Noise contribution amount measuring method, device, equipment and storage medium

文档序号:1962626 发布日期:2021-12-14 浏览:22次 中文

阅读说明:本技术 一种噪声贡献量测量方法、装置、设备及存储介质 (Noise contribution amount measuring method, device, equipment and storage medium ) 是由 李林勇 樊小鹏 李丽 褚志刚 杨洋 翁靖 王一凡 李华亮 范圣平 邹庄磊 马存仁 于 2021-09-10 设计创作,主要内容包括:本发明公开了一种噪声贡献量测量方法、装置、设备及存储介质,涉及噪声检测技术领域。所述方法包括:同步采集声源处的第一声音信号,及受声点处的第二声音信号;对所述第一声音信号和所述第二声音信号进行滤波处理,分别得到预设频率范围内的第一滤波信号和第二滤波信号;采用贡献量分析方法分析所述第一滤波信号和所述第二滤波信号,得到声源对受声点处噪声的声压级贡献量。本发明能够提取被测噪声源的噪声贡献频谱,并且通过频谱计算得到被测声源的噪声贡献量,避免了背景噪声测量存在大量信号干扰的情况,以获得被测声源的噪声贡献频谱,提高噪声的声压级贡献量的测量准确度。(The invention discloses a noise contribution amount measuring method, device, equipment and storage medium, and relates to the technical field of noise detection. The method comprises the following steps: synchronously collecting a first sound signal at a sound source and a second sound signal at a sound receiving point; filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range; and analyzing the first filtering signal and the second filtering signal by adopting a contribution analysis method to obtain the sound pressure level contribution of the sound source to the noise at the sound receiving point. The method can extract the noise contribution frequency spectrum of the tested noise source, and obtains the noise contribution amount of the tested sound source through frequency spectrum calculation, thereby avoiding the situation that a large amount of signal interference exists in background noise measurement, obtaining the noise contribution frequency spectrum of the tested sound source and improving the measurement accuracy of the sound pressure level contribution amount of the noise.)

1. A method of measuring a noise contribution amount, comprising:

synchronously collecting a first sound signal at a sound source and a second sound signal at a sound receiving point;

filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range;

and analyzing the contribution amount of the first filtering signal and the second filtering signal to obtain the sound pressure level contribution amount of the sound source to the noise at the sound receiving point.

2. The method of claim 1, wherein the analyzing the contributions of the first filtered signal and the second filtered signal to obtain the contribution of the sound source to the sound pressure level of the noise at the sound receiving point comprises:

calculating a self-power spectrum of the second filtered signal and a cross-power spectrum of the first filtered signal and the second filtered signal using fourier transform;

obtaining a cross-power spectrum matrix according to the self-power spectrum of the second filtering signal and the cross-power spectrum of the first filtering signal and the second filtering signal; when more than one sound source for collecting the first sound signal exists, the cross-power spectrum matrix further comprises interaction rate spectrums among a plurality of first filtering signals;

and calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

3. The noise contribution amount measuring method according to claim 1, wherein the predetermined frequency range is 20Hz to 20 kHz.

4. The noise contribution amount measurement method of claim 1, wherein the first sound signal is collected by a vibration sensor or a noise sensor, and the second sound signal is collected by a noise sensor.

5. A noise contribution amount measuring apparatus, comprising:

the sound signal acquisition module is used for synchronously acquiring a first sound signal at a sound source and a second sound signal at a sound receiving point;

the filtering module is used for filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range;

and the contribution analysis module is used for analyzing the contribution of the first filtering signal and the second filtering signal to obtain the sound pressure level contribution of the sound source to the noise at the sound receiving point.

6. The noise contribution amount measuring apparatus according to claim 5, wherein the contribution amount analyzing module includes:

a cross-power spectrum obtaining unit, configured to calculate a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal by using fourier transform;

a cross-power spectrum matrix obtaining unit, configured to obtain a cross-power spectrum matrix according to a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal; when more than one sound source for collecting the first sound signal exists, the cross-power spectrum matrix further comprises interaction rate spectrums among a plurality of first filtering signals;

and the contribution calculating unit is used for calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

7. The noise contribution measuring device of claim 5, wherein the predetermined frequency range is 20 Hz-20 kHz.

8. The noise contribution amount measuring device according to claim 5, wherein the first sound signal is collected by a vibration sensor or a noise sensor, and the second sound signal is collected by a noise sensor.

9. A computer terminal device, comprising:

one or more processors;

a memory coupled to the processor for storing one or more programs;

when executed by the one or more processors, cause the one or more processors to implement the noise contribution amount measurement method of any of claims 1-4.

10. A computer-readable storage medium, on which a computer program is stored which, when being executed by a processor, carries out the noise contribution amount measuring method according to any one of claims 1 to 4.

Technical Field

The present invention relates to the field of noise detection technologies, and in particular, to a noise contribution amount measuring method, apparatus, device, and storage medium.

Background

Along with the continuous development of economy, urban land is more and more tense, so that the distance between a large number of industrial enterprises and a residential area is closer and closer, and the influence of noise generated during operation on people is wider and wider. Meanwhile, the public consciousness on maintaining the self environmental protection rights and safety protection rights is continuously improved, the noise pollution problem is often taken as a breakthrough, the maintenance rights are organized, group visits and blocking events occur frequently, the social harmony is damaged, and the stable hidden danger is formed on the social political environment.

When the noise disturbance of industrial enterprises is treated at the present stage, the judgment of the noise pollution source is the primary problem for treating the noise pollution complaint problem, and the judgment of the noise pollution source at the present stage mainly depends on an empirical method, and simple positioning is carried out by detecting the sound source size and the frequency spectrum characteristic of a main pollution source, so that the workload is large and the positioning is inaccurate; the method mainly comprises the steps of quantifying by adopting a sound level superposition calculation method, namely respectively collecting comprehensive noise values polluted by noise, detecting environmental background noise values polluted by object noise, and subtracting the comprehensive noise values from the environmental background noise values to obtain the emission values of the noise of the transformer substation. However, because industrial enterprises generally run continuously and stably, extraction of background sound is difficult; secondly, the ambient sound environment around the sensitive point changes frequently, resulting in insufficient representativeness of the acquired ambient background sound value.

Disclosure of Invention

The invention aims to provide a noise contribution amount measuring method, a noise contribution amount measuring device, noise contribution amount measuring equipment and a storage medium.

In order to achieve the above object, an embodiment of the present invention provides a noise contribution amount measurement method, including:

synchronously collecting a first sound signal at a sound source and a second sound signal at a sound receiving point;

filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range;

and analyzing the contribution amount of the first filtering signal and the second filtering signal to obtain the sound pressure level contribution amount of the sound source to the noise at the sound receiving point.

Preferably, the analyzing the contribution of the first filtered signal and the second filtered signal to obtain the contribution of the sound source to the sound pressure level of the noise at the sound receiving point includes:

calculating a self-power spectrum of the second filtered signal and a cross-power spectrum of the first filtered signal and the second filtered signal using fourier transform;

obtaining a cross-power spectrum matrix according to the self-power spectrum of the second filtering signal and the cross-power spectrum of the first filtering signal and the second filtering signal; when more than one sound source for collecting the first sound signal exists, the cross-power spectrum matrix further comprises interaction rate spectrums among a plurality of first filtering signals;

and calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

Preferably, the preset frequency range is 20Hz to 20 kHz.

Preferably, the first sound signal is picked up by a vibration sensor or a noise sensor, and the second sound signal is picked up by a noise sensor.

An embodiment of the present invention further provides a noise contribution measuring apparatus, including:

the sound signal acquisition module is used for synchronously acquiring a first sound signal at a sound source and a second sound signal at a sound receiving point;

the filtering module is used for filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range;

and the contribution analysis module is used for analyzing the contribution of the first filtering signal and the second filtering signal to obtain the sound pressure level contribution of the sound source to the noise at the sound receiving point.

Preferably, the contribution amount analyzing module includes:

a cross-power spectrum obtaining unit, configured to calculate a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal by using fourier transform;

a cross-power spectrum matrix obtaining unit, configured to obtain a cross-power spectrum matrix according to a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal; when more than one sound source for collecting the first sound signal exists, the cross-power spectrum matrix further comprises interaction rate spectrums among a plurality of first filtering signals;

and the contribution calculating unit is used for calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

Preferably, the preset frequency range is 20Hz to 20 kHz.

Preferably, the first sound signal is picked up by a vibration sensor or a noise sensor, and the second sound signal is picked up by a noise sensor.

The embodiment of the invention also provides computer terminal equipment which comprises one or more processors and a memory. A memory coupled to the processor for storing one or more programs; when executed by the one or more processors, cause the one or more processors to implement the noise contribution amount measurement method as in any of the embodiments described above.

Embodiments of the present invention further provide a computer-readable storage medium, on which a computer program is stored, where the computer program, when executed by a processor, implements the noise contribution amount measurement method according to any of the above embodiments.

Compared with the prior art, the invention has the following beneficial effects:

the invention provides a noise contribution amount measuring method, which comprises the steps of synchronously collecting a first sound signal at a sound source and a second sound signal at a sound receiving point; filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range; and analyzing the contribution amount of the first filtering signal and the second filtering signal to obtain the sound pressure level contribution amount of the sound source to the noise at the sound receiving point. The method can extract the noise contribution frequency spectrum of the tested noise source, and obtains the noise contribution amount of the tested sound source through frequency spectrum calculation, thereby avoiding the situation that a large amount of signal interference exists in background noise measurement, obtaining the noise contribution frequency spectrum of the tested sound source and improving the measurement accuracy of the sound pressure level contribution amount of the noise.

Drawings

In order to more clearly illustrate the technical solution of the present invention, the drawings needed to be used in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art that other drawings can be obtained according to the drawings without creative efforts.

Fig. 1 is a schematic flow chart of a noise contribution amount measuring method according to an embodiment of the present invention;

fig. 2 is a schematic structural diagram of a noise contribution measuring apparatus according to an embodiment of the present invention;

FIG. 3 is a floor plan of a factory floor A with noise generating devices according to an embodiment of the present invention;

FIG. 4 is a floor plan of a factory floor B with noise generating devices according to an embodiment of the present invention;

fig. 5 is a schematic structural diagram of a computer terminal device according to an embodiment of the present invention.

Detailed Description

The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

It should be understood that the step numbers used herein are for convenience of description only and are not used as limitations on the order in which the steps are performed.

It is to be understood that the terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the specification of the present invention and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.

The terms "comprises" and "comprising" indicate the presence of the described features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

The term "and/or" refers to and includes any and all possible combinations of one or more of the associated listed items.

Referring to fig. 1, fig. 1 is a flow chart illustrating a noise contribution amount measuring method according to an embodiment of the present invention. The noise contribution measuring method provided by the embodiment includes the following steps:

s110, synchronously collecting a first sound signal at a sound source and a second sound signal at a sound receiving point;

in this embodiment, the first sound signal is collected by a vibration sensor or a noise sensor, and the second sound signal is collected by a noise sensor. The vibration sensor (or noise sensor) at the sound source and the noise sensor at the sound receiving point are connected to the data acquisition front end, and the vibration signal of the sound source and the noise signal of the sound receiving point are synchronously acquired. If the distance between the sound source and the sound receiving point is too far and the sound source and the sound receiving point cannot be connected through a cable, the vibration and noise signals of the sound source and the sound receiving point can be synchronously measured through GPS or Beidou navigation positioning.

Due to the need of ensuring synchronous acquisition of the first sound signal and the second sound signal, the first sound signal and the second sound signal can be time-aligned to extract a noise contribution spectrum of the measured sound source at the sound receiving point, so that the noise contribution of the measured sound source at the sound receiving point is obtained, and online monitoring of the noise contribution of the sound source is realized.

S120, filtering the first sound signal and the second sound signal to respectively obtain a first filtering signal and a second filtering signal within a preset frequency range;

it should be noted that, in the present embodiment, the preset frequency range is 20Hz to 20kHz, because 20Hz to 20kHz is the frequency of human ears perceiving sound, and noise of other frequencies is filtered out, so that the algorithm can be simplified.

And S130, analyzing the contribution amounts of the first filtering signal and the second filtering signal to obtain the sound pressure level contribution amount of the sound source to the noise at the sound receiving point.

In an embodiment of the present invention, in step S130, analyzing the contribution amounts of the first filtered signal and the second filtered signal to obtain the sound pressure level contribution amount of the sound source to the noise at the sound receiving point, includes:

calculating a self-power spectrum of the second filtered signal and a cross-power spectrum of the first filtered signal and the second filtered signal using fourier transform;

when the sound source collecting the first sound signal is more than one, the cross power spectrum among a plurality of first filtering signals needs to be calculated.

Obtaining a cross-power spectrum matrix according to the self-power spectrum of the second filtering signal and the cross-power spectrum of the first filtering signal and the second filtering signal;

when the sound source collecting the first sound signal is more than one place, the cross-power spectrum matrix further comprises interaction rate spectrums among a plurality of first filtering signals.

And calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

In a particular embodiment, the noise signal p for each sound-receiving pointi(t), (i ═ 1, 2.., N), a vibration signal (i.e., a first sound signal) v at a sound source is acquired based on a contribution amount analysis methodj(t), (j ═ 1, 2.., M) contribution p to the noise signal of the sound receiving point (i.e., the second sound signal)i-v. Taking the analysis of the contribution of the vibration source to the total environmental noise as an example, the specific acquisition method is as follows:

calculating a noise signal p of a sound receiving point according to equation (1)i(t) self-Power Spectrum

Where B is the number of Fourier transformed data blocks, Pi,b(f) As a sound pressure signal pi(t) the Fourier spectrum corresponding to the b-th block represents the conjugate.

Calculating a vibration signal v at a sound source according to equation (2)j(t) and a vibration signal v at another sound sourcek(t) cross-power spectrum

Wherein, Vj,b(f)、Vk,b(f) Are respectively vibration signals vj(t) and vk(t) a Fourier spectrum corresponding to the b-th data block.

Calculating a noise signal p of a sound receiving point according to equations (3) and (4)i(t) and the vibration signal v at the sound sourcej(t) cross-power spectrumAnd

wherein, Pi,b(f)、Vj,b(f) Respectively noise signal pi(t) and a vibration signal vj(t) a Fourier spectrum corresponding to the b-th data block.

Assembling a cross-power spectral matrix S of a vibration signal at a certain sound source and a vibration signal at another sound source according to equation (5)VV(f):

Assembling the noise signal p according to equation (6)i(t) and a vibration signal vj(t) cross-power spectral matrix Sp,VV(f):

Calculating the noise p at the total noise measuring point i of the sound source to the environment according to the formula (7) by using the formulas (1) to (6)i(t) sound pressure level contribution value

In the formula: | · | represents the determinant of the computation matrix.

Referring to fig. 2, fig. 2 is a schematic structural diagram of a noise contribution measuring apparatus according to an embodiment of the present invention. In this embodiment, the noise contribution amount measuring apparatus includes:

the sound signal acquiring module 210 is configured to synchronously acquire a first sound signal at a sound source and a second sound signal at a sound receiving point;

in this embodiment, the first sound signal is collected by a vibration sensor or a noise sensor, and the second sound signal is collected by a noise sensor. The vibration sensor (or noise sensor) at the sound source and the noise sensor at the sound receiving point are connected to the data acquisition front end, and the vibration signal of the sound source and the noise signal of the sound receiving point are synchronously acquired. If the distance between the sound source and the sound receiving point is too far and the sound source and the sound receiving point cannot be connected through a cable, the vibration and noise signals of the sound source and the sound receiving point can be synchronously measured through GPS or Beidou navigation positioning.

Due to the need of ensuring synchronous acquisition of the first sound signal and the second sound signal, the first sound signal and the second sound signal can be time-aligned to extract a noise contribution spectrum of the measured sound source at the sound receiving point, so that the noise contribution of the measured sound source at the sound receiving point is obtained, and online monitoring of the noise contribution of the sound source is realized.

A filtering module 220, configured to perform filtering processing on the first sound signal and the second sound signal to obtain a first filtered signal and a second filtered signal within a preset frequency range, respectively;

and a contribution analyzing module 230, configured to perform contribution analysis on the first filtered signal and the second filtered signal, so as to obtain a sound pressure level contribution of the sound source to the noise at the sound receiving point.

In an embodiment of the present invention, a contribution analysis method is used to perform contribution analysis on the first filtered signal and the second filtered signal.

In one embodiment of the present invention, the contribution analyzing module 230 includes: a cross-power spectrum obtaining unit, configured to calculate a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal by using fourier transform; a cross-power spectrum matrix obtaining unit, configured to obtain a cross-power spectrum matrix according to a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal; and the contribution calculating unit is used for calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

Further, when there is more than one sound source collecting the first sound signal, the contribution analyzing module 230 includes: a cross-power spectrum obtaining unit, configured to calculate a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal by using fourier transform; a cross-power spectrum matrix obtaining unit, configured to obtain a cross-power spectrum matrix according to a self-power spectrum of the second filtered signal and cross-power spectrums of the first filtered signal and the second filtered signal; and the contribution calculating unit is used for calculating the sound pressure level contribution of the sound source to the noise at the sound receiving point according to the cross-power spectrum matrix.

For specific limitations of the noise contribution measuring apparatus, reference may be made to the above limitations of the noise contribution measuring method, and details thereof are not repeated here. The respective modules in the noise contribution measuring apparatus described above may be wholly or partially implemented by software, hardware, and a combination thereof. The modules can be embedded in a hardware form or independent from a processor in the computer device, and can also be stored in a memory in the computer device in a software form, so that the processor can call and execute operations corresponding to the modules.

In a specific embodiment, a floor plan of a factory floor a is shown in fig. 3, the factory floor has 3 noise-generating devices, a vibration sensor is respectively attached to the surfaces of the 3 devices, # 1- #5 are noise measurement points of a sound receiving point, vibration signals of the 3 devices and noise signals of the sound receiving point are simultaneously acquired, data processing is performed by the method of the present invention, and measurement results are shown in table 1.

And measuring the background noise value of the factory area, wherein the measured background noise value is 45.6dB (A), and the difference values of the environmental noise value and the background noise value are all larger than 10dB (A), so that the noise contribution of the background noise to the sound receiving point can be ignored. The difference values between the environmental noise measurement value and the noise contribution of the equipment sound source measured by the method are less than 1dB (A), which shows that the method can accurately measure the noise contribution of the sound source. The environmental noise spectrum and the sound source noise contribution spectrum of the measuring point #1 are obtained, and experiments show that the environmental noise spectrum and the sound source noise contribution spectrum almost completely overlap at the noise characteristic frequency of the equipment.

TABLE 1 factory floor A noise contribution measurement results

In a specific embodiment, a floor plan of a factory B is shown in fig. 3, the factory has 2 noise-generating devices, a vibration sensor is attached to each of 2 device surfaces, #1 to #4 are noise measurement points of a sound receiving point, vibration signals of the 2 devices and noise signals of the sound receiving point are collected at the same time, data processing is performed by the method of the present invention, and measurement results are shown in table 2.

A background noise value of the factory floor is measured. The measured background noise value is 47.9dB (A), and the difference value between the environmental noise value and the background noise value is larger than 10dB (A), so the noise contribution amount of the background noise to the sound receiving point can be ignored. The difference values between the environmental noise measurement value and the noise contribution of the equipment sound source measured by the method are less than 1dB (A), which shows that the method can accurately measure the noise contribution of the sound source. The environmental noise spectrum and the sound source noise contribution spectrum of the measuring point #1 are obtained, and experiments show that the environmental noise spectrum and the sound source noise contribution spectrum almost completely overlap at the noise characteristic frequency of the equipment.

TABLE 2 factory floor B noise contribution measurements

Referring to fig. 5, an embodiment of the invention provides a computer terminal device, which includes one or more processors and a memory. A memory is coupled to the processor for storing one or more programs which, when executed by the one or more processors, cause the one or more processors to implement the noise contribution amount measurement method as in any of the embodiments described above.

The processor is used for controlling the overall operation of the computer terminal equipment so as to complete all or part of the steps of the noise contribution amount measuring method. The memory is used to store various types of data to support the operation at the computer terminal device, which data may include, for example, instructions for any application or method operating on the computer terminal device, as well as application-related data. The Memory may be implemented by any type of volatile or non-volatile Memory device or combination thereof, such as Static Random Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (ROM), magnetic Memory, flash Memory, magnetic disk, or optical disk.

In an exemplary embodiment, the computer terminal Device may be implemented by one or more Application Specific 1 integrated circuits (AS 1C), a Digital Signal Processor (DSP), a Digital Signal Processing Device (DSPD), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components, for performing the above noise contribution measuring method and achieving the technical effects consistent with the above method.

In another exemplary embodiment, there is also provided a computer readable storage medium comprising program instructions which, when executed by a processor, implement the steps of the noise contribution amount measuring method in any one of the above embodiments. For example, the computer readable storage medium may be the above-mentioned memory including program instructions executable by a processor of a computer terminal device to perform the above-mentioned noise contribution amount measuring method, and achieve the technical effects consistent with the above-mentioned method.

While the foregoing is directed to the preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention.

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种便于更换的风电塔筒用塔身振动监测结构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!