Excitation control device configured with multi-network redundancy

文档序号:575243 发布日期:2021-05-21 浏览:10次 中文

阅读说明:本技术 一种配置多网络冗余的励磁控制装置 (Excitation control device configured with multi-network redundancy ) 是由 刘松柏 杨栋新 姚晓阳 郭建 肖武军 何良 李雪荣 陈灿 谢小婷 杨哲 于 2019-11-20 设计创作,主要内容包括:本发明公开了一种配置多网络冗余的励磁控制装置,包括励磁平台控制板、触发脉冲输出板和主电路,励磁平台控制板、触发脉冲输出板和主电路依次相连;励磁平台控制板用于输出脉冲信号至触发脉冲输出板,励磁平台控制板用于将脉冲信号进行隔离放大后输出至主电路,主电路与励磁平台控制板相连,用于将主电路的状态信号发送至励磁平台控制板;励磁平台控制板上设置有多个通信接口,通信接口至少包括以太网接口和MVB接口,励磁平台控制板通过以太网接口连接有以太网通信子板,励磁平台控制板通过MVB接口连接有MVB通信子板,以太网通信子板与MVB通信子板相互冗余。本发明的励磁控制装置具有接口丰富、通信可靠性高、现场调试效率高等优点。(The invention discloses an excitation control device configured with multi-network redundancy, which comprises an excitation platform control board, a trigger pulse output board and a main circuit, wherein the excitation platform control board, the trigger pulse output board and the main circuit are sequentially connected; the excitation platform control board is used for outputting a pulse signal to the trigger pulse output board, the excitation platform control board is used for isolating and amplifying the pulse signal and then outputting the pulse signal to the main circuit, and the main circuit is connected with the excitation platform control board and used for sending a state signal of the main circuit to the excitation platform control board; be provided with a plurality of communication interfaces on the excitation platform control panel, communication interface includes ethernet interface and MVB interface at least, and the excitation platform control panel has ethernet communication daughter board through ethernet interface connection, and the excitation platform control panel has MVB communication daughter board through MVB interface connection, and ethernet communication daughter board and MVB communication daughter board are redundant each other. The excitation control device has the advantages of rich interfaces, high communication reliability, high field debugging efficiency and the like.)

1. An excitation control device configured with multi-network redundancy is characterized by comprising an excitation platform control board (1), a trigger pulse output board (2) and a main circuit (3), wherein the excitation platform control board (1), the trigger pulse output board (2) and the main circuit (3) are sequentially connected; the excitation platform control board (1) is used for outputting a pulse signal to the trigger pulse output board (2), the excitation platform control board (1) is used for isolating and amplifying the pulse signal and then outputting the pulse signal to the main circuit (3), and the main circuit (3) is connected with the excitation platform control board (1) and is used for sending a state signal of the main circuit (3) to the excitation platform control board (1); be provided with a plurality of communication interfaces on excitation platform control panel (1), communication interface includes ethernet interface (105) and MVB interface (106) at least, excitation platform control panel (1) is connected with ethernet communication daughter board (4) through ethernet interface (105), excitation platform control panel (1) is connected with MVB communication daughter board (5) through MVB interface (106), ethernet communication daughter board (4) with MVB communication daughter board (5) are redundant each other.

2. The excitation control device for configuring multiple network redundancy according to claim 1, wherein the communication interface further comprises one or more of an RS485 interface, an RS232 interface, a CAN interface, or a Lonworks interface.

3. The excitation control device for configuring multiple network redundancy according to claim 1, wherein the excitation platform control board (1) further comprises a control unit (101), a signal processing unit (102), a power supply unit (103) and a pulse signal output unit (104), the control unit (101) receives a control command through an ethernet interface (105) board or an MVB network interface board, calculates the frequency of voltage and the conduction time of trigger pulse through the signal processing unit (102) receiving a three-phase alternating current input voltage signal, and outputs six pulse waveforms through the pulse signal output unit (104) to control the gate trigger signals of the thyristors of the main circuit (3).

4. The excitation control device for configuring multiple network redundancy according to claim 1, 2 or 3, wherein an ethernet external interface (401) and a mounting assembly (402) are arranged on the ethernet communication sub-board (4), the mounting assembly (402) comprises a fixing board (4021) and a mounting board (4022), one side of the fixing board (4021) is mounted on the ethernet communication sub-board (4), the mounting board (4022) is mounted on the other side of the fixing board (4021), and the ethernet external interface (401) is fixed on the mounting board (4022).

5. The excitation control device for configuring multiple network redundancy according to claim 1, 2 or 3, wherein an MVB external interface (501) and a mounting structure are arranged on the MVB communication sub-board (5), the mounting structure comprises a fixing panel (502) and a fastener (503), the fixing panel (502) is fixed on the excitation platform control board (1), and the MVB external interface (501) is mounted on the fixing panel (502) through the fastener (503).

6. Excitation control device for configuring multiple network redundancy according to claim 2 or 3, wherein the MVB interface (106), the RS485 interface, the RS232 interface and the CAN interface are all integrated on the same interface.

7. Excitation control device configured with multiple network redundancy according to claim 1 or 2 or 3, characterized in that the main circuit (3) is a three-phase fully controlled bridge.

Technical Field

The invention mainly relates to the technical field of excitation control of generators, in particular to an excitation control device configured with multi-network redundancy.

Background

The generator excitation control is mainly applied to internal combustion locomotives, industrial and mining vehicles and electric wheelers, and has irreplaceable effects on stabilizing intermediate voltage and adjusting the power output of the generator. With different network requirements of users, each development needs to be carried out again, and the development cost is high.

Disclosure of Invention

The technical problem to be solved by the invention is as follows: aiming at the technical problems in the prior art, the invention provides the excitation control device with rich interfaces and high communication reliability and configured with multi-network redundancy.

In order to solve the technical problems, the technical scheme provided by the invention is as follows:

an excitation control device configured with multi-network redundancy comprises an excitation platform control board, a trigger pulse output board and a main circuit, wherein the excitation platform control board, the trigger pulse output board and the main circuit are sequentially connected; the excitation platform control board is used for outputting a pulse signal to the trigger pulse output board, the excitation platform control board is used for isolating and amplifying the pulse signal and then outputting the pulse signal to the main circuit, and the main circuit is connected with the excitation platform control board and used for sending a state signal of the main circuit to the excitation platform control board; be provided with a plurality of communication interfaces on the excitation platform control panel, communication interface includes ethernet interface and MVB interface at least, the excitation platform control panel has ethernet communication daughter board through ethernet interface connection, the excitation platform control panel has MVB communication daughter board through MVB interface connection, ethernet communication daughter board with MVB communication daughter board is redundant each other.

As a further improvement of the above technical solution:

the communication interface also comprises one or more of an RS485 interface, an RS232 interface, a CAN interface or a Lonworks interface.

The excitation platform control panel also comprises a control unit, a signal processing unit, a power supply unit and a pulse signal output unit, wherein the control unit receives a control instruction through an Ethernet interface board or an MVB network interface board, calculates the frequency of voltage and the conduction time of trigger pulses through a three-phase alternating current input voltage signal received by the signal processing unit, and outputs six pulse waveforms through the pulse signal output unit to control the trigger signals of each gate pole of the thyristor of the main circuit.

The Ethernet communication daughter board is provided with an Ethernet external interface and an installation assembly, the installation assembly comprises a fixed plate and an installation plate, one side of the fixed plate is installed on the Ethernet communication daughter board, the installation plate is installed on the other side of the fixed plate, and the Ethernet external interface is fixed on the installation plate.

The MVB communication daughter board is provided with an MVB external interface and an installation structure, the installation structure comprises a fixing panel and a fastener, the fixing panel is fixed on the excitation platform control board, and the MVB external interface is installed on the fixing panel through the fastener.

And the MVB interface, the RS485 interface, the RS232 interface and the CAN interface are integrated on the same interface.

The main circuit is a three-phase fully-controlled bridge.

Compared with the prior art, the invention has the advantages that:

the excitation control device configured with multi-network redundancy adopts a dual redundancy mode of Ethernet and MVB communication, so that the communication reliability can be improved, and the reliability of excitation work is guaranteed; the Ethernet is communicated with the MVB, so that the phase control controller and the excitation chopper can be conveniently applied to an upgrading network, and the problem of the compatibility of the whole vehicle network is solved; one path of the Ethernet communication daughter board is set to be a timely communication mode, the other path of the Ethernet communication daughter board is set to be a debugging and downloading mode, and the Ethernet field downloading and debugging are adopted, so that the Ethernet communication daughter board is simpler, more reliable and faster compared with the original serial port mode, and can be debugged only in a driver cab without opening a cabinet door serial port line for debugging during field debugging, thereby simplifying the workload of field debugging; the real-time Ethernet is convenient for data exchange with the whole vehicle network, the working state and fault diagnosis information of the subsystem are sent to the whole vehicle network, a man-machine interaction interface is provided through a display, the whole vehicle-level excitation control, state monitoring, fault diagnosis and other works are completed, and the intelligent locomotive control system has positive significance for achieving locomotive informatization and intellectualization.

The excitation control device configured with the multi-network redundancy is designed to aim at other network expansion, such as CAN or RS485 communication, and adopts the corresponding daughter boards for replacement, namely, the modularized design, and different communication modes are realized by using different daughter boards, so that the development difficulty is reduced, the risks of production halt and lifting of materials are reduced, only a small part needs to be changed when the materials are updated, and the cost is low; meanwhile, the universality of the excitation platform control board is improved, and the circuit design is simplified; in addition, the fixing modes of the Ethernet interface and the MVB interface are not interfered with each other, the overall design difficulty of the device is reduced, meanwhile, the stress is dispersed, and the anti-vibration capability is enhanced.

Drawings

Fig. 1 is a block configuration diagram of an embodiment of the present invention.

Fig. 2 is a block diagram of an excitation platform control board in an embodiment of the present invention.

Fig. 3 is a mounting structure diagram of the excitation platform control board and each sub-board in the embodiment of the invention.

Fig. 4 is an installation structure diagram of the ethernet interface in the embodiment of the present invention.

Fig. 5 is an installation structure diagram of the ethernet external interface and the MVB external interface in the embodiment of the present invention.

The reference numbers in the figures denote: 1. an excitation platform control panel; 101. a control unit; 102. a signal processing unit; 103. a power supply unit; 104. a pulse signal output unit; 105. an Ethernet interface; 106. an MVB interface; 2. triggering a pulse output plate; 3. a main circuit; 4. an Ethernet communication daughter board; 401. an Ethernet external interface; 402. mounting the component; 4021. a fixing plate; 4022. mounting a plate; 4023. a screw; 5. an MVB communication daughter board; 501. an MVB external interface; 502. fixing the panel; 503. a fastener.

Detailed Description

The invention is further described below with reference to the figures and the specific embodiments of the description.

As shown in fig. 1 and fig. 2, the excitation control device configured with multiple network redundancy according to the present embodiment includes an excitation platform control board 1, a trigger pulse output board 2, and a main circuit 3 (e.g., a three-phase fully controlled bridge), where the excitation platform control board 1, the trigger pulse output board 2, and the main circuit 3 are connected in sequence; the excitation platform control board 1 is used for outputting a pulse signal to the trigger pulse output board 2, the excitation platform control board 1 is used for isolating and amplifying the pulse signal and then outputting the pulse signal to the main circuit 3, and the main circuit 3 is connected with the excitation platform control board 1 and used for sending state signals (including signals such as voltage, current and temperature) of the main circuit 3 to the excitation platform control board 1 for control and monitoring protection; be provided with a plurality of communication interfaces on excitation platform control panel 1, communication interface includes ethernet interface 105 and MVB interface 106 at least, and excitation platform control panel 1 is connected with ethernet communication daughter board 4 through ethernet interface 105, and excitation platform control panel 1 is connected with MVB communication daughter board 5 through MVB interface 106, and ethernet communication daughter board 4 and MVB communication daughter board 5 are redundant each other.

In this embodiment, the communication interface further includes one or more of an RS485 interface, an RS232 interface, a CAN interface, and a Lonworks interface, and of course, in other embodiments, other types of interfaces may also be used. In this embodiment, MVB communication and ethernet communication are mainly used as main redundancy, and other interfaces (such as CAN interface or RS485 interface) are used as backup interfaces. Certainly, the MVB interface 106, the RS485 interface, the RS232 interface, and the CAN interface may be integrated on the same interface, and each interface is completely compatible, and when MVB communication is not required, other interfaces such as RS485 interface may be configured to connect with a corresponding daughter board. Similarly, when ethernet communication is not required, other compatible daughter boards can be configured to communicate.

As shown in fig. 2, in this embodiment, the excitation platform control board 1 further includes a control unit 101, a signal processing unit 102, a power supply unit 103, and a pulse signal output unit 104, where the control unit 101 receives a control instruction and detection signals of various sensors through an ethernet interface 105 board or an MVB interface 106, calculates the frequency of the voltage and the conduction time of the trigger pulse by receiving a synchronization signal of a three-phase ac input voltage through the signal processing unit 102, and outputs six pulse waveforms through the pulse signal output unit 104 to control gate trigger signals of thyristors of the main circuit 3, so as to meet the requirement of phase-controlled rectification (e.g., the stabilization of the output voltage end of the storage battery).

In this embodiment, the excitation platform control board 1 is configured with interface positions of two daughter boards, as shown in fig. 3, wherein the MVB interface 106, the CAN interface, and the RS485 interface may be interchanged, and a corresponding daughter board may be selected according to actual conditions. In addition, the control unit 101 adopts a DSP28335, is provided with a CAN interface and an SCI serial port, and only needs to be led out of each daughter board, and is driven in an isolation way on each daughter board, wherein a double-port RAM circuit is arranged in the MVB communication daughter board 5 and the Ethernet communication daughter board 4, and the control unit 101 is directly connected through a data address bus chip selection to perform read-write operation on each daughter board.

As shown in fig. 4, the ethernet communication daughter board 4 is provided with an ethernet external interface 401 (e.g., M12) and a mounting assembly 402, the mounting assembly 402 includes a fixing plate 4021 and a mounting plate 4022 (e.g., an aluminum block), one side of the fixing plate 4021 is mounted on the ethernet communication daughter board 4, the mounting plate 4022 is fixed to the other side of the fixing plate 4021 by a screw 4023, and the ethernet external interface 401 is fixed on the mounting plate 4022, which is simple in structure and has no influence on the whole device.

As shown in fig. 5, in this embodiment, the MVB communication daughter board 5 is provided with an MVB external interface 501 (such as a DB9 socket) and a mounting structure, the mounting structure includes a fixing panel 502 and a fastening member 503, the fixing panel 502 is fixed on a bracket on the excitation platform control board 1, and the MVB external interface 501 is fastened and mounted on the fixing panel 502 by the fastening member 503 (such as a locking screw), and the above structure can well solve the wiring problem of each interface.

The excitation control device configured with multi-network redundancy adopts a dual redundancy mode of Ethernet and MVB communication, so that the communication reliability can be improved, and the reliability of excitation work is guaranteed; the Ethernet is communicated with the MVB, so that the phase control controller and the excitation chopper can be conveniently applied to an upgrading network, and the problem of the compatibility of the whole vehicle network is solved; one path of the Ethernet communication sub-board 4 is set to be a timely communication mode, the other path is set to be a debugging and downloading mode, and the Ethernet field downloading and debugging are adopted, so that the method is simpler, more reliable and faster compared with the original serial port mode, and can be debugged only in a driver cab without opening a cabinet door serial port line for debugging during field debugging, thereby simplifying the workload of field debugging; the real-time Ethernet is convenient for data exchange with the whole vehicle network, the working state and fault diagnosis information of the subsystem are sent to the whole vehicle network, a man-machine interaction interface is provided through a display, the whole vehicle-level excitation control, state monitoring, fault diagnosis and other works are completed, and the intelligent locomotive control system has positive significance for achieving locomotive informatization and intellectualization.

Aiming at other network expansion, such as CAN or RS485 communication, the corresponding daughter boards CAN be adopted for replacement, namely, the modularized design is adopted, different communication modes are realized by utilizing different daughter boards, the development difficulty is reduced, the risks of material production halt and lifting are reduced, and only a small part of the daughter boards needs to be changed when the materials are updated; meanwhile, the universality of the excitation platform control board 1 is improved, and the circuit design is simplified; in addition, the fixing modes of the Ethernet interface 105 and the MVB interface 106 are not interfered with each other, the overall design difficulty of the device is reduced, meanwhile, the stress is dispersed, and the anti-vibration capability is enhanced.

The above is only a preferred embodiment of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions belonging to the idea of the present invention belong to the protection scope of the present invention. It should be noted that modifications and embellishments within the scope of the invention may be made by those skilled in the art without departing from the principle of the invention.

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:铁路车辆轴端发电系统用变流器及轴端发电系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类