameter according to the maximum compensatable feedback noise reduction amount.

In this embodiment, the target feedback noise reduction amount is compared with the maximum compensatable feedback noise reduction amount, and according to the comparison result, the target feedback noise reduction parameter is determined in different manners, so that the feedback noise reduction parameter can be determined adaptively, the influence of the feedback noise reduction on the tone quality of the audio is reduced, and the playing quality of the audio is intelligently improved.

In one embodiment, the target feedback noise reduction amount is calculated by the following formula: and | the feedforward noise reduction amount + the target feedback noise reduction amount | the noise amount of the preset frequency band of the environmental sound |.

In the embodiment, the target feedback noise reduction amount can be quickly calculated according to the feedforward noise reduction amount and the noise amount of the environmental sound preset frequency band through a formula, and convenience and accuracy of determining the target feedback noise reduction amount are improved.

In one embodiment, the apparatus further comprises: the mode determination module 902 is further configured to enter the transparent parameter adjustment module 914 if the current audio playing mode is the transparent mode.

The transparent parameter adjusting module 914 is configured to perform feature analysis on the audio signal played by the audio playing device, obtain a third low-frequency-band signal feature value corresponding to the audio signal, and adjust a transparent parameter of the audio playing device based on a relationship between the third low-frequency-band signal feature value and a second preset threshold.

According to the third low-frequency-band signal characteristic value corresponding to the audio signal, when the low-frequency band of the audio signal is small and when the low-frequency band of the audio signal is large, the audio data processing device 900 in the implementation respectively adopts different modes to determine transparent parameters of the audio playing device, so that the transparent parameters can be determined in a self-adaptive mode, the influence of the transparent parameters on the tone quality of the audio is reduced, and the playing quality of the audio is intelligently improved.

In one embodiment, the pass-through parameter adjustment module 914 is further configured to take the default feed-back pass-through parameter as the target pass-through parameter if the third low-band signal feature value is less than or equal to the human ear perceivable value. If the third low-frequency-band signal characteristic value is larger than the value which can be sensed by the human ear, the feed-back permeability of the audio playing equipment is closed, and the feed-forward permeability parameter is used as the target permeability parameter.

The audio data processing device 900 in this implementation compares the third low-frequency section signal characteristic value corresponding to the audio signal with the human ear perceptible value, selects to use the default back feed through parameter or close the back feed through of the audio playing device according to the comparison result, selects the feed forward through parameter, adaptively selects the matched target through parameter when the audio signal is smaller or larger in the low-frequency section, dynamically sets the target through parameter, reduces the influence of the through parameter on the tone quality, and improves the audio playing quality.

For the specific limitations of the audio data processing apparatus, reference may be made to the above limitations of the audio data processing method, which are not described herein again. The respective modules in the audio data processing apparatus described above may be implemented in whole or in part by software, hardware, and a combination thereof. The modules can be embedded in a hardware form or independent from a processor in the computer device, and can also be stored in a memory in the computer device in a software form, so that the processor can call and execute operations corresponding to the modules.

Fig. 10 is a schematic diagram of an internal structure of an electronic device in one embodiment. As shown in fig. 10, the electronic device includes a processor, a memory, and a microphone module connected by a system bus. The processor is used for providing calculation and control capability, supporting the operation of the whole electronic device, and can comprise a super-resolution processing chip. The memory may include a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system and a computer program. The computer program can be executed by a processor for implementing the audio data processing method provided in the above embodiments. The internal memory provides a cached execution environment for the operating system computer programs in the non-volatile storage medium. The microphone module is used for collecting environmental sound and audio signals. The electronic device may be a wired headset, a bluetooth headset, a playable audio watch, etc.

The implementation of the respective modules in the audio data processing apparatus provided in the embodiments of the present application may be in the form of a computer program. The computer program may be run on a terminal or a server. The program modules constituted by the computer program may be stored on the memory of the terminal or the server. Which when executed by a processor, performs the steps of the method described in the embodiments of the present application.

The embodiment of the application also provides a computer readable storage medium. One or more non-transitory computer-readable storage media containing computer-executable instructions that, when executed by one or more processors, cause the processors to perform the steps of the audio data processing method.

A computer program product comprising instructions which, when run on a computer, cause the computer to perform an audio data processing method.

Any reference to memory, storage, database, or other medium used herein may include non-volatile and/or volatile memory. Non-volatile memory can include read-only memory (ROM), Programmable ROM (PROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), or flash memory. Volatile memory can include Random Access Memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in a variety of forms, such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), Rambus Direct RAM (RDRAM), direct bus dynamic RAM (DRDRAM), and bus dynamic RAM (RDRAM).

The above-mentioned embodiments only express several embodiments of the present application, and the description thereof is more specific and detailed, but not construed as limiting the scope of the present application. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the concept of the present application, which falls within the scope of protection of the present application. Therefore, the protection scope of the present patent shall be subject to the appended claims.

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:智能头戴设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!