电源转换器电路

文档序号:1007362 发布日期:2020-10-23 浏览:10次 >En<

阅读说明:本技术 电源转换器电路 (Power converter circuit ) 是由 拉塞尔·雅克 戴维·库尔森 于 2017-01-26 设计创作,主要内容包括:一种电源转换器电路(1)和转换交流(AC)电源的相关方法。所述电源转换器电路(1)包括:供电整流电路(2),所述供电整流电路(2)用于整流交流(AC)电源以产生整流的电源;逆变电路(3),所述逆变电路(3)用于接收所述整流的电源,以产生用于负载电路的逆变的电源;以及由所述逆变的电源驱动的电荷泵电路(6),所述电荷泵电路(6)将额外的电荷泵送到所述整流供电电源。(A power converter circuit (1) and associated method of converting Alternating Current (AC) power. The power converter circuit (1) comprises: a power supply rectification circuit (2), the power supply rectification circuit (2) for rectifying an Alternating Current (AC) power supply to produce a rectified power supply; an inverter circuit (3), the inverter circuit (3) being configured to receive the rectified power to generate an inverted power for a load circuit; and a charge pump circuit (6) driven by the inverted power supply, the charge pump circuit (6) pumping additional charge to the rectified power supply.)

电源转换器电路

技术领域

本发明涉及电源转换器电路和转换电源的方法,具体涉及将交流(AC)电源转换为整流的直流(DC)电源的电路和方法。这里主要以关于电源转换器电路和适用于电源和发光二极管(LED)驱动器的转换电源的方法来描述本发明,但本发明不限于这些特定用途。

背景技术

在没有功率因数校正手段的情况下,任何对输入的AC电源进行整流以产生DC电源的电源连接设备都会具有功率因数低、谐波失真高的特性,其通常会超过电源连接设备的允许范围。专门为高效率、成本敏感的消费类应用而设计的供电单元(PSU)和照明镇流器通常是开关类型,而且通常基于半桥或全桥的拓扑。这些拓扑特别适合于输入电压与输出电压之比相对受限的高功率、高效率应用。近年来引入了一些法规来约束从AC电源中提取输入电流的方式,包括功率因数(PF)、波峰因数(CF)和总谐波失真(THD)。持续的遵守更严格的法规和降低制造成本的压力迫使在开关电源控制器的设计中需要创新的方法。

已经发明的各种无源开关功率因数校正(PFC)电路使用电源转换器的开关电源波形来提供一种PFC的措施,使产品能够以较低成本满足法令规定,其缺点是通过输出负载的输出电流具有高的纹波含量。然而,在许多应用中,希望通过输出负载的电流基本恒定且具有较低的纹波含量。例如,在LED照明的情况下,具有低纹波含量的恒定输出电流具有能提供高效率且长寿命以及没有闪烁的高质量光输出的优点。

此类现有电路包括US5223767A,US6642670B2,US7911463B2,US20090251065A1,WO2008152565A2,WO2010054454A2,WO2010143944A1和WO9204808A1中公开的那些。尽管这些现有电路相对于从市电电源汲取电源的方式实现了高功率因数PF),但是这些电路通常不能向负载提供既受到调节又具有低纹波含量的电流。WO2015143612A1公开了一种能够提供所需电流的调节和低纹波含量的电路,但是该电路需要大量部件,导致了显著的附加成本和制造的复杂性。

本发明的一个目的是克服或改善现有技术的至少一个缺点,或提供实用的替代方案。

发明内容

第一方面,本发明提供一种电源转换器电路,包括:

供电整流电路,供电整流电路用于整流交流电源以产生整流的电源;

逆变电路,逆变电路用于接收整流的电源以产生用于负载电路的逆变的电源;以及

由逆变的电源驱动的电荷泵电路,电荷泵电路将额外的电荷泵送到整流的电源,电荷泵电路包括连接在供电整流电路和逆变电路之间的电荷泵二极管、跨接于供电整流电路的二极管两端或与电荷泵二极管并联且在供电整流电路与逆变电路之间的第一电容器、连接在供电整流电路的输入端和逆变的电源之间的第二电容器、连接在供电整流电路和逆变的电源之间的第三电容器。

第二方面,本发明提供一种转换AC电源的方法,该方法包括:

整流交流电源以产生整流的电源;

逆变整流的电源以产生用于负载电路的逆变的电源;以及

利用逆变的电源将额外的电荷泵送到整流的电源。

第三方面,本发明提供一种照明装置,照明装置包括上述电源转换器电路。

第四方面,本发明提供一种电源转换器电路,包括:

供电整流电路,用于整流AC电源以产生整流的电源;

逆变电路,用于接收整流的电源,以产生逆变的电源;

负载整流电路,用于对逆变的电源进行整流以产生整流的负载电源,所述整流的负载电源用于向负载提供负载电流;和

由负载电流驱动的电荷泵电路,所述电荷泵电路将额外的电荷泵送到整流的电源。

第五方面,本发明提供一种转换AC电源的方法,该方法包括:

整流AC电源以产生整流的电源;

逆变整流的电源,产生逆变的电源;

整流逆变的电源以产生整流的负载电源,用于为负载提供负载电流;和

使用负载电流将额外的电荷泵送到整流的电源。

在所附权利要求中限定了本发明的各种实施例的其他特征。应当理解,在本发明的各种实施例中,特征可以以各种组合进行组合。

在整个说明书(包括权利要求)中,词语“包括”,“包含”和其他类似术语应以包含性的含义来解释,也就是说,在“包括但不限于”的意义上,并且不是排他性的或穷举的,除非另有明确说明或上下文明确要求。

附图说明

现在将参考附图仅通过示例的方式描述根据本发明的最佳模式的优选实施例,其中:

图1是US6642670B2中公开的现有技术电源转换器电路的示意图;

图2是WO2015143612A1中公开的现有技术的电源转换器电路的示意图;

图3是根据本发明实施例的电源转换器电路的示意图;

图4是根据本发明另一实施例的电源转换器电路的示意图;

图5是根据本发明另一实施例的电源转换器电路的示意图;

图6是根据本发明另一实施例的电源转换器电路的示意图;

图7示出了用于图4或图5中所示的电源转换器电路在最佳运行时的典型波形;

图8示出了用于图4中所示的电源转换器电路在非最佳运行时的典型波形,其具有较低的市电电源和/或较高的输出LED电压;

图9示出了图4中所示的电源转换器电路以非最佳运行时的典型波形,其具有较高的市电电源和/或较低的输出LED电压;和

图10示出了由用于图5中所示的电源转换器电路的第一和第二电荷泵电路实现的典型波形,显示了当非最佳运行(具有高市电电源和/或低输出LED电压)时,两个电荷泵电路单独的PFC作用效果。

具体实施方式

参照附图,本发明的实施例提供了一种电源转换器电路1,所述电源转换器电路1包括供电整流电路2,所述供电整流电路2用于整流AC电源以产生整流的电源。电源转换器电路1还包括逆变电路3,所述逆变电路3用于接收整流的电源以产生逆变的电源。电源转换器电路1还包括负载整流电路4,所述负载整流电路4用于整流逆变的电源以产生整流的负载电源,所述整流的负载电源用于向负载5提供负载电流。由负载电流驱动的电荷泵电路6将额外的电荷泵送到整流的电源。AC电源可以由诸如市电电源的AC电源7提供。

通常,整流的电源的波形具有波峰和波谷。通过使用电荷泵电路6将额外的电荷泵送到整流的电源,使得波形更为平滑且波峰和波谷更小。得到的波形是在提供额外电荷之前的整流的电源波形与由附加电荷产生的波形之和。在上述电源转换器电路1中,几乎所有的负载电流都被电荷泵电路6利用以提供附加电荷。因此,电源转换器电路1实现了良好的功率因数、低的总谐波失真、负载电流或电压的严格调节以及负载电流或电压中的低纹波含量。

电源转换器电路1还包括感测电路8。感测电路8的输入端连接到负载整流电路4,并且感测电路8的输出端连接到电荷泵电路6的输入端。在本实施例中,感测电路8包括电流感测装置。这适用于LED等负载。具体地,电流感测装置可以采用电阻元件或电阻器R1的形式。在其他实施例中,感测电路8可包括电压感测装置。这适用于当电源转换器电路是为负载提供电压源的电源或电源转换器的一部分时的应用。

电源转换器电路1还包括控制器9。逆变电路3具有一个或多个开关,且控制器控制所述开关。在图中所示的实施例中,逆变电路3是具有两个开关S1和S2的串联谐振半桥逆变器。控制器9的输入端10连接到负载整流电路4。控制器9的另一输入端11连接到感测电路8的输出端。

在一个非常适合与电压较低的市电电源一起使用(例如,110V)并且如在图3中最佳示出的实施例中,电荷泵电路6包括连接在供电整流电路2的输入端和感测电路8的输出端之间的第一电容器C4。图3所示实施例的供电整流电路2是半桥整流电路,电荷泵电路6包括跨接在供电整流电路2的输入和输出两端的第二电容器C3。

在另一个实施例中,如图4中最佳示出的,电荷泵电路6包括跨接在供电整流电路2的一个二极管两端的第一电容器C3。第二电容器C4连接在供电整流电路2和感测电路8的输出端之间。

优选地,在图3和4中所示的实施例中,电荷泵电路6仅需要第一电容器和第二电容器(C3和C4)。这大大降低了电路的复杂性和成本。

在其他实施例中,电源转换器电路1包括两个或两个以上的所述电荷泵电路6。例如,图5示出了具有两个电荷泵电路6的电源转换器电路1。这些电荷泵电路6中的第一个包括跨接在供电整流电路2的二极管D2两端的第一电容器C3,以及连接在供电整流电路2和感测电路8的输出端之间的第二电容器C4。第二电荷泵电路6包括连接在供电整流电路2和逆变电路3之间的电荷泵二极管D5,与电荷泵二极管D5并联且在供电整流电路2和逆变电路3之间的第三电容器C6,和连接在供电整流电路2和感测电路8的输出端之间的第四电容器C7。

第一电荷泵电路6包括C3和C4,所述第一电荷泵电路6通过将来自AC电源输入的电荷泵送到大容量电容器C5来工作。第二电荷泵电路6包括C6,C7和D5,所述第二电荷泵电路6类似地通过将来自AC电源输入的电荷泵送到大容量电容器C5来工作。在两个电荷泵电路6中,C6相当于C3,C7相当于C4。具有更多电荷泵电路6提供更多改进的性能,例如更好的功率因数(PF)、更低的总谐波失真(THD)、更严格的负载电流或电压调节以及负载电流或电压中更低的纹波含量。

如上所示,电源转换器电路1可以包括一个或多个附加的电荷泵电路6,每个所述附加的电荷泵电路包括电荷泵二极管和一个或多个附加电容器,其中电荷泵二极管连接到另一个二极管。所述另一个二极管可以是供电整流电路2的二极管或另一个附加电荷泵电路的电荷泵二极管。在具体的优选实施例中,每个附加电荷泵电路6仅需要一个电荷泵二极管和一个或两个电荷泵电容器。例如,图5所示的实施例的第一电荷泵电路6仅包括两个电容器C3和C4,并且同一实施例的第二电荷泵电路6仅包括两个电容器C6和C7,以及一个电荷泵二极管D5。这大大降低了电路的复杂性和成本。

由上述内容可以理解,本发明的实施例提供了电源转换器电路1,该电源转换器电路1包括供电整流电路2,供电整流电路用于整流AC电源以产生整流的电源。该电源转换器电路1还包括逆变电路3,所述逆变电路3用于接收所述整流的电源以产生用于负载电路4的逆变的电源。由逆变的电源驱动的电荷泵电路6将额外的电荷泵送到整流的电源。电荷泵电路6包括连接在供电整流电路2和逆变电路3之间的电荷泵二极管D5。第一电容器C3或C6跨接于供电整流电路2的二极管D2两端或与电荷泵二极管D5并联且在供电整流电路2与逆变电路3之间。第二电容器C4连接在供电整流电路2的输入端和逆变的电源之间,第三电容器C7连接在供电整流电路2和逆变的电源之间。在一个具体实施例中,供电整流电路2为具有第一输入端、第二输入端、第一输出端和第二输出端的单相整流桥,第一输入端和第二输入端连接到AC电源。电荷泵二极管D5连接在第一输出端和逆变电路3之间,第一电容器C3或C6跨接在供电整流电路2的一个二极管D2两端或与电荷泵二极管D5并联且在第一输出端与逆变电路3之间。第二电容器C4连接在第一输入端或第二输入端与逆变的电源之间,且第三电容器C7连接在第一输出端和逆变的电源之间。

如图6中最佳示出的,电源转换器电路1可包括一个或多个开关电荷泵电路13。每个这样的开关电荷泵电路13包括连接在供电整流电路2和感测电路8的输出端之间的电荷泵电容器C10,以及与电荷泵电容器C10并联的电荷泵开关S3。电荷泵开关S3形成与另一电荷泵电容器C11的串联组合的一部分,该组合与电荷泵电容器C10并联连接。电荷泵开关S3的状态响应于感测得到的电路参数。感测的电路参数可以是DC体电源电压。通常,控制器9具有连接到电荷泵开关S3的输出端12,以基于感测得到的电路参数控制电荷泵开关S3。

如上所述,电源转换器电路1包括大容量电容器C5。所述大容量电容器C5可以跨接在逆变电路3两端。如图3所示,还可以有两个跨接在逆变电路3两端的大容量电容器C5和C12。

电源转换器电路1包括第一供电线L和第二供电线N,以从AC电源7接收AC电源。第一供电线L连接到供电整流电路2的第一输入端,第二供电线N连接到供电整流电路2的第二输入端。电源电容器C1跨接在第一和第二电源线两端,从而跨接在AC电源7两端。为了降低EMI,可以将电源电感器L1与第一供电线L串联连接,且所述电源电感器L1位于电源电容器C1和供电整流电路2的第一输入端之间。也可以将第二电源电容器C2跨接在第一和第二电源线两端,从而跨接在AC电源7两端,并且连接在电源电感器L1和供电整流电路2之间。

如上所示,供电整流电路2可以采用如图3所示的半桥整流电路的形式,所述供电整流电路2具有二极管D1和D3,或者采用如图4,5和6所示的,全桥整流电路的形式,其具有二极管D1,D2,D3和D4。

逆变电路3包括两个串联的开关S1和S2。逆变电路3还包括逆变器电感器L2,所述逆变器电感器L2具有连接在两个开关之间的逆变器电感器输入端。

在一个实施例中,如图3中最佳示出的,逆变器电感器L2具有连接到负载整流电路4的逆变器电感器输出端。该实施例中的负载整流电路包括具有四个二极管D20,D21,D22和D23的全桥整流器。

在其他实施例中,如图4,图5和图6中最佳示出的,逆变器电感器L2具有连接到变压器T1的第一侧的逆变器电感器输出端,而负载整流电路4与变压器T1的第二侧连接。由此,负载与AC电源7隔离。这些实施例中的负载整流电路4包括两个二极管D20和D21。

本领域技术人员应可以理解,在本发明的范围内存在不同的电路变化。实施例中示出的电路组件可以以不同的布置或顺序放置,但是仍然落入本发明的范围内,并且提供在所描述的实施例中最初布置或排序的电路所描述的功能。例如,在图4,图5和图6所示的实施例中,逆变器电感器L2,变压器T1和电阻器R1串联。本领域技术人员可以理解,这些部件可以自由地互换,同时仍然提供与互换之前提供的部件相同的功能,因此,仍然落入本发明的范围内。

因此,本发明的一些优选实施例通常提供具有串联谐振半桥逆变器、一个或多个无源电荷泵电路和控制器的电源转换器电路,所述控制器校正PF并将输入电流的谐波失真最小化。

谐振回路由电感器和无源电荷泵电路中的电容器的串联组合构成。谐振回路的Q因数部分地决定了控制器必须利用的开关频率变化,以在所需的AC电源范围(例如市电电源输入和输出负载)内实现必要的PF和谐波失真水平。

在一个实施例中,无源电荷泵电路由两个二极管和至少一个电容器组成。流过串联谐振逆变器的谐振回路的电流有高比例(如果不是几乎全部)通过电容器耦合到无源电荷泵电路中,其中电流根据任何时刻电流自身的极性流过两个二极管中的一个。在逆变器的一个半周期期间,一个二极管导通,使得能量从市电电源输送到所述谐振回路。在第二个半周期期间,另一个二极管导通,使得能量从谐振回路输送到大容量电容器。可使用可选的第二电容器以于修改两个二极管的导通时间,从而使电荷泵送动作取决于两个二极管上的频率和电位差。

包括电抗元件(L1,C1和C2)的电源滤波器耦合在电源端子(L,N)和桥式供电整流电路2之间,以抑制与逆变器开关频率有关的不期望的发射。

在本发明的优选拓扑中,半桥电路驱动谐振电感器、输出负载和无源电荷泵电路的串联组合。由此,控制器可以通过检测和调节通过谐振回路的电流来精确地调节输出电流。因此,不需要使用诸如光耦合器一类的装置进行遥感,这在驱动隔离的负载时是特别有利的。另外,不需要额外的谐振电流回路来提供电荷泵送功能,因为负载电流本身驱动了无源电荷泵电路,从而以最小的功率损耗和复杂性实现了本发明的优点。

例如,对于具有单线输入和输出电压范围相对标称值的变化高达30%的典型的LED照明应用,本发明只需一个无源电荷泵电路即可实现PF>0.95,且谐波发射符合THE<20%。在这种情况下,增加PF校正和低谐波发射的负担仅仅是两个廉价的无源元件(C3和C4)的成本。

本发明还可以采用多个无源电荷泵电路,这些无源电荷泵电路一起工作,以在比单个无源电荷泵级可以实现的更宽范围的输入和输出电压上实现良好的PF和低谐波失真。比较图4和5中所示的实施例,可通过仅添加两个电容器和一个二极管(C6,C7和D5)来提供第二电荷泵级。例如,典型的恒流LED照明应用需要在双线输入(220V/240V)和50-100%的输出电压的范围运行,如果采用两个无源电荷泵级,则可以实现PF>0.95,且谐波发射符合THE<20%。可以以相同的方式添加更多的电荷泵级以实现更好的PF和谐波发射。

更加具体地考虑以上示图,图1示出了用于荧光灯的半桥镇流器,其采用无源功率因数校正来实现良好的PF和谐波发射。图3示出了根据本发明的半桥转换器的实施例。比较图1和图3中所示的电路,可以看出流入第一个转换器的电荷泵的电流与第二个转换器中的电流显著不同。在图1中,流入电荷泵A的电流是灯电流与因并联电容器C的存在而改变的并联谐振电容器B中的电流之和。在图3中,流入电荷泵的电流基本上是从负载电流感测器8获得的负载电流。由此,图3中的控制器9可以实现负载电流和电荷泵电流的同时精确调节,从而优化PF和谐波发射。

图2示出了根据WO2015143612A1的典型隔离半桥驱动器电路,而图4示出了本发明的实施例。两个电路都具有单个电荷泵级,但是本发明通过减少一个元件D5实现了类似的性能。这大大减少了制造的工作量、时间和成本,特别是当这些电路大规模生产时。具有更少的组件,即使减少一个组件,也降低了电路复杂性,这增加了电路的稳健性和可靠性。

参考图4,市电电压源(L,N)连接到包括C1,L1,C2的低通输入滤波器。通常,低通输入频率带宽将低于电源转换器的开关频率,但高于市电电压供应频率。滤波器的输出端连接到全波整流桥(D1,D2,D3和D4)的输入端。电容器C3,C4连接到D2,D4的结点,以形成无源电荷泵电路,该电路将来自输入滤波器电路的电流通过D2和D4泵送到DC大容量电容器C5的正极端子。控制器9(U1)交替地驱动半桥开关S1和S2,以在谐振电感器L2的第一连接处产生交流电压,而所述谐振电感器L2的第二连接耦合到隔离变压器T1的第一初级连接。T1的第二初级连接连接到电流感测装置R1的第一连接,所述电流感测装置R1的第二连接连接到包括C3和C4的电荷泵电路6的第一连接。电荷泵电路6(包括C3和C4)的第二连接连接到桥式整流器2(D1,D2,D3,D4)的一个输出连接,而电荷泵电路6(C3和C4)的第三连接连接到桥式整流器2(D1,D2,D3,D4)的第二输出连接。隔离变压器T1的第一和第二次级连接连接到输出整流器4的第一和第二输入端,所述第一和第二输入端包括D20和D21。输出整流器4的输出连接到负载5的第一连接,所述负载5的第二连接连接到隔离变压器T1的第三次级连接。

可以看出,通过电流感测器8的电流是负载电流,所述负载电流由变压器T1变换并由输出二极管D20和D21整流,因此可以实现具有非常低的纹波含量的高精度DC电流。

图5示出了本发明的可能的扩展,其中应用要求是用于市电电源输入上较宽的电压范围或输出负载上较大的电压或电流范围。这里,通过增加包括电容器C6和C7的第二电荷泵电路6和二极管D5,可以减轻图4所示的电源转换器电路的限制。第二电荷泵电路6将优选地使用与第一电荷泵电路6中的电容值不同的电容值,并且因此将以与第一电荷泵级6不同的特性运行。

图7示出了当图4的电路最佳地工作时的电流和电压波形。通过负载的相同的电流也流过无源电荷泵电路6(由C3和C4结合D2和D4形成),其在大容量电容器C5上产生电压。这里,在电荷泵电容器C3两端产生的电压足够大,以在整个线路供电波形的整个周期内迫使二极管D2和D4在每个开关周期的一部分中导通。当线电压接近过零点时,通过D2和D4的传导几乎但不完全截止,因此从电源汲取的电流为最小。因此,此时几乎不存在电荷泵送。然而,在线电压的波峰附近,D2和D4的导通最大,约为50%,从而使得从线路电源汲取的电流最大化。

图8示出了在图4电路的输入电压降低(假设控制器将输出电压和电流保持在基本相同的水平)的情况下出现的电流和电压波形。输入电压的降低导致了平均电压的降低和DC大容量电容器C5上的纹波含量增大。控制电路降低开关频率以维持负载电流调节,使得通过二极管D2和D4的电流增加,这部分地补偿了体电源电压。然而,体电源电压的降低和纹波含量的增加意味着当市电电压处于波峰时,体电压降至整流后的市电电压以下。此时,桥式整流器2的一个臂(D3和D1,或D4和D2)几乎接通,将尖锐的脉冲叠加到电流波形上。市电电流波形现在富含谐波,因此不太可能符合谐波发射标准的法定要求。

图9示出了在输入电压增加时发生的相反的电压和电流波形组(再次假设控制器将输出电压和电流保持在基本相同的水平)。与前一种情况一样,失真的线电流波形富含谐波,因此不太可能符合谐波发射标准。

可以通过减小C3的电容值改善图9的不良电流波形,从而增加更多HT电压,但这会迫使HT电容器C5的额定电压增加,从而增加成本。图10中示出了更好的替代方案,其中可以通过向转换器电路添加第二电荷泵电路(C6、C7和D5)来改善图9的失真电流波形,如图5所示。由此,使用两个或两个以上无源电荷泵电路可以改善PF并减少在这些条件下的谐波失真。

图6示出了本发明的另一扩展,其中应用要求是用于市电输入或输出负载上的更宽的电压范围。在这种情况下,可以添加一个或多个电荷泵级,所述电荷泵级包括与一个或多个电荷泵电容器串联的一个或多个有源开关,以允许控制器9修改电荷泵的特性。参照图6,开关电荷泵电路13包括与供电整流电路2的二极管D2和D4一起工作的电容器C9、C10和C11,以及开关S3。开关电荷泵电路13的第一连接连接到电流感测器8的返回端子,第二连接连接到电源整流器2的输入端,第三连接连接到DC大容量电容器C5,并且开关S3的输入连接连接到控制器9。开关S3由来自控制器9的输出连接12的信号控制,响应于诸如DC体电源电压、输入电压、输出电压、负载电流、开关频率或其中某些组合的电路参数。被泵送的附加电荷量由S3的开关位置和C9,C10和C11的电容值确定,当开关S3打开时有更多的电荷。优选地,当控制器9检测到体电源电压已超过预定值时,开关S3将闭合,从而保护大容量电容器C5,以免承受过大的电压。或者,开关S3可以同步地与逆变电路3以一占空比被切换,该占空比响应于所感测的电路参数。可选地,可以在开关电荷泵电路13中添加或省略电容器,以根据需要修改电荷泵送特性。此外,根据所需的开关电荷泵送特性,开关可以与任何电容器串联***。

另一方面,本发明还提供了一种转换AC电源的方法。在优选实施例中,该方法包括整流AC电源以产生整流的电源,逆变整流的电源以产生逆变的电源,整流逆变的电源以产生整流的负载电源,用于向负载提供负载电流,并使用负载电流将额外电荷泵送到整流的电源。

上面已经描述了该方法的优选实施例的其他特征,或者从以上描述中清晰明了。

本发明实现了良好的功率因数,低的总谐波失真,负载电流或电压的严格调节以及负载电流或电压中的低纹波含量。此外,由于仅使用无源元件,因此这些优点均以最低的成本提供。

本发明提供电源转换器电路和方法,用于使用无源电荷泵送技术转换电源以向负载提供经调节或基本恒定的DC电流或电压,实现具有高功率因数的输入电流,具有低纹波含量以及低谐波失真的输出电流或电压。更具体地,本发明适用于诸如开关电源转换器(SMPC)的电源,包括开关电源(SMPS)、逆变器、照明镇流器和无闪烁发光二极管(LED)驱动器。具体地,本发明优选地提供了用于控制AC-DC电源转换器的功率因数的装置和方法。本发明特别适用于谐振开关电源转换器。

可以理解的是,上述实施例仅是用于描述本发明原理的示例性实施例,而本发明不仅限于此。在不脱离本发明的精神和实质的情况下,本领域普通技术人员可以进行各种变型和修改,并且这些变型和修改也包含在本发明的范围内。因此,尽管已经参考具体示例描述了本发明,但是本领域技术人员应可以理解,本发明可以以许多其他形式实施。本领域技术人员还应理解,所描述的各种示例的特征可以以其他组合进行组合。具体地,上述电路装置存在许多可能的排列,其使用相同的无源的方法来实现无源功率因数校正,并且对于本领域技术人员来说是显而易见的。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:交直流检测电路、电源保护电路、开关电源及其保护方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类