Millimeter wave wireless instrument control system

文档序号:23025 发布日期:2021-09-21 浏览:32次 中文

阅读说明:本技术 一种毫米波无线仪控系统 (Millimeter wave wireless instrument control system ) 是由 闵锐 李晋 董兴荣 青先国 赵阳 何小鹏 程卓尔 刘晓林 张洧川 陈杰 何正熙 于 2021-06-21 设计创作,主要内容包括:本发明属于毫米波通信和仪控系统技术领域,具体涉及一种毫米波无线仪控系统。本发明的由终端设备模块、智能控制站模块、数据中心模块、毫米波数传模块、光纤主干模块构成,测量类仪表装置将其要发送的数据信息传输至毫米波数传模块,毫米波数传模块将信息通过毫米波发送给智能控制站,智能控制站将收到的信息解析出来,通过光纤主干传输给远处的数据中心模块,数据中心模块接收到源自仪表装置传来的数据信息,经过分析处理后,将下达的指令再通过光纤主干传递给智能控制站,智能控制站再将指令信息通过毫米波发送给执行装置,最后,执行类装置完成指令,克服了传统有线仪控线路混乱、检修难度大、不利于扩展维护等问题。(The invention belongs to the technical field of millimeter wave communication and instrument control systems, and particularly relates to a millimeter wave wireless instrument control system. The intelligent control system comprises a terminal equipment module, an intelligent control station module, a data center module, a millimeter wave data transmission module and an optical fiber trunk module, wherein a measurement instrument device transmits data information to be transmitted to the millimeter wave data transmission module, the millimeter wave data transmission module transmits the information to an intelligent control station through millimeter waves, the intelligent control station analyzes the received information and transmits the information to a remote data center module through an optical fiber trunk, the data center module receives the data information transmitted from the instrument device, the data information is analyzed and processed, a transmitted instruction is transmitted to the intelligent control station through the optical fiber trunk, the intelligent control station transmits the instruction information to an execution device through millimeter waves, and finally the execution device completes the instruction, so that the problems that a traditional wired instrument control circuit is disordered, high in overhauling difficulty, not beneficial to expansion and maintenance and the like are solved.)

1. A millimeter wave wireless instrument control system is characterized by comprising a terminal equipment module, an intelligent control station module, a data center module, a millimeter wave data transmission module and an optical fiber backbone module; the terminal equipment module is in communication connection with the intelligent control station module through the millimeter wave data transmission module, and the data center module is in communication connection with the intelligent control station module through the optical fiber trunk module; wherein the content of the first and second substances,

the terminal equipment module consists of a measuring instrument device needing to be monitored and measured and an execution device needing to be controlled and executed;

the millimeter wave data transmission module is used for sending data information generated by the measurement instrument device to the intelligent control station module through millimeter waves and sending control information of the intelligent control station module to the execution device, the transmitter is used for converting baseband signals into millimeter wave radio frequency signals, in the transmitter, the data baseband signals generated by terminal equipment are processed by adopting an interleaving coding technology and a QPSK modulation technology to enhance the error correction and detection capability and the anti-interference performance of the signals, then up-conversion processing is carried out, low-frequency modulated signals are converted into high-frequency modulated signals with millimeter wave frequency as carrier frequency, then power amplification is carried out, finally the RF signals are radiated out in an electromagnetic wave form through a directional antenna, and the processing of the receiver is completely opposite to that of the transmitter;

the intelligent control station module is used for data transfer, is connected with optical fiber communication and millimeter wave wireless communication, namely receives data information of instrument devices in a wireless mode, transmits the data to a data center in an optical fiber mode, receives control instruction information of the data center in an optical fiber mode, and transmits the instruction information to an execution device in a wireless mode, and consists of three sub-modules of data transmission, communication control and a gateway; the data transmission submodule is used for realizing millimeter wave wireless communication with the terminal equipment; the communication control sub-module completes multiplexing/demultiplexing, access control and data exchange; the gateway sub-module is used for bridging with the optical fiber trunk module;

the optical fiber trunk module comprises an optical fiber convergence switch and optical fibers and is used for realizing the transmission of wired data from the data center to the intelligent control station module and expanding the control range of the millimeter wave instrument control system;

the data center module consists of a data processing server and a data storage array, is used for summarizing data fed back by the terminal equipment module and is responsible for issuing control instructions to the intelligent control station module.

Technical Field

The invention belongs to the technical field of millimeter wave communication and instrument control systems, and particularly relates to a millimeter wave wireless instrument control system.

Background

The instrument control system can be divided into a wired instrument control system and a wireless instrument control system according to different information transmission media, the wired instrument control system generally depends on wired media such as an Ethernet cable, an optical fiber and a coaxial cable to transmit data information, and therefore once new equipment needs to be added or existing equipment needs to be moved in a working scene, wiring needs to be readjusted, and system cost and maintenance overhead are increased. The traditional wireless instrument control system generally depends on wireless technologies such as Bluetooth and ZigBee, overcomes the defects of the wired instrument control system by getting rid of the limitation of wired links, but the traditional wireless instrument control scheme can only provide hundreds of Mbps transmission rate at the highest level, is limited by low-speed data transmission rate, and cannot meet practical requirements in certain specific working scenes.

The millimeter wave wireless instrument control system is combined with the characteristic of large millimeter wave bandwidth, so that the ultrahigh data transmission rate of Gbps can be provided, besides, the millimeter wave communication has the remarkable characteristics of strong anti-interference capability, high frequency band, good safety and the like, and the millimeter wave wireless instrument control system has incomparable instrument control advantages.

Disclosure of Invention

The invention provides a millimeter wave wireless instrument control system aiming at the defects of the traditional wired instrument control system and the traditional wireless instrument control system and introducing a millimeter wave wireless communication technology. Aiming at the problems of high working frequency, short wavelength, small circuit size and high difficulty in integrating with terminal equipment, in order to ensure that all instruments and equipment can conveniently have millimeter wave communication capability, the millimeter wave communication circuit is independently integrated and packaged into an independent module, namely a millimeter wave data transmission module, and is used as a wireless docking station of the terminal equipment; aiming at the problem that the control range of the instrument control system is limited due to the fact that millimeter waves are seriously attenuated in the atmosphere and the propagation distance is limited, a gateway sub-module is added in an intelligent control station module, millimeter wave communication and optical fiber trunk communication are combined, and the coverage range of the millimeter wave instrument control system is expanded.

The system not only gets rid of the limitation of a plurality of wired links in the traditional wired instrument control system, but also makes up the defect of low data transmission rate of the traditional wireless instrument control system, and has the advantages of strong anti-interference capability, good safety and the like.

The technical scheme of the invention is as follows:

a millimeter wave wireless instrument control system is characterized by comprising a terminal equipment module, an intelligent control station module, a data center module, a millimeter wave data transmission module and an optical fiber backbone module; the terminal equipment module is in communication connection with the intelligent control station module through the millimeter wave data transmission module, and the data center module is in communication connection with the intelligent control station module through the optical fiber trunk module; wherein the content of the first and second substances,

the terminal equipment module consists of a measuring instrument device needing to be monitored and measured and an execution device needing to be controlled and executed;

the millimeter wave data transmission module is used for transmitting data information generated by the measuring instrument device to the intelligent control station module through millimeter waves, meanwhile, the executive device which sends the control information of the intelligent control station module is a main body module of a millimeter wave communication part in the instrument control system, in this module, the transmitter is responsible for converting the baseband signal to a millimeter wave Radio Frequency (RF) signal, in the transmitter, the data baseband signal generated by the terminal equipment is firstly processed by adopting an interleaving coding technology and a QPSK modulation technology to enhance the error detection and correction capability and the interference resistance of the signal, then, the up-conversion processing is carried out to move the frequency spectrum of the modulated signal of the low frequency band to the millimeter wave frequency band, then, power amplification is carried out to ensure good communication quality, and finally, the RF signals are radiated out in the form of electromagnetic waves through the directional antenna, and the processing processes of the receiver and the transmitter are completely opposite;

the intelligent control station module is connected with optical fiber communication and millimeter wave wireless communication, namely receives data information of the instrument device in a wireless mode, transmits the data to the data center in an optical fiber mode, receives control instruction information of the data center in an optical fiber mode, and transmits the instruction information to the execution device in a wireless mode. The module consists of three submodules, namely a data transmission submodule, a communication control submodule and a gateway submodule. The data transmission submodule has the same function as the millimeter wave data transmission module and is used for realizing millimeter wave wireless communication with the terminal equipment; the communication control sub-module mainly completes the functions of multiplexing/demultiplexing, access control, data exchange and the like; the gateway sub-module is used for bridging with the optical fiber trunk module.

The optical fiber trunk module comprises an optical fiber convergence switch and optical fibers and is used for realizing the transmission of wired data from the data center to the intelligent control station module;

the data center module consists of a data processing server and a data storage array, is used for summarizing data fed back by the terminal equipment module and is responsible for issuing control instructions to the intelligent control station module.

The system has the advantages that the system enables the newly added or adjusted terminal equipment to be more flexible and not to be restricted by lines, and reduces the maintenance and expansion cost of the instrument control system. The millimeter wave band is wide, the transmission rate is high, and large data volume information such as video data can be transmitted. The wireless part of the system uses a directional antenna, the beam is narrow, the directivity is good, and the influence of other beams is small. The millimeter wave frequency band is high, basically no interference source exists, the frequency spectrum is clean, the channel in the line of sight is stable, and the data transmission quality is high.

Drawings

Fig. 1 is a schematic structural diagram of a millimeter wave wireless instrument control system according to the present invention.

Fig. 2 is a schematic control flow diagram of a millimeter wave wireless instrument control system according to the present invention.

Fig. 3 is a schematic diagram of a millimeter wave communication flow of a millimeter wave wireless instrumentation and control system according to the present invention.

Detailed Description

The technical scheme of the invention is explained in detail in the following with the accompanying drawings.

As shown in fig. 1, the system of the present invention is composed of a Terminal Equipment Module (TEM), an Intelligent Control Station Module (ICSM), a Data Center Module (DCM), a millimeter Wave Data Transmission Module (MWDT), and a Fiber Backbone Module (FBM).

The terminal equipment module consists of a measurement instrument device needing to be monitored and measured and an execution instrument device needing to be controlled and executed in a working scene, and is a main object controlled by the millimeter wave wireless instrument control system.

The millimeter wave data transmission module is a wireless extension part of the original terminal equipment module and is responsible for millimeter wave communication between the terminal equipment module and the intelligent control station module, as shown in fig. 3, data information generated by the measuring instrument device is converted into a radio frequency signal in a millimeter wave frequency band suitable for being transmitted in a wireless channel through a series of processing such as error control coding, signal modulation, frequency conversion, power amplification and the like, and the millimeter wave signal is delivered to the intelligent control station through a directional antenna or control information transmitted from the intelligent control station is issued to an execution device.

The intelligent control station module is similar to a wireless gateway in function and is responsible for getting through optical fiber communication and wireless communication, namely, the intelligent control station module receives data information of instrument devices in a wireless mode, transmits the data to a data center in an optical fiber mode, receives control instruction information of the data center in an optical fiber mode in the reverse similar mode, and sends the instruction information to an execution device in a wireless mode.

The optical fiber trunk module comprises an optical fiber convergence switch and optical fibers and is responsible for the transmission of wired high-speed data from the data center to each intelligent control station.

The data center module is composed of a data processing server and a data storage array, is the brain of the whole millimeter wave wireless instrument control system, is the management core of the whole system, is responsible for summarizing and processing data fed back by terminal equipment such as various instruments or sensors and the like, and is responsible for issuing control instructions to the intelligent control station. The data center module is generally located in an independent machine room far away from the intelligent control station, and therefore needs to be in wired communication with the intelligent control station through an optical fiber backbone.

The measuring instrument device transmits data information to be transmitted to the millimeter wave data transmission module, the millimeter wave data transmission module transmits the information to the intelligent control station through millimeter waves, the intelligent control station analyzes the received information, the far data center module is transmitted to the far data center module through the optical fiber trunk, the data center module receives the data information transmitted by the instrument device, the data information is analyzed and processed, the issued instruction is transmitted to the intelligent control station through the optical fiber trunk, the intelligent control station transmits the instruction information to the execution device through the millimeter waves, and finally the execution device completes the instruction.

The millimeter wave wireless instrument control system specifically comprises the following working steps:

1. the TEM, located in the shop or cabin, collects the correct data information and sends this to be transmitted data information to the ICSM by means of millimeter waves through the MWDT.

And 2, the ICSM analyzes effective information in the wireless signals transmitted by the MWDT, and transmits the effective information to DCM located in a remote independent machine room through the FBM after coding and modulation.

And 3, the DCM receives the data information transmitted by the ICSM, performs corresponding analysis and processing, then transmits a control command, and then transmits the control information transmitted to the TEM to the ICSM through the FBM.

And 4, the ICSM receives the control information transmitted by the FBM, analyzes the control information and transmits the analyzed effective control information to the MWDT through millimeter waves.

The MWDT transmits the control information to the TEM, which responds accordingly.

As can be seen from the above description of the embodiments, the system of the present invention has the following advantages:

1) in the embodiment, the number of terminal devices is large, if a traditional wired instrument control system is used, the amount of comprehensive wiring engineering in the early construction process is large, and meanwhile, the problems that hidden cables are difficult to replace, maintain and upgrade exist, and the like exist.

2) In this embodiment, if a new instrument device is to be added or an existing instrument device is to be rearranged, rewiring is not required, and only the millimeter wave data transmission module of the configuration terminal device needs to be adjusted, so that the coupling degree between the information processing function and the information transmission function is reduced, and the expansion cost and the maintenance cost of the instrument control system are reduced.

3) In the embodiment, the millimeter wave wireless communication has high frequency band, basically no interference source and clean frequency spectrum, and the wave beam is narrow and is slightly influenced by other wave beams, so that the millimeter wave channel is very stable and reliable, and a solid foundation is laid for reliably transmitting data information and control information by utilizing the millimeter wave wireless communication.

In the invention, the wireless communication in the millimeter wave frequency band is adopted, so that the system has the characteristics of large bandwidth and high transmission rate, and can meet the bandwidth requirement of equipment with large data volume, such as a high-definition monitoring camera and the like.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种车载无线遥控方法及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!