Blade design method based on Orson vortex and blade pump designed by blade design method

文档序号:1647811 发布日期:2019-12-24 浏览:31次 中文

阅读说明:本技术 一种基于奥森涡的叶片设计方法及其设计的叶片泵 (Blade design method based on Orson vortex and blade pump designed by blade design method ) 是由 谭磊 刘明 于 2019-09-19 设计创作,主要内容包括:本发明公开了一种基于奥森涡的叶片设计方法及其设计的叶片泵,叶片泵的每一级由叶轮及与之配合的导叶组成,叶片泵叶轮的叶片包括:进口角、型线和出口角,其中,叶片在延伸方向上具有第一端和第二端,第一端连接进口角,第二端连接出口角;叶片的进口角由基于奥森涡的设计方法进行确定;叶片的型线和出口角由正反问题迭代方法进行确定。基于奥森涡的叶片设计方法利用奥森涡模型确定上级导叶的下游流场,通过叶片进口的速度三角形确定位于上级导叶下游流场的叶片进口角。根据本发明实施例的叶片泵,可以有效减小叶轮进口的冲击损失,提高多级叶片泵的扬程和效率。(The invention discloses a blade design method based on an Olson vortex and a blade pump designed by the method, wherein each stage of the blade pump consists of an impeller and a guide vane matched with the impeller, and the blades of the impeller of the blade pump comprise: an inlet angle, a profile and an outlet angle, wherein the blade has a first end and a second end in the extension direction, the first end is connected with the inlet angle, and the second end is connected with the outlet angle; the inlet angle of the blade is determined by an Olson vortex-based design method; the profile and exit angle of the blade are determined by a positive and negative problem iteration method. The blade design method based on the Olson vortex determines a downstream flow field of an upper stage guide blade by utilizing an Olson vortex model, and determines a blade inlet angle positioned in the downstream flow field of the upper stage guide blade through a speed triangle of a blade inlet. According to the vane pump provided by the embodiment of the invention, the impact loss of the impeller inlet can be effectively reduced, and the lift and the efficiency of the multistage vane pump are improved.)

1. A vane for a vane pump, comprising:

an inlet angle and an outlet angle, the blade having a first end and a second end in the extending direction, the first end connecting the inlet angle and the second end connecting the outlet angle, the inlet angle formed between a tangent of an axial streamline of the first end and a plane perpendicular to the hub axis being determined by an Olson vortex-based design method, and the outlet angle formed between a tangent of an axial streamline of the second end and a plane perpendicular to the hub axis being determined by a positive and negative problem iteration method; and

and the distribution rule of a placement angle formed between the tangent line of the axial surface streamline of the blade and a plane vertical to the axis of the hub along the relative axial surface streamline is determined by a positive and negative problem iteration method.

2. The blade according to claim 1, wherein the ausen vortex model determines a distribution rule of a flow velocity component in a circumferential direction in a downstream flow field of the upper stage guide vane as follows:

wherein v is the kinematic viscosity of the fluid transported in the multistage vane pump, rsRadius of the upper guide vane at the rim, rhRadius of the upper stage guide vane at the hub, ΓDThe speed ring quantity of the upper stage guide vane at the outlet of the guide vane blade, L is the distance between a preset position on an axial surface streamline corresponding to the downstream of the upper stage guide vane and the outlet of the upper stage guide vane blade, and cm4Is the component of the flow velocity of the lower reaches of the upper guide vane along the axial surface streamline direction, r is the radius of the preset position in the lower reaches flow field of the upper guide vane, t0Are parameters determined according to the structure of the upper guide vane.

3. A blade according to claim 2, characterised in that the inlet angle is determined by the velocity triangle of the blade inlet by the formula:

wherein, cm5Is the component of the flow velocity of the blade at the inlet in the direction of the axial surface streamline, u5Is the peripheral speed of the blade at the inlet, cu5The component of the flow speed at the blade inlet of the flow field at the downstream of the upper stage guide blade, which is determined by the Oerson vortex model, along the circumferential direction is adopted.

4. A blade according to claim 3, characterized in that the distribution law of the blade inlet angles is:

5. a blade according to any of claims 1-2, wherein the inlet angle of the blade at the corresponding position of each stage is inversely proportional to the number of stages.

6. A method for designing a vane of a vane pump, wherein the vane is a vane of a vane pump according to any one of claims 1 to 5, wherein the method comprises the steps of:

determining the first end and the second end in an extension direction;

determining the inlet angle formed between the tangent of the axial surface streamline of the first end and a plane perpendicular to the axis of the hub based on an Olson vortex design method, and determining the outlet angle formed between the tangent of the axial surface streamline of the second end and the plane perpendicular to the axis of the hub by a positive and negative problem iteration method;

and determining the distribution rule of a placement angle formed between the tangent line of the axial surface streamline of the blade and a plane perpendicular to the axis of the hub along the relative axial surface streamline based on a positive and negative problem iteration method.

7. The method according to claim 6, wherein the Orson vortex model determines a distribution law of a circumferential component of a flow velocity in a downstream flow field of the upper stage guide vane as follows:

wherein v is the kinematic viscosity of the fluid transported in the multistage vane pump, rsRadius of the upper guide vane at the rim, rhRadius of the upper stage guide vane at the hub, ΓDThe speed ring quantity of the upper stage guide vane at the outlet of the guide vane blade, L is the distance between a preset position on an axial surface streamline corresponding to the downstream of the upper stage guide vane and the outlet of the upper stage guide vane blade, and cm4Is the component of the flow velocity of the lower reaches of the upper guide vane along the axial surface streamline direction, r is the radius of the preset position in the lower reaches flow field of the upper guide vane, t0Are parameters determined according to the structure of the upper guide vane.

8. The method of claim 7, wherein the inlet angle is determined by a velocity triangle of the blade inlet, and the formula is:

wherein, cm5Is the component of the flow velocity of the blade at the inlet in the direction of the axial surface streamline, u5Is the peripheral speed of the blade at the inlet, cu5The component of the flow speed at the blade inlet of the flow field at the downstream of the upper stage guide blade, which is determined by the Oerson vortex model, along the circumferential direction is adopted.

9. The method of claim 8, wherein the distribution law of the inlet angles of the blades is:

10. a method according to any of claims 6 to 7, wherein the inlet angle of the blades at the corresponding position of each stage is inversely proportional to the number of stages.

Technical Field

The invention relates to the technical field of vane pumps, in particular to an Olson vortex-based vane design method and a vane pump designed by the same.

Background

In recent years, fluid machines have been developed to have high head and high efficiency. The adoption of a plurality of vane pumps which are continuously connected in series to form a multi-stage structure is an effective means for effectively improving the total lift of the pump system. Currently, in a multistage vane pump system, it is the most common practice to use identical vane pumps for each stage. The results of experimental observation and numerical simulation show that when all stages adopt completely same blades, obvious flow separation phenomenon occurs in a later stage runner due to different inflow conditions at the inlet of each stage of blade, and the operation efficiency, safety and stability of a multi-stage system are seriously influenced.

In a multistage vane pump system, the performance of the multistage vane pump is improved mainly through various optimization algorithms. On one hand, when the performance of the multistage vane pump is improved by adopting an optimization algorithm, a large number of examples are generally needed as samples, and the resource consumption is high; on the other hand, the results obtained by the optimization algorithm are difficult to theoretically explain and difficult to popularize.

The blade design method based on the Osen vortex provided by the embodiment of the invention is a multi-stage blade pump design method deduced from a theoretical level, and is an important way for rapidly and effectively improving the performance of the blade pump.

Disclosure of Invention

The present invention is directed to solving, at least to some extent, one of the technical problems in the related art.

Therefore, an object of the present invention is to provide a vane design method for a vane pump, which can rapidly design a multistage vane pump, and effectively improve the lift and efficiency of the multistage vane pump system.

Another object of the invention is to propose a vane for a vane pump.

In order to achieve the above object, an embodiment of an aspect of the present invention provides a vane of a vane pump, including: an inlet angle and an outlet angle, the blade having a first end and a second end in the extending direction, the first end connecting the inlet angle and the second end connecting the outlet angle, the inlet angle formed between a tangent of an axial streamline of the first end and a plane perpendicular to the hub axis being determined by an Olson vortex-based design method, and the outlet angle formed between a tangent of an axial streamline of the second end and a plane perpendicular to the hub axis being determined by a positive and negative problem iteration method; and the distribution rule of a placement angle formed between a tangent line of an axial surface streamline of the blade and a plane vertical to the axis of the hub along the relative axial surface streamline is determined by a positive and negative problem iteration method.

According to the blade of the vane pump, the downstream flow field of the upper guide vane is determined by utilizing the Aussen vortex model, and the blade inlet angle of the downstream flow field of the upper guide vane is determined by the speed triangle of the blade inlet, so that the design of the multistage vane pump can be rapidly completed, the lift and the efficiency of the multistage vane pump system are effectively improved, the impact loss of the impeller inlet is effectively reduced, and the design is simple and easy to realize.

In addition, the vane of the vane pump according to the above embodiment of the present invention may further have the following additional technical features:

further, in an embodiment of the present invention, the distribution rule of the flow velocity component in the downstream flow field of the upper stage guide vane along the circumferential direction determined by the ausen vortex model is:

wherein v is the kinematic viscosity of the fluid transported in the multistage vane pump, rsRadius of the upper guide vane at the rim, rhRadius of the upper stage guide vane at the hub, ΓDThe speed ring quantity of the upper stage guide vane at the outlet of the guide vane blade, L is the distance between a preset position on an axial surface streamline corresponding to the downstream of the upper stage guide vane and the outlet of the upper stage guide vane blade, and cm4Is the component of the flow velocity of the lower reaches of the upper guide vane along the axial surface streamline direction, r is the radius of the preset position in the lower reaches flow field of the upper guide vane, t0Are parameters determined according to the structure of the upper guide vane.

Further, in one embodiment of the invention, the inlet angle is determined by the velocity triangle of the blade inlet, with the formula:

wherein, cm5For the flow speed of the blade at the inlet to follow the direction of axial surface streamlineComponent of (a), u5Is the peripheral speed of the blade at the inlet, cu5The component of the flow speed at the blade inlet of the flow field at the downstream of the upper stage guide blade, which is determined by the Oerson vortex model, along the circumferential direction is adopted.

Further, in one embodiment of the present invention, the distribution rule of the blade inlet angles is:

further, in one embodiment of the invention, the inlet angle of the blade at the position corresponding to each stage is inversely proportional to the number of stages.

In order to achieve the above object, in another aspect, an embodiment of the present invention provides a method for designing a vane of a vane pump, where the vane is the vane of the vane pump in the above embodiment, where the method includes the following steps: determining the first end and the second end in an extension direction; determining the inlet angle formed between the tangent of the axial surface streamline of the first end and a plane perpendicular to the axis of the hub based on an Olson vortex design method, and determining the outlet angle formed between the tangent of the axial surface streamline of the second end and the plane perpendicular to the axis of the hub by a positive and negative problem iteration method; and determining the distribution rule of a placement angle formed between the tangent line of the axial surface streamline of the blade and a plane perpendicular to the axis of the hub along the relative axial surface streamline based on a positive and negative problem iteration method.

According to the blade design method of the vane pump, the downstream flow field of the upper-level guide vane is determined by utilizing the Aussen vortex model, and the blade inlet angle of the downstream flow field of the upper-level guide vane is determined through the speed triangle of the blade inlet, so that the design of the multistage vane pump can be rapidly completed, the lift and the efficiency of the multistage vane pump system are effectively improved, the impact loss of the impeller inlet is effectively reduced, and the method is simple and easy to implement.

In addition, the vane design method of the vane pump according to the above embodiment of the present invention may further have the following additional technical features:

further, in an embodiment of the present invention, the distribution rule of the flow velocity component in the downstream flow field of the upper stage guide vane along the circumferential direction determined by the ausen vortex model is:

wherein v is the kinematic viscosity of the fluid transported in the multistage vane pump, rsRadius of the upper guide vane at the rim, rhRadius of the upper stage guide vane at the hub, ΓDThe speed ring quantity of the upper stage guide vane at the outlet of the guide vane blade, L is the distance between a preset position on an axial surface streamline corresponding to the downstream of the upper stage guide vane and the outlet of the upper stage guide vane blade, and cm4Is the component of the flow velocity of the lower reaches of the upper guide vane along the axial surface streamline direction, r is the radius of the preset position in the lower reaches flow field of the upper guide vane, t0Are parameters determined according to the structure of the upper guide vane.

Further, in one embodiment of the invention, the inlet angle is determined by the velocity triangle of the blade inlet, with the formula:

wherein, cm5Is the component of the flow velocity of the blade at the inlet in the direction of the axial surface streamline, u5Is the peripheral speed of the blade at the inlet, cu5The component of the flow speed at the blade inlet of the flow field at the downstream of the upper stage guide blade, which is determined by the Oerson vortex model, along the circumferential direction is adopted.

Further, in one embodiment of the present invention, the distribution rule of the blade inlet angles is:

further, in one embodiment of the invention, the inlet angle of the blade at the position corresponding to each stage is inversely proportional to the number of stages.

Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.

Drawings

The foregoing and/or additional aspects and advantages of the present invention will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:

FIG. 1 is a schematic perspective view of a vane pump according to an embodiment of the present invention;

FIG. 2 is a schematic view of the distribution of the inlet angles of the vanes of the vane pump along the radial direction according to the embodiment of the present invention;

fig. 3 is a flowchart of a vane design method of a vane pump according to an embodiment of the present invention.

Description of reference numerals:

first stage impeller 11, first stage vanes 12, second stage impeller 21, second stage vanes 22, third stage impeller 31, hub side 23, blades 24, rim side 25, first end 26, profile 27, second end 28, inlet angle β5Angle of exit beta6

Detailed Description

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the drawings are illustrative and intended to be illustrative of the invention and are not to be construed as limiting the invention.

As shown in fig. 1, the multistage vane pump according to the embodiment of the present invention includes a first-stage impeller 11, first-stage vanes 12, a second-stage impeller 21, second-stage vanes 22, and a third-stage impeller 31. Wherein the impeller comprises a hub side 23, blades 24 and a rim side 25, the blades comprising a first end 26, a profile 27, a second end 28.

According to the multi-stage vane pump of the embodiment of the present invention, the inlet angle beta of the first ends 26 of the vanes 24 is set5Profile 27 and exit angle beta of the second end6And the inlet angle of the first end 26 of the bladeDistribution is in accordance withThe blade can effectively improve the lift and the efficiency of the multistage vane pump system.

Specifically, the blade 24 has a first end 26 and a second end 28 in the direction of extension, the first end 26 connecting the inlet angle β5Second end 28 connects to exit angle beta6The inlet angle formed between the tangent to the axial surface streamline of the first end 26 of the blade 24 and a plane perpendicular to the axis of the hub 23 is determined by the olsen vortex-based design method. The distribution rule of the placement angle formed between the tangent line of the axial surface streamline of the blade 24 and the plane perpendicular to the axis of the hub 23 along the relative axial surface streamline is determined by a positive and negative problem iteration method. The exit angle formed between the tangent to the axial surface flow line of the second end 28 of the blade 24 and the plane perpendicular to the axis of the hub 23 is determined by a positive-negative problem iterative method.

In addition, the distribution rule of the flow velocity component in the downstream flow field of the upper stage guide vane 12 along the circumferential direction determined by the ausen vortex model is

Wherein v is the kinematic viscosity of the fluid transported in the multistage vane pump, rsRadius of the upper stage guide vane 12 at the rim, rhRadius of the upper stage guide vane 12 at the hub, ΓDFor the velocity ring quantity of the upper stage guide vane 12 at the guide vane blade outlet, L is the distance between the predetermined position on the axial surface streamline corresponding to the downstream of the upper stage guide vane 12 and the blade outlet of the upper stage guide vane 12, cm4Is the component of the flow velocity downstream of the upper stage guide vane 12 along the axial surface streamline direction, r is the radius at a predetermined position in the downstream flow field of the upper stage guide vane 12, t0Are parameters determined according to the structure of the superordinate guide vane 12.

Determining the inlet angle of vane 24 by the velocity triangle at the inlet of vane 24Wherein, cm5At the inlet of the blades 24Component of flow velocity in the direction of axial surface streamline, u5Is the peripheral speed, c, of the vane 24 at the inletu5Is the component of the flow velocity in the circumferential direction at the inlet of the blade 24 of the flow field downstream of the superordinate vane 12 determined using the ausen vortex model.

In some embodiments, the flow field downstream of the superordinate vane 12 is determined using an ausen vortex model, and the inlet angle of the blade 24 in the flow field downstream of the superordinate vane 12 is determined by the velocity triangle of the inlet of the blade 24. The distribution law of the inlet angles of the blades 24 is as follows:

determining t from the structure of the upper stage guide vane 120

As shown in FIG. 2, as the number of stages increases, the inlet angle of the blade at the corresponding position of each stage decreases.

Compared with the traditional multistage vane pump, the hydraulic performance of the multistage vane pump with the vanes designed by the design method is improved. Compared with the original multistage vane pump, the lift and the efficiency are respectively averagely improved by 0.29 percent and 0.19 percent, and the feasibility and the superiority of the blade design method based on the Ossen vortex can be proved.

In summary, the blade of the vane pump provided by the embodiment of the present invention determines the downstream flow field of the upper stage guide vane by using the ausen vortex model, and determines the blade inlet angle located in the downstream flow field of the upper stage guide vane by using the velocity triangle of the blade inlet, so that the design of the multistage vane pump can be rapidly completed, the lift and efficiency of the multistage vane pump system can be effectively improved, the impact loss at the impeller inlet can be effectively reduced, and the implementation is simple and easy.

The invention further provides a multistage vane pump which comprises the vane designed by the blade design method based on the Olson vortex. Based on similar structures, the multistage vane pump provided by the embodiment of the invention has the beneficial effects that: the design of multistage vane pump can be accomplished fast, multistage vane pump system's lift and efficiency are effectively promoted.

Next, a vane design method of a vane pump according to an embodiment of the present invention will be described with reference to the drawings.

Fig. 3 is a flowchart of a vane design method of a vane pump according to an embodiment of the present invention.

As shown in fig. 3, the vane design method of the vane pump is a vane of the vane pump of the above embodiment, wherein the method includes the following steps:

in step S301, a first end and a second end in the extending direction are determined;

in step S302, an entrance angle formed between a tangent of the axial surface streamline of the first end and a plane perpendicular to the hub axis is determined based on the olsen vortex design method, and an exit angle formed between a tangent of the axial surface streamline of the second end and a plane perpendicular to the hub axis is determined by a positive and negative problem iteration method;

in step S303, a distribution rule of a placement angle formed between a tangent line of an axial surface streamline of the blade and a plane perpendicular to the hub axis along the relative axial surface streamline is determined based on a positive and negative problem iteration method.

Further, in an embodiment of the present invention, the distribution rule of the flow velocity component in the downstream flow field of the upper stage guide vane determined by the ausen vortex model along the circumferential direction is:

wherein v is the kinematic viscosity of the fluid transported in the multistage vane pump, rsRadius of the upper stage guide vane at the rim, rhRadius of upper stage guide vane at hub, ΓDThe speed ring quantity of the upper stage guide vane at the outlet of the guide vane blade, L is the distance between a preset position on a shaft surface streamline corresponding to the downstream of the upper stage guide vane and the outlet of the upper stage guide vane blade, and cm4Is the component of the flow velocity of the downstream of the upper guide vane along the axial surface streamline direction, r is the radius of a preset position in the downstream flow field of the upper guide vane, t0Are parameters determined according to the structure of the upper guide vane.

Further, in one embodiment of the invention, the inlet angle is determined by the velocity triangle of the blade inlet, with the formula:

wherein, cm5Is the component of the flow velocity of the blade at the inlet in the direction of the axial surface streamline, u5The peripheral speed of the blade at the inlet, cu5The component of the flow velocity along the circumferential direction at the blade inlet of the flow field positioned at the downstream of the upper stage guide blade is determined by utilizing an Olson vortex model.

Further, in one embodiment of the present invention, the distribution rule of the blade inlet angles is:

further, in one embodiment of the invention, the inlet angle of the blade at the position corresponding to each stage is inversely proportional to the number of stages.

It should be noted that the foregoing explanation of the vane embodiment of the vane pump also applies to the vane design method of the vane pump of this embodiment, and details are not repeated here.

According to the blade design method of the vane pump provided by the embodiment of the invention, the downstream flow field of the upper-level guide vane is determined by utilizing the Aussen vortex model, and the blade inlet angle of the downstream flow field of the upper-level guide vane is determined by the speed triangle of the blade inlet, so that the design of the multistage vane pump can be rapidly completed, the lift and the efficiency of the multistage vane pump system are effectively improved, the impact loss of the impeller inlet is effectively reduced, and the method is simple and easy to implement.

Furthermore, the terms "first", "second" and "first" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as "first" or "second" may explicitly or implicitly include at least one such feature. In the description of the present invention, "a plurality" means at least two, e.g., two, three, etc., unless specifically limited otherwise.

In the description herein, references to the description of the term "one embodiment," "some embodiments," "an example," "a specific example," or "some examples," etc., mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above are not necessarily intended to refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, various embodiments or examples and features of different embodiments or examples described in this specification can be combined and combined by one skilled in the art without contradiction.

Although embodiments of the present invention have been shown and described above, it is understood that the above embodiments are exemplary and should not be construed as limiting the present invention, and that variations, modifications, substitutions and alterations can be made to the above embodiments by those of ordinary skill in the art within the scope of the present invention.

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:风扇及轴流叶轮

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!