Vehicle-mounted bottle hydrogen controller

文档序号:186727 发布日期:2021-11-02 浏览:44次 中文

阅读说明:本技术 一种车载瓶氢控制器 (Vehicle-mounted bottle hydrogen controller ) 是由 方沛军 宣锋 崔亮亮 姜方 伍远安 曹俊 于 2021-07-23 设计创作,主要内容包括:本发明涉及一种车载瓶氢控制器,包含:氢控制器防爆外壳、充电电池、氢控制器主板、车载供氢系统外围设备、汽车整车控制器VCU、燃料电池管理系统FCU和红外通讯模块;充电电池和氢控制器主板安装于氢控制器防爆外壳内;充电电池与氢控制器主板电性连接;氢控制器主板通过控制线束与车载供氢系统外围设备电性连接;氢控制器主板与汽车整车控制器VCU通过CAN通讯线电性连接;氢控制器主板与燃料电池管理系统FCU通过CAN总线电性连接;氢控制器主板与红外通讯模块通过通讯连接线电性连接;本发明的有益效果是:实现了车载供氢系统实时的安全监控,保障车辆的用气安全,同时在氢气加注时又能实时的将车载瓶的数据传送至加氢设备,提高氢气的加注率。(The invention relates to a vehicle-mounted bottle hydrogen controller, comprising: the system comprises a hydrogen controller explosion-proof shell, a rechargeable battery, a hydrogen controller mainboard, vehicle-mounted hydrogen supply system peripheral equipment, an automobile vehicle control unit VCU, a fuel cell management system FCU and an infrared communication module; the rechargeable battery and the hydrogen controller mainboard are arranged in the hydrogen controller explosion-proof shell; the rechargeable battery is electrically connected with the hydrogen controller mainboard; the hydrogen controller mainboard is electrically connected with peripheral equipment of the vehicle-mounted hydrogen supply system through a control wire harness; the hydrogen controller main board is electrically connected with the VCU of the vehicle controller through the CAN communication line; the hydrogen controller mainboard is electrically connected with the fuel cell management system FCU through a CAN bus; the hydrogen controller mainboard is electrically connected with the infrared communication module through a communication connecting wire; the invention has the beneficial effects that: the real-time safety monitoring of the vehicle-mounted hydrogen supply system is realized, the gas using safety of a vehicle is guaranteed, meanwhile, the data of the vehicle-mounted bottle can be transmitted to the hydrogenation equipment in real time when the hydrogen is filled, and the filling rate of the hydrogen is improved.)

1. The utility model provides an on-vehicle bottle hydrogen controller which characterized in that: the method comprises the following steps:

the system comprises a hydrogen controller explosion-proof shell (1), a rechargeable battery (2), a hydrogen controller mainboard (3), vehicle-mounted hydrogen supply system peripheral equipment (5), an automobile vehicle control unit VCU (7), a fuel cell management system FCU (9) and an infrared communication module (11);

the rechargeable battery (2) and the hydrogen controller main board (3) are arranged in the hydrogen controller explosion-proof shell (1); the rechargeable battery (2) is electrically connected with the hydrogen controller mainboard (3);

the hydrogen controller main board (3) is electrically connected with the vehicle-mounted hydrogen supply system peripheral equipment (5) through a control wiring harness (4);

the hydrogen controller mainboard (3) is electrically connected with a VCU (7) of the automobile controller through a CAN communication line (6);

the hydrogen controller mainboard (3) is electrically connected with the fuel cell management system FCU (9) through a CAN bus (8);

the hydrogen controller main board (3) is electrically connected with the infrared communication module (11) through a communication connecting wire (10).

2. The vehicle-mounted bottle hydrogen controller according to claim 1, characterized in that: the vehicle-mounted hydrogen supply system peripheral device (5) includes: the device comprises a bottle opening electromagnetic valve, a bottle group outlet pressure transmitter, a bottle internal thermal resistor and a hydrogen leakage detection sensor.

3. The vehicle-mounted bottle hydrogen controller according to claim 1, characterized in that: the infrared communication module (11) is arranged on a filling valve of the hydrogen storage bottle group and used for performing infrared wireless data interaction with the infrared communication module arranged on the special hydrogenation gun when the hydrogenation machine is filled, and transmitting data in the vehicle-mounted bottle to the hydrogenation machine.

4. The vehicle-mounted bottle hydrogen controller according to claim 1, characterized in that: the control logic of the vehicle-mounted bottle hydrogen controller comprises vehicle-mounted bottle hydrogen filling process control and vehicle-mounted bottle hydrogen using process control.

5. The vehicle-mounted bottle hydrogen controller according to claim 4, characterized in that: the hydrogen filling process of the vehicle-mounted bottle specifically comprises the following steps:

under the condition that the vehicle is not powered on, the rechargeable battery (2) supplies power to the hydrogen controller main board (3);

the hydrogen controller main board (3) collects the temperature and the pressure of the vehicle-mounted bottle through a control wire harness (4);

judging whether the infrared communication module (11) is normally connected with the hydrogenation machine, if so, sending the vehicle-mounted bottle pressure, the vehicle-mounted bottle temperature and the vehicle-mounted bottle volume to the hydrogenation machine by the infrared communication module (11), and calculating the real-time filling rate soc in the vehicle-mounted bottle; otherwise, the infrared communication module (11) is abnormal;

when the soc > is a or the temperature of the vehicle-mounted bottle is more than b, the hydrogen controller main board (3) sends a filling stopping signal to the hydrogenation machine through the infrared communication module (11); wherein a and b are preset values.

6. The vehicle-mounted bottle hydrogen controller according to claim 4, characterized in that: the hydrogen process for the vehicle-mounted bottle specifically comprises the following steps:

under the condition that a vehicle is powered on, a hydrogen controller mainboard (3) judges whether an opening instruction of a fuel cell management system (FCU) (9) or a vehicle controller VCU (7) is received, if yes, the hydrogen controller mainboard (3) opens a bottle opening electromagnetic valve of a vehicle-mounted hydrogen supply system peripheral device (5) through a control wiring harness (4), and collects the temperature and the pressure of a vehicle-mounted bottle in real time; meanwhile, the hydrogen controller mainboard (3) calculates the real-time density of hydrogen according to the temperature and the pressure, and calculates the accumulated consumption and the instantaneous consumption of the hydrogen of the vehicle-mounted bottle at intervals of T;

obtaining the running speed V of the vehiclecRecording the vehicle speed and the instantaneous consumption of the hydrogen of the vehicle-mounted bottle;

the consumption under different vehicle speed loads is compared through self-learning, and if the consumption under the current vehicle speed is abnormal, the hydrogen controller main board (3) sends an alarm instruction to a fuel cell management system FCU (9) or a vehicle controller VCU (7).

7. The vehicle-mounted bottle hydrogen controller according to claim 6, characterized in that: the calculation formula of the accumulated consumption of the hydrogen of the vehicle-mounted bottle is as follows: m ═ p (p)21) V; where ρ is1Is the hydrogen density at the previous moment, p2Hydrogen density at the current moment; v volume of vehicle gas storage bottle group.

8. The vehicle-mounted bottle hydrogen controller according to claim 6, characterized in that:

the instantaneous consumption of the hydrogen in the vehicle-mounted bottle is calculated according to the formula: c ═ m/(T ═ V)C) Where T is the interval time, VCThe running speed of the vehicle.

9. The vehicle-mounted bottle hydrogen controller according to claim 7, characterized in that: when the temperature or pressure or hydrogen leakage detection sensor detects hydrogen leakage, the hydrogen controller mainboard (3) sends an alarm instruction to the fuel cell management system FCU (9) or the vehicle controller VCU (7).

Technical Field

The invention relates to the field of vehicle-mounted hydrogen storage, in particular to a vehicle-mounted bottle hydrogen controller.

Background

The vehicle-mounted bottle hydrogen supply system of the fuel cell vehicle is an important component of the fuel cell vehicle, the vehicle-mounted bottle hydrogen controller is related to the driving safety of the fuel cell vehicle, the vehicle-mounted hydrogen supply system of the fuel cell vehicle is an intermediate device which is connected with a hydrogen filling station and a vehicle management system, therefore, the hydrogen controller of the fuel cell vehicle must have data interaction capacity with the hydrogen filling device of the hydrogen filling station and a vehicle ECU, so that the data safety in the vehicle filling and vehicle driving processes is ensured, the conventional hydrogen controller of the fuel cell vehicle only has simple hydrogen management and monitoring functions and cannot ensure full-time monitoring and safety guarantee, and in addition, only information such as pure transmission temperature, pressure and the like cannot accurately and comprehensively reflect the actual working condition of the vehicle-mounted bottle.

Disclosure of Invention

In order to solve the above problems, the present invention provides an on-vehicle bottle hydrogen controller, comprising:

the system comprises a hydrogen controller explosion-proof shell, a rechargeable battery, a hydrogen controller mainboard, vehicle-mounted hydrogen supply system peripheral equipment, an automobile vehicle control unit VCU, a fuel cell management system FCU and an infrared communication module;

the rechargeable battery and the hydrogen controller main board are arranged in the hydrogen controller explosion-proof shell; the rechargeable battery is electrically connected with the hydrogen controller mainboard;

the hydrogen controller main board is electrically connected with the vehicle-mounted hydrogen supply system peripheral equipment through a control wire harness;

the hydrogen controller main board is electrically connected with a VCU of the automobile controller through a CAN communication line;

the hydrogen controller mainboard is electrically connected with the fuel cell management system FCU through a CAN bus;

the hydrogen controller mainboard is electrically connected with the infrared communication module through a communication connecting wire.

Further, the on-vehicle hydrogen supply system peripheral device includes: the device comprises a bottle opening electromagnetic valve, a bottle group outlet pressure transmitter, a bottle internal thermal resistor and a hydrogen leakage detection sensor.

Furthermore, the infrared communication module is arranged on a filling valve of the hydrogen storage bottle group and used for performing infrared wireless data interaction with the infrared communication module arranged on the special hydrogenation gun when the hydrogenation machine is filled, and transmitting data in the vehicle-mounted bottle to the hydrogenation machine.

Further, the control logic of the vehicle-mounted bottle hydrogen controller comprises vehicle-mounted bottle hydrogen filling process control and vehicle-mounted bottle hydrogen using process control.

Further, the hydrogen filling process of the vehicle-mounted bottle specifically comprises the following steps:

under the condition that the vehicle is not powered on, the rechargeable battery supplies power to the hydrogen controller mainboard;

the hydrogen controller main board acquires the temperature and the pressure of the vehicle-mounted bottle through a control wire harness;

judging whether the infrared communication module is normally connected with the hydrogenation machine, if so, sending the vehicle-mounted bottle pressure, the vehicle-mounted bottle temperature and the vehicle-mounted bottle volume to the hydrogenation machine by the infrared communication module, and calculating the real-time filling rate soc in the vehicle-mounted bottle; otherwise, the infrared communication module is abnormal;

when the soc > is a or the temperature of the vehicle-mounted bottle is more than b, the hydrogen controller mainboard sends a filling stopping signal to the hydrogenation machine through the infrared communication module; wherein a and b are preset values.

The hydrogen process for the vehicle-mounted bottle specifically comprises the following steps:

under the condition that a vehicle is powered on, a hydrogen controller mainboard judges whether an opening instruction of a fuel cell management system (FCU) or a Vehicle Controller (VCU) is received, if so, the hydrogen controller mainboard opens a bottle opening electromagnetic valve of peripheral equipment of a vehicle-mounted hydrogen supply system through a control wire harness and collects the temperature and the pressure of a vehicle-mounted bottle in real time; meanwhile, the hydrogen controller mainboard calculates the real-time density of hydrogen according to the temperature and the pressure, and calculates the accumulated consumption and the instantaneous consumption of the hydrogen of the vehicle-mounted bottle at intervals of T;

obtaining the running speed V of the vehiclecRecording the vehicle speed and the instantaneous consumption of the hydrogen of the vehicle-mounted bottle;

the consumption under different vehicle speed loads is compared through self-learning, and if the consumption under the current vehicle speed is abnormal, the hydrogen controller main board sends an alarm instruction to the fuel cell management system FCU or the vehicle controller VCU.

The calculation formula of the accumulated consumption of the hydrogen of the vehicle-mounted bottle is as follows: m ═ p (p)21) V; where ρ is1Is the hydrogen density at the previous moment, p2Hydrogen density at the current moment; v volume of vehicle gas storage bottle group.

When the temperature or pressure or hydrogen leakage detection sensor detects hydrogen leakage, the hydrogen controller mainboard sends an alarm instruction to the fuel cell management system FCU or the vehicle controller VCU.

The beneficial effects provided by the invention are as follows: the hydrogen controller can monitor the working state of the vehicle-mounted bottle of the fuel cell vehicle in real time, calculate the real-time consumption of the hydrogen device of the hydrogen supply system, perform real-time safety monitoring on the vehicle-mounted hydrogen supply system, ensure the gas consumption safety of the vehicle, transmit the data of the vehicle-mounted bottle to the hydrogenation equipment in real time when hydrogen is filled, improve the filling rate of the hydrogen and ensure the safety of gas filling. Meanwhile, the safety and reliability of the whole control in the using process are ensured by the integral explosion-proof design.

Drawings

Fig. 1 is a structural diagram of an in-vehicle bottle hydrogen controller of the present invention.

Detailed Description

In order to make the objects, technical solutions and advantages of the present invention more apparent, embodiments of the present invention will be further described with reference to the accompanying drawings.

Referring to fig. 1, an on-board bottle hydrogen controller includes the following:

the system comprises a hydrogen controller explosion-proof shell 1, a rechargeable battery 2, a hydrogen controller mainboard 3, a vehicle-mounted hydrogen supply system peripheral device 5, an automobile vehicle control unit VCU7, a fuel cell management system FCU9 and an infrared communication module 11;

the rechargeable battery 2 and the hydrogen controller mainboard 3 are arranged in the hydrogen controller explosion-proof shell 1; the rechargeable battery 2 is electrically connected with the hydrogen controller mainboard 3;

the hydrogen controller explosion-proof housing 1 is used for isolating the hydrogen controller mainboard 3 from the external hydrogen environment, and prevents the danger from occurring when the hydrogen is leaked and contacts the mainboard.

The rechargeable battery 2 is used for supplying power to the hydrogen controller mainboard 3 after the power supply in the vehicle is cut off in the hydrogenation process.

The hydrogen controller mainboard 3 sends real-time data of temperature, pressure and the like in the vehicle-mounted bottle to the hydrogenation machine in real time in the hydrogenation process, simultaneously ensures the safety of the hydrogenation process, and timely sends a signal to the hydrogenation machine and timely cuts off hydrogen supply if the temperature and the overpressure in the bottle are over-high;

the hydrogen controller main board 3 is electrically connected with the vehicle-mounted hydrogen supply system peripheral equipment 5 through a control wiring harness 4; a control wire harness 4 for connecting the controller and the electromagnetic valve, the pressure transmitter, the thermal resistor, the hydrogen leakage detector and other devices in the vehicle-mounted hydrogen supply system

The hydrogen controller mainboard 3 is electrically connected with the VCU7 of the vehicle controller through the CAN communication line 6; a CAN communication line 6 for connecting the hydrogen controller with the control system ECU of the automobile, the controller sends real-time data to the ECU and receives the control signal of the ECU

The hydrogen controller motherboard 3 is electrically connected with the fuel cell management system FCU9 through a CAN bus 8; a CAN bus 8 for connecting the fuel cell management system FCU of the vehicle, transmitting the real-time information of the vehicle bottle to the FCU and receiving the control signal of the FCU

The hydrogen controller mainboard 3 is electrically connected with the infrared communication module 11 through a communication connecting wire 10.

The vehicle-mounted hydrogen supply system peripheral device 5 includes: the device comprises a bottle opening electromagnetic valve, a bottle group outlet pressure transmitter, a bottle internal thermal resistor and a hydrogen leakage detection sensor.

The infrared communication module 11 is arranged on a filling valve of the hydrogen storage bottle group and used for performing infrared wireless data interaction with the infrared communication module arranged on the special hydrogenation gun when the hydrogenation machine is filled, and transmitting data in the vehicle-mounted bottle to the hydrogenation machine.

The control logic of the vehicle-mounted bottle hydrogen controller comprises vehicle-mounted bottle hydrogen filling process control and vehicle-mounted bottle hydrogen using process control.

The hydrogen filling process of the vehicle-mounted bottle specifically comprises the following steps:

in the case where the vehicle is not powered on, the rechargeable battery 2 supplies power to the hydrogen controller main board 3;

the hydrogen controller main board 3 collects the temperature and the pressure of the vehicle-mounted bottle through a control wire harness 4;

judging whether the infrared communication module 11 is normally connected with the hydrogenation machine, if so, sending the vehicle-mounted bottle pressure, the vehicle-mounted bottle temperature and the vehicle-mounted bottle volume to the hydrogenation machine by the infrared communication module 11, and calculating the real-time filling rate soc in the vehicle-mounted bottle; otherwise, the infrared communication module 11 is abnormal;

in the above equation, the numerator is the calculated actual density, the denominator is the density of hydrogen when the vial set is full at 15 degrees Celsius, the figure is 24g/L for the 35mpa vial set and the figure is 40.2g'/L for the 70mpa vial set.

When the soc > is a or the temperature of the vehicle-mounted bottle is more than b, the hydrogen controller main board 3 sends a filling stopping signal to the hydrogenation machine through the infrared communication module 11; wherein a and b are preset values. In the invention, a is 96%, and b is 60 ℃.

The hydrogen process for the vehicle-mounted bottle specifically comprises the following steps:

under the condition that a vehicle is powered on, a hydrogen controller mainboard 3 judges whether an opening instruction of a fuel cell management system FCU9 or a vehicle controller VCU7 is received, if so, the hydrogen controller mainboard 3 opens a bottle opening electromagnetic valve of a vehicle-mounted hydrogen supply system peripheral device 5 through a control wiring harness 4, and collects the temperature and the pressure of a vehicle-mounted bottle in real time; meanwhile, the hydrogen controller mainboard 3 calculates the real-time density of the hydrogen according to the temperature and the pressure, and calculates the accumulated consumption and the instantaneous consumption of the hydrogen in the vehicle-mounted bottle at intervals of T;

obtaining the running speed V of the vehiclecRecording the vehicle speed and the instantaneous consumption of the hydrogen of the vehicle-mounted bottle;

the consumption under different vehicle speed loads is compared through self-learning, and if the consumption under the current vehicle speed is abnormal, the hydrogen controller main board 3 sends an alarm instruction to the fuel cell management system FCU9 or the vehicle controller VCU 7.

The calculation formula of the accumulated consumption of the hydrogen of the vehicle-mounted bottle is as follows: m ═ p (p)21) V; where ρ is1Is the hydrogen density at the previous moment, p2Hydrogen density at the current moment; v volume of vehicle gas storage bottle group.

When the temperature or pressure or hydrogen leakage detection sensor detects hydrogen leakage, the hydrogen controller main board 3 sends an alarm instruction to the fuel cell management system FCU9 or the vehicle controller VCU 7.

The invention has the beneficial effects that: the hydrogen controller can monitor the working state of the vehicle-mounted bottle of the fuel cell vehicle in real time, calculate the real-time consumption of the hydrogen device of the hydrogen supply system, perform real-time safety monitoring on the vehicle-mounted hydrogen supply system, ensure the gas consumption safety of the vehicle, transmit the data of the vehicle-mounted bottle to the hydrogenation equipment in real time when hydrogen is filled, improve the filling rate of the hydrogen and ensure the safety of gas filling. Meanwhile, the safety and reliability of the whole control in the using process are ensured by the integral explosion-proof design.

The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents, improvements and the like that fall within the spirit and principle of the present invention are intended to be included therein.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种加氢站用自动充装卸气装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!