Preparation process of H08A steel

文档序号:846267 发布日期:2021-03-16 浏览:20次 中文

阅读说明:本技术 一种h08a钢的制备工艺 (Preparation process of H08A steel ) 是由 王光文 张盛梁 陈贵和 涂文兴 于 2020-10-22 设计创作,主要内容包括:本发明提供一种H08A钢的制备工艺,具体步骤如下:1)转炉冶炼,出钢过程加入镁合金进行预脱氧,吹氩,控制钢水自由氧含量在80~100ppm;2)LF精炼:过程中加入钙再次除氧,控制钢水LF精炼加热结束后自由氧含量为10~20ppm;3)连铸;其中,步骤1)中加入镁合金的进料方式为利用载气的方式将粉状的镁合金吹入钢包的底部。本发明生产的铸坯(连铸时间8小时)样品的断面没有任何明显气泡,中心疏松等级≤0.5级,中心偏析等级≤0.5级,不存在其他明显缺陷,合格率为99%。同时,在面积为100×100mm的钢体横断面中,夹杂物的数量不多于30个,夹杂物的最大直径不超过20μm。(The invention provides a preparation process of H08A steel, which comprises the following specific steps: 1) smelting in a converter, adding magnesium alloy for pre-deoxidation in the tapping process, blowing argon, and controlling the free oxygen content of molten steel to be 80-100 ppm; 2) LF refining: in the process, calcium is added for deoxidizing again, and the free oxygen content is controlled to be 10-20 ppm after LF refining heating of molten steel is finished; 3) continuous casting; wherein, the feeding mode of adding the magnesium alloy in the step 1) is to blow powdery magnesium alloy into the bottom of the ladle in a carrier gas mode. The section of the casting blank (the continuous casting time is 8 hours) sample produced by the method does not have any obvious air bubbles, the central porosity grade is less than or equal to 0.5 grade, the central segregation grade is less than or equal to 0.5 grade, other obvious defects do not exist, and the qualification rate is 99%. Meanwhile, in the cross section of the steel body with the area of 100 multiplied by 100mm, the number of the inclusions is not more than 30, and the maximum diameter of the inclusions is not more than 20 μm.)

1. A preparation process of H08A steel comprises the following specific steps:

1) smelting in a converter: pretreating molten steel used for smelting in a converter, controlling C in the molten steel to be less than or equal to 0.06% and P to be less than or equal to 0.07%, carrying out composite blowing through the top and the bottom of the converter, controlling S to be less than or equal to 0.03%, controlling the tapping temperature of the converter to be 1520-1650 ℃, adding magnesium alloy in the tapping process for pre-deoxidation, blowing argon, and controlling the free oxygen content of the molten steel to be 80-100 ppm;

2) LF refining: in the process, calcium is added for deoxidizing again, and the free oxygen content is controlled to be 10-20 ppm after LF refining heating of molten steel is finished;

3) continuous casting: blowing argon into the molten steel, stirring, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 50-100mm, stirring for 5-10min, and casting on a machine to obtain a casting blank;

wherein, the feeding mode of adding the magnesium alloy in the step 1) is to blow powdery magnesium alloy into the bottom of the ladle at a feeding rate of 0.05-0.5 kg/s by using a carrier gas mode.

2. The method of claim 1, wherein in the step 1), an inert gas is blown into an end of a conduit connected to a bottom of the ladle, and a feed container of the powdery alloy is provided in a central passage of the conduit.

3. The method for preparing H08A steel according to claim 2, wherein the distance from the bottom of the ladle to the joint of the guide pipe and the ladle is 50-100cm, and the radial pipeline of the guide pipe extends upwards along the horizontal direction by an angle of 30-45 degrees and is connected to the inert gas inlet.

4. The method for preparing the H08A steel according to claim 3, wherein the joint of the guide pipe and the ladle is covered with a tight high temperature-resistant sleeve.

5. The method for preparing the H08A steel according to claim 1, wherein the magnesium alloy is one or more of Mg-Ca, Mg-Si, Mg-Sr, Mg-Ba and Mg-Al alloy.

6. The method for preparing the H08A steel according to claim 1, wherein the speed of the calcium wire injection is 200-300 m/min.

7. The preparation method of the H08A steel according to claim 1, wherein in the step 3), the superheat degree in the casting control is 15-25 ℃.

8. The method for preparing H08A steel according to claim 1, wherein in step 1), the content of magnesium alloy added is 0.1-0.5% by mass of molten steel, and in step 2), the content of calcium added is 0.01-0.07% by mass of molten steel.

9. The method for preparing H08A steel according to claim 1, wherein the composition of the molten steel before casting is C: 0.03-0.06%, Si: 0.01 to 0.02%, Mn: 1.50-1.60%, P is less than or equal to 0.023%, S: 0.001-0.005%, Ni: 0.30-0.50%, Cu: 0.08-0.10%, V: 0.08-0.10%, Mg: 0.1-0.35%, Ca: 0.01 to 0.07%, Ti: 0.007-0.013%, Nb: less than or equal to 0.060 percent, B: less than or equal to 0.001%, Als: less than or equal to 0.009%, free oxygen less than or equal to 20PPm, and Fe and inevitable impurity elements in steel as the rest.

Technical Field

The invention belongs to the technical field of ferrous metallurgy, and particularly relates to a smelting method of H08A steel.

Background

H08A steel is an important raw material for electrode production, belongs to low-carbon steel, and one of the biggest differences from other steel types is to ensure the chemical composition of the finished steel product and have strict requirements on carbon, aluminum and oxygen in the steel. In the production process of H08A steel, a deoxidizer is required to be added for deoxidation, aluminum is generally used as the deoxidizer, and the addition of the aluminum deoxidizer can generate a large amount of impurities, easily block a tundish nozzle and influence the castability of molten steel and the continuous casting. Therefore, in the prior art for producing H08A steel, a reasonable treatment control process of molten steel is required to be established to control the generation of bubbles and inclusions.

CN108950124A discloses a production method of a welding rod steel H08A, belongs to the technical field of ferrous metallurgy, and solves the technical problems of short continuous casting time and obvious casting blank bubble defect in the production process of the welding rod steel H08A. The technical scheme of the invention is to provide a production method of welding rod steel H08A, which comprises converter smelting, LF refining and continuous casting, wherein the LF refining is added with main components of Al and Al2O3And the refining slag modifier of CaO diffuses and deoxidizes, controls the oxygen activity of the molten steel to be 0.0020-0.0040 percent, controls the content of Als to be 0.001-0.005 percent, adds ferrosilicon to control the content of Si to be 0.02-0.03 percent, and then carries out calcium treatment. The invention can stably and continuously produce the continuous casting billet of the welding rod steel H08A without internal defects by establishing a reasonable molten steel control system. CN111349740A discloses a control method capable of reducing bubbles in a continuous casting billet of H08A steel grade, which comprises the following steps of (1) raw material control: determining a reasonable proportion of scrap steel and pig iron blocks; (2) and (3) end point control: the end point carbon content is controlled to be between 0.06 percent and 0.08 percent, and the end point molten steel oxygen content is between 400ppm and 500 ppm; (3) deoxidation alloying control: adding a pre-deoxidizer for deoxidation at the early stage of tapping, and then carrying out whole-process deoxidation by adopting AlMnFe for final deoxidation and calcium treatment; (4) controlling slag stopping and tapping: in the converter tapping process, slag blocking and overflowing are adopted to block early-stage slag, slag blocking cones are adopted to block later-stage slag, and the thickness of a ladle slag layer is controlled within 70 mm; (5) continuous casting control: the temperature of the molten steel of the H08A steel tundish is controlled at 1541-1565 ℃. The invention has reasonable design, reduces the quantity of bubbles and inclusions in the continuous casting billet, and improves the internal quality and the service performance of the H08A steel grade.

Although the technology for reducing bubbles and inclusions in a billet cast by molten steel is researched in the prior art, the effect of controlling the bubbles and inclusions is not obvious on the whole, and meanwhile, the addition mode of a deoxidizer is not optimized, so that the problems of material waste and even safety are easily caused in the deoxidation process.

Disclosure of Invention

The invention aims to overcome the defects in the prior art and provide a preparation process capable of effectively reducing the control of bubbles and inclusions in H08A steel.

In order to achieve the purpose, the invention optimizes the adding mode of the alloy element additives in the smelting process so as to reduce the generation of bubbles and inclusions in the steel. The technical means adopted is to optimize the way of adding magnesium alloy to molten steel, for example, the alloy additive is fed into the bottom of the molten steel uniformly and smoothly through a conduit connected with a ladle. The magnesium alloy is injected into the bottom of the ladle quickly, and the flow rate of the feeding material is controlled by blowing air in an adjustable gate valve connected with the guide pipe. The distance between the position of the guide pipe connected with the steel ladle and the bottom of the steel ladle and the feeding speed of the carrier gas for feeding the alloy material into the molten steel are adjusted to control the speed of the magnesium alloy floating to the surface of the molten steel, so that the generation of bubbles and inclusions in the molten steel is adjusted. In addition, the addition mode of the alloy is fast enough, firstly, the loss (evaporation, combustion and the like) of magnesium and calcium is avoided, and secondly, the mixing speed and the uniformity of the alloy in the molten steel can be improved.

Meanwhile, for the problems that aluminum oxide inclusions are generated after aluminum deoxidation, molten steel is difficult to discharge and is adhered to the wall of a feeding port, and smooth continuous casting and casting are influenced in the prior art, the magnesium alloy is used for replacing aluminum alloy, and calcium alloy is added in the later period, so that calcium-magnesium composite oxides can be generated, and the calcium-magnesium composite oxides can be more smoothly discharged from the molten steel in a floating manner.

In order to achieve the purpose, the invention specifically provides a preparation process of H08A steel, which comprises the following specific steps:

1) smelting in a converter: pretreating molten steel used for smelting in a converter, controlling C in the molten steel to be less than or equal to 0.06% and P to be less than or equal to 0.07%, carrying out composite blowing through the top and the bottom of the converter, controlling S to be less than or equal to 0.03%, controlling the tapping temperature of the converter to be 1520-1650 ℃, adding magnesium alloy in the tapping process for pre-deoxidation, blowing argon, and controlling the free oxygen content of the molten steel to be 80-100 ppm;

2) LF refining: in the process, calcium is added for deoxidizing again, and the free oxygen content is controlled to be 10-20 ppm after LF refining heating of molten steel is finished;

3) continuous casting: blowing argon into the molten steel, stirring, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 50-100mm, stirring for 5-10min, and casting on a machine to obtain a casting blank;

wherein, the feeding mode of adding the magnesium alloy in the step 1) is to blow powdery magnesium alloy into the bottom of the ladle in a carrier gas mode.

Preferably, in the step 1), the magnesium alloy powder reagent is blown into the molten steel at a feeding rate of 0.05-0.5 kg/s.

Preferably, in step 1), an inert gas is blown into one end of a conduit connected to the bottom of the ladle, and a feeding container of the powdery alloy is arranged in the conduit.

Preferably, the distance between the connecting part of the guide pipe and the ladle and the bottom of the ladle is 50-100cm, and the radial pipeline of the guide pipe extends upwards at an angle of 30-45 degrees along the horizontal direction and is connected to the inert gas inlet.

Preferably, the joint of the guide pipe and the ladle is wrapped with a layer of tight high-temperature-resistant sleeve opening.

Preferably, the magnesium alloy is one or more of Mg-Ca, Mg-Si, Mg-Sr, Mg-Ba and Mg-Al alloy.

Preferably, the calcium is added by rapidly injecting a calcium wire into the molten steel while stirring with argon.

Preferably, the speed of the calcium ray is 200-300 m/min.

Preferably, in the step 3), the superheat degree of the tundish during casting is controlled to be 15-25 ℃.

Preferably, in the step 1), the content of the added magnesium alloy is 0.1-0.5% of the mass fraction of the molten steel.

Preferably, in the step 2), the content of the added calcium is 0.01-0.07% of the mass fraction of the molten steel.

Preferably, the composition of the molten steel before casting is C: 0.03-0.06%, Si: 0.01 to 0.02%, Mn: 1.50-1.60%, P is less than or equal to 0.023%, S: 0.001-0.005%, Ni: 0.30-0.50%, Cu: 0.08-0.10%, V: 0.08-0.10%, Mg: 0.1-0.35%, Ca: 0.01 to 0.07%, Ti: 0.007-0.013%, Nb: less than or equal to 0.060 percent, B: less than or equal to 0.001%, Als: less than or equal to 0.009%, free oxygen less than or equal to 20PPm, and Fe and inevitable impurity elements in steel as the rest.

Compared with the prior art, the invention has the following technical effects:

the feeding speed of magnesium and calcium is controlled to be fast enough to avoid forming steam or combustion flame of magnesium and calcium, thereby ensuring that the effective components added with calcium or magnesium are not lost (the loss rate is not more than 1 percent), and the calcium and calcium are uniformly mixed with the molten steel and quickly react to promote the deoxidation (and desulfurization) effect.

The feeding speed of magnesium and calcium is controlled to ensure that the penetrating power of the alloy is strong enough when the alloy enters the molten steel, thereby reducing the bubbling of the molten steel in a molten state and reducing the probability of the formation of inclusions.

The section of the casting blank (the continuous casting time is 8 hours) sample produced by the method does not have any obvious air bubbles, the central porosity grade is less than or equal to 0.5 grade, the central segregation grade is less than or equal to 0.5 grade, other obvious defects do not exist, and the qualification rate is 99%. Meanwhile, in the cross section of the steel body with the area of 100 multiplied by 100mm, the number of the inclusions is not more than 30, and the maximum diameter of the inclusions is not more than 20 μm.

Detailed Description

The following detailed description of embodiments of the invention is intended to be illustrative, and is not to be construed as limiting the invention.

In the solution of the present invention, the alloying additions are introduced into the bottom of the molten steel uniformly and smoothly through a guide tube connected to the ladle. The magnesium alloy is injected into the bottom of the ladle quickly, and the flow rate of the feeding material is controlled by blowing air in an adjustable gate valve connected with the guide pipe. The distance between the position of the guide pipe connected with the steel ladle and the bottom of the steel ladle and the feeding speed of the carrier gas for feeding the alloy material into the molten steel are adjusted to control the speed of the magnesium alloy floating to the surface of the molten steel, so that the generation of bubbles and inclusions in the molten steel is adjusted. Meanwhile, for the problems that aluminum oxide inclusions are generated after aluminum deoxidation, molten steel is difficult to discharge and is adhered to the wall of a feeding port, and smooth continuous casting and casting are influenced in the prior art, the magnesium alloy is used for replacing aluminum alloy, and calcium alloy is added in the later period, so that calcium-magnesium composite oxides can be generated, and the calcium-magnesium composite oxides can be more smoothly discharged from the molten steel in a floating manner.

In a specific embodiment, the preparation method and the process for preparing the H08A steel comprise the following steps:

1) smelting in a converter: pretreating molten steel used for smelting in a converter, controlling C in the molten steel to be less than or equal to 0.06% and P to be less than or equal to 0.07%, carrying out composite blowing through the top and the bottom of the converter, controlling S to be less than or equal to 0.03%, controlling the tapping temperature of the converter to be 1520-1650 ℃, adding magnesium alloy in the tapping process for pre-deoxidation, blowing argon, and controlling the free oxygen content of the molten steel to be 80-100 ppm;

2) LF refining: in the process, calcium is added for deoxidizing again, and the free oxygen content is controlled to be 10-20 ppm after LF refining heating of molten steel is finished;

3) continuous casting: blowing argon into the molten steel, stirring, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 50-100mm, stirring for 5-10min, and casting on a machine to obtain a casting blank;

wherein, the feeding mode of adding the magnesium alloy in the step 1) is to blow powdery magnesium alloy into the bottom of the ladle in a carrier gas mode.

In the step 1), a magnesium alloy powdery reagent is blown into molten steel at a feeding rate of 0.05-0.5 kg/s. The blowing-in mode is that inert gas is blown in from one end of a conduit connected with the bottom of the ladle, and a feeding device of powdery alloy is arranged in the middle path of the conduit for blowing in. The distance between the connecting part of the guide pipe and the ladle and the bottom of the ladle is 50-100cm, and the radial pipeline of the guide pipe extends at an angle of 30-45 degrees and is connected to the inert gas inlet. The inert gas may be any one of argon, neon and helium. The joint of the conduit and the ladle can be wrapped with a layer of tight high temperature resistant sleeve opening.

The magnesium alloy is one or more of Mg-Ca, Mg-Si, Mg-Sr, Mg-Ba and Mg-Al alloy.

The calcium is added by rapidly injecting calcium wire into molten steel while stirring with argon. The speed of the calcium ray is 200-300 m/min.

And 3) controlling the superheat degree of the tundish to be 15-25 ℃ during casting.

In the step 1), the content of the added magnesium alloy is 0.1-0.5% of the mass fraction of the molten steel. In the step 2), the content of the added calcium is 0.01-0.07% of the mass fraction of the molten steel.

In each example, the composition of molten steel before casting was controlled as follows: 0.03-0.06%, Si: 0.01 to 0.02%, Mn: 1.50-1.60%, P is less than or equal to 0.023%, S: 0.001-0.005%, Ni: 0.30-0.50%, Cu: 0.08-0.10%, V: 0.08-0.10%, Mg: 0.1-0.35%, Ca: 0.01 to 0.07%, Ti: 0.007-0.013%, Nb: less than or equal to 0.060 percent, B: less than or equal to 0.001%, Als: less than or equal to 0.009%, free oxygen less than or equal to 20PPm, and Fe and inevitable impurity elements in steel as the rest.

Example 1

1) Smelting in a converter: pretreating molten steel used for smelting in a large-tonnage (100T) converter, controlling 0.04% of C and 0.06% of P in the molten steel, carrying out composite blowing through the top and the bottom of the converter, controlling 0.03% of S, controlling the tapping temperature of the converter to be 1590 ℃, blowing powdery Mg-Ca alloy with the mass fraction of 0.34% into the bottom of a steel ladle by using inert gas through a conduit connected with the bottom of the steel ladle in the tapping process, carrying out pre-deoxidation, controlling the blowing rate to be 0.25kg/S, simultaneously blowing argon for stirring for 10min, and controlling the free oxygen content of the molten steel to be 100 ppm;

2) LF refining: in the refining process, a calcium wire is quickly injected into molten steel for deoxidizing again, the injection speed of the calcium wire is 230m/min, the injection content is 0.05 wt%, and meanwhile, the mixture is stirred by weakly blowing argon at the bottom of the tank; controlling the free oxygen content to be 10 +/-2 ppm after LF refining and heating of the molten steel;

3) continuous casting: and blowing argon into the molten steel for stirring for 5min, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 50mm, stirring for 10min, controlling the superheat degree of a tundish to be 15-25 ℃, and casting on a machine to obtain a casting blank.

Example 2

1) Smelting in a converter: pretreating molten steel used for smelting in a large-tonnage (100T) converter, controlling 0.04% of C and 0.05% of P in the molten steel, carrying out composite blowing through the top and bottom of the converter, controlling 0.03% of S, controlling the tapping temperature of the converter to be 1550 ℃, blowing powdery Mg-Si alloy with the mass fraction of 0.42% into the bottom of a steel ladle by using inert gas through a conduit connected with the bottom of the steel ladle in the tapping process, carrying out pre-deoxidation, controlling the blowing rate to be 0.43kg/S, simultaneously blowing argon, stirring and stirring for 10min, and controlling the free oxygen content of the molten steel to be 90 ppm;

2) LF refining: in the refining process, a calcium wire is quickly injected into the molten steel for deoxidizing again, the injection speed of the calcium wire is 250m/min, the injection content is 0.06 wt%, and meanwhile, the molten steel is stirred by weakly blowing argon at the bottom of the tank; controlling the free oxygen content to be 10 +/-2 ppm after LF refining and heating of the molten steel;

3) continuous casting: and blowing argon into the molten steel for stirring for 5min, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 50mm, stirring for 6min, controlling the superheat degree of a tundish to be 15-25 ℃, and casting on a machine to obtain a casting blank.

Example 3

1) Smelting in a converter: pretreating molten steel used for smelting in a large-tonnage (100T) converter, controlling 0.05 percent of C and 0.04 percent of P in the molten steel, carrying out composite blowing through the top and the bottom of the converter, controlling 0.03 percent of S, controlling the tapping temperature of the converter to be 1550 ℃, blowing powdery Mg-Sr alloy with the mass fraction of 0.19 percent into the bottom of a steel ladle by using inert gas through a conduit connected with the bottom of the steel ladle in the tapping process, carrying out pre-deoxidation, controlling the blowing rate to be 0.14kg/S, simultaneously blowing argon for stirring and stirring for 7min, and controlling the free oxygen content of the molten steel to be 90 ppm;

2) LF refining: in the refining process, a calcium wire is quickly injected into molten steel for deoxidizing again, the injection speed of the calcium wire is 270m/min, the injection content is 0.02 wt%, and meanwhile, the molten steel is stirred by weakly blowing argon at the bottom of the tank; controlling the free oxygen content to be 10 +/-2 ppm after LF refining and heating of the molten steel;

3) continuous casting: and blowing argon into the molten steel for stirring for 10min, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 60mm, stirring for 6min, controlling the superheat degree of a tundish to be 15-25 ℃, and casting on a machine to obtain a casting blank.

Example 4

1) Smelting in a converter: pretreating molten steel used for smelting in a large-tonnage (100T) converter, controlling 0.03% of C and 0.034% of P in the molten steel, carrying out composite blowing through the top and the bottom of the converter, controlling 0.03% of S, controlling the tapping temperature of the converter to be 1550 ℃, blowing powdery Mg-Ba alloy with the mass fraction of 0.21% into the bottom of a steel ladle by using inert gas through a conduit connected with the bottom of the steel ladle in the tapping process, carrying out pre-deoxidation, controlling the blowing rate to be 0.5kg/S, simultaneously blowing argon, stirring and stirring for 10min, and controlling the free oxygen content of the molten steel to be 70 ppm;

2) LF refining: in the refining process, a calcium wire is quickly injected into molten steel for deoxidizing again, the injection speed of the calcium wire is 250m/min, the injection content is 0.07 wt%, and meanwhile, the stirring is carried out by weakly blowing argon at the bottom of the tank; controlling the free oxygen content to be 10 +/-2 ppm after LF refining and heating of the molten steel;

3) continuous casting: and blowing argon into the molten steel for stirring, wherein the stirring time is 5min, the exposed diameter of the air outlet point on the liquid level of the molten steel is controlled to be 80mm, the stirring is carried out for 8min, the superheat degree of a tundish is controlled to be 15-25 ℃, and a casting blank is obtained by casting on a machine.

Example 5

1) Smelting in a converter: pretreating molten steel used for smelting in a large-tonnage (100T) converter, controlling 0.049% of C and 0.01% of P in the molten steel, carrying out composite blowing through the top and bottom of the converter, controlling 0.03% of S, controlling the tapping temperature of the converter to be 1650 ℃, blowing powdery Mg-Al alloy with the mass fraction of 0.49% into the bottom of a steel ladle by using inert gas through a conduit connected with the bottom of the steel ladle in the tapping process, carrying out pre-deoxidation, controlling the blowing rate to be 0.38kg/S, simultaneously blowing argon, stirring and stirring for 10min, and controlling the free oxygen content of the molten steel to be 90 ppm;

2) LF refining: in the refining process, a calcium wire is quickly injected into molten steel for deoxidizing again, the injection speed of the calcium wire is 300m/min, the injection content is 0.03 wt%, and meanwhile, the stirring is carried out by weakly blowing argon at the bottom of the tank; controlling the free oxygen content to be 10 +/-2 ppm after LF refining and heating of the molten steel;

3) continuous casting: and blowing argon into the molten steel for stirring for 8min, controlling the exposed diameter of the air outlet point on the liquid level of the molten steel to be 70mm, stirring for 9min, controlling the superheat degree of a tundish to be 15-25 ℃, and casting on a machine to obtain a casting blank.

Comparative example 1

The alloy element wire is stably put into the molten steel by adopting a traditional feeding method, and other process parameters and steps are the same as those of the embodiment 1. In the technical method of the comparative example, when the alloy elements are added and then deoxidized or refined, it is obvious that smoke or steam mist appears above the liquid level of the molten steel. The compositional measurements before and after the addition of the elements also showed that the loss of the added alloying elements was large, with a mass loss of more than 10 wt%.

The center porosity index was measured on H08A steel samples obtained from the manufacturing processes of examples 1-5 and comparative example 1. And (3) removing the iron oxide scales on the surface of the billet by spraying high-pressure water on the steel piece after 8 hours of continuous casting, and rolling to the thickness required by the finished product. Rolling a steel square billet with the cross section dimension of 350mm multiplied by 450 mm; during measurement, the area range of the center 100m multiplied by 100m of the transverse section of the casting blank is selected, and the defects of the center porosity and the shrinkage cavity of the bloom are included. A casting blank sheet with the thickness of 100mm multiplied by 10m is taken from the center of the transverse section of the continuous casting blank, the 100m multiplied by 100mm surface of the sample is processed by a planer and a grinder to achieve the smooth and tidy degree, and the standard center porosity and center segregation indexes are tested. The test results are given in table 1:

TABLE 1

According to the technical scheme, the continuous casting time of the molten steel can reach more than 8 hours, and the obtained casting blank almost has no bubble defect. Meanwhile, compared with a comparative example, the technical scheme of the invention effectively reduces the quantity of internal bubbles and internal inclusions of the H08A steel continuous casting billet by regulating and controlling the feeding modes of materials, such as speed and addition form, and can greatly improve the manufacturing capacity of the H08A steel continuous casting billet. The average size of the inclusions is less than 25 μm, and the number of inclusions is not more than 20.

In the description herein, references to the description of "one embodiment," "another embodiment," etc., mean that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. In this specification, the schematic representations of the terms used above are not necessarily intended to refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, various embodiments or examples and features of different embodiments or examples described in this specification can be combined and combined by one skilled in the art without contradiction.

Although embodiments of the present invention have been shown and described above, it is understood that the above embodiments are exemplary and should not be construed as limiting the present invention, and that variations, modifications, substitutions and alterations can be made to the above embodiments by those of ordinary skill in the art within the scope of the present invention.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种无横折缺陷的300MPa级低碳热轧钢生产方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!