生产溶解浆料的方法

文档序号:1009102 发布日期:2020-10-23 浏览:23次 >En<

阅读说明:本技术 生产溶解浆料的方法 (Method for producing dissolving pulp ) 是由 奥沃·凯图纳 萨普赛·拉克索 蒂纳·哈泰宁 马库斯·帕纳宁 于 2019-03-06 设计创作,主要内容包括:本发明涉及一种用于由粉碎的木基纤维材料生产溶解浆料的工艺。该工艺包括以下接连阶段:在硫酸盐蒸煮工艺中用碱性蒸煮液蒸煮粉碎的纤维材料,以生产浆料;在处于70-110℃的温度下且有效碱浓度为60-120g/l的碱提取中处理蒸煮后的浆料至少5分钟;以及洗涤碱提取后的浆料并对其进行氧脱木素处理。(The present invention relates to a process for producing dissolving pulp from comminuted wood-based fibre material. The process comprises the following successive stages: cooking the comminuted fibrous material with an alkaline cooking liquor in a kraft cooking process to produce a slurry; treating the cooked slurry in an alkaline extraction at a temperature of 70-110 ℃ and an effective alkali concentration of 60-120g/l for at least 5 minutes; and washing the slurry after the alkali extraction and performing oxygen delignification treatment on the slurry.)

生产溶解浆料的方法

技术领域

本发明涉及一种用于生产溶解浆料的方法。

背景技术

近年来,强烈需求研制新的纤维原材料,以用于纺织行业和其它聚合物行业的需求。用于生产纤维的一种解决方案是增加溶解浆料的生产,使得粘胶纤维在纺织行业中部分地替代棉花,但是它们还有一些其它应用。

溶解浆料在性质和化学组成方面不同于旨在用于造纸的浆料。溶解浆料的生产致力于形成具有最高可能的纤维素浓度和最低可能的半纤维素(诸如木聚糖)浓度的浆料,同时致力于在蒸煮和漂白期间从漂白后的纸浆中去除木质素,以使纤维素和半纤维素尽可能多地保留在纸浆中。除主要成分外,即纤维素(被称为α-纤维素)外,纸浆可以包含多达25%的半纤维素,而溶解浆料始终包含超过90%的α-纤维素,并且半纤维素的量通常必须低于约5%。

通常通过在强碱性和酸性条件下处理碎屑和/或浆料来寻求溶解浆料的低半纤维素浓度。溶解浆料传统上利用亚硫酸盐法或配备有酸预水解的硫酸盐法制得。如果在溶解浆料的生产中使用硫酸盐法,则在碱性蒸煮之前,木材碎屑经受预水解,其中,在碱性蒸煮之前,在酸性条件下去除了大量的半纤维素。预处理的强度由P因子表示,该P因子在配备有预水解的硫酸盐法中通常取决于木材的类型而在500至1000之间变化。例如,在Sixta,H.编的《浆料手册》(2006年卷1,第343-345页)中解释了P因子的概念。

其中,krei是酸催化水解的相对速率并且取决于温度,并且

t等于时间。

在制浆线的末尾处,类似于纸浆,在漂白阶段中处理浆料,其中,最重要的区别是碱性漂白阶段,该碱性漂白阶段在比维持最大产量的漂白中的温度更高的温度下进行。此外,为了生产粘胶浆料,与纸浆生产中相比,硫酸盐蒸煮和亚硫酸盐蒸煮通常都蒸煮到较低的卡伯数。

如上所述,通常在溶解浆料生产中,在酸性蒸煮工艺之后进行碱提取,或者在碱性蒸煮之前在高温和高压下使碎屑经受酸预水解阶段。在酸性条件下蒸煮碎屑比在碱性条件下的要求更高。酸性条件要求更好的材料,并且在没有碱的润滑作用的情况下,设备的磨损更大。为此,能够在酸性条件下或在使用尽可能温和的酸处理时在无需蒸煮碎屑的情况下生产溶解浆料将是有利的。酸处理的另一个问题可能是,除了去除半纤维素之外,酸处理还导致纤维素产量的下降,并且因此,酸处理越强,浆料产量通常就越低。

在软木中,半纤维素主要由葡甘露聚糖和木聚糖组成。硬木的半纤维素几乎完全由木聚糖组成。木聚糖通常在强碱性条件下溶解。

在浆料生产中用术语“有效碱”指示在纤维素蒸煮中所涉及的蒸煮化学物质的量。有效碱浓度的值描述了蒸煮液的氢氧根离子(OH)浓度。在本申请中,有效碱(g/l)被表示为NaOH。

一种用于溶解来自蒸煮后的浆料的半纤维素的相当有效的方法是碱提取,其中,用碱处理蒸煮后的浆料。该处理方法为冷碱提取或热碱提取。在冷碱提取中,有效碱浓度为60-110g/l的水平,并且温度通常为20-50℃的水平。所使用的另一种方法是热碱提取,在热碱提取中,有效碱浓度通常为4-20g/l的水平,并且温度为80-140℃。这些工艺在Rydholm,S.的《制浆工艺》(1967年,第992-1023页)中得到了广泛处理。热碱提取的效率明显低于冷碱提取的效率,并且通常仅在酸性亚硫酸盐蒸煮的情形中使用热碱提取。在工业工艺中,冷碱提取的低温是不方便的,这是因为它需要额外的冷却并且由于冷浆料的过滤性较差而使得洗涤冷浆料的难度大大增加。众所周知,可以用浓氢氧化钠溶液或在蒸煮中使用的白液进行碱提取。例如,专利申请WO2013/178608提出了一种解决方案,利用该解决方案,可以使用在65℃或更低的温度下进行的碱提取将利用正常碱浓度的硫酸盐蒸煮法(kraftcooking)生产的浆料用于生产溶解浆料。在该解决方案中,在蒸煮和氧气阶段之后进行冷碱提取,并且在氧气阶段期间且在并行蒸煮线上利用碱提取的残留化学物质。在该工艺中,富含木聚糖的碱溶液可以用于在并行线上进行蒸煮。该解决方案的一个难点在于,在浆料的酸处理之前,白液的残留硫化物需要用化学物质进行氧化,以防止形成危险的硫化氢。酸处理可以例如是第一漂白阶段。

发明内容

本发明的目的是消除上述问题并提供一种方法,其中,可以在同一制浆线中,在蒸煮中利用碱提取的残留碱,而无需大量的木聚糖再吸收,并且其中,与在没有碱提取的情况下的溶解浆料的生产相比,溶解浆料生产的酸性条件可以得到减轻。

意想不到的是,在实验中已经观察到,当有效碱浓度为60-120g/l的水平时,木聚糖还在处于70-110℃的水平的较高温度下从蒸煮后的未经漂白的浆料中选择性溶解。碱浓度越高,就可以溶解更多的木聚糖。因此,在较高温度下的碱提取也可以用于从硬木浆料中去除大量的半纤维素。相反地是,已经观察到,软木的另一重要的半纤维素成分(葡甘露聚糖)在这些条件下不会大量溶解。

一种用于由粉碎的硬木基纤维材料生产溶解浆料的新方法,该方法包括以下接连步骤:

-在酸性条件下处理粉碎的纤维材料,使得实现5-250的P因子;

-在硫酸盐蒸煮工艺中用碱性蒸煮液蒸煮粉碎的纤维材料,以生产浆料;

-在70-110℃的温度下且在有效碱浓度为60-120g/l的情况下,在碱提取中处理蒸煮后的浆料至少5分钟,

洗涤碱提取后的浆料,以及

对碱提取后的浆料进行氧脱木素处理。

在适合用于连续蒸煮特别是还适合用于分批蒸煮的根据本发明的解决方案中,碱提取与硫酸盐蒸煮相结合,这有助于与已知工艺中的相比更有效地实现浆料中的低的木聚糖浓度。在蒸煮阶段与氧气阶段之间进行碱提取,以允许碱提取中残留的碱通过简单的连接而在同一蒸煮器设备中得到利用。从碱提取后的浆料中分离出的滤液具有至少为50g/l的有效碱浓度,通常为60-110g/l,并且可以使滤液通到蒸煮。滤液例如用压榨式或分馏式洗涤器分离,目的是获得碱浓度最高可能的滤液。在碱提取阶段期间,可以使用分馏式洗涤来增强碱积聚并增加碱浓度。当在碱提取之前的洗涤阶段(诸如蒸煮器洗涤(digsterwash))供应具有最高可能的碱浓度的洗涤液时,来自洗涤阶段的浆料的碱浓度增加。然后,在添加白液之后实现更高的碱浓度,从而导致在碱提取之前的洗涤阶段具有甚至更高浓度的洗涤液。在分馏式洗涤中,在碱提取之后,更多的稀释滤液被输送至蒸煮,并因此不能稀释碱提取。同时,在蒸煮的最后阶段,碱浓度很高,这使浆料蒸煮期间木聚糖的再吸收最小化。

根据一个优选实施例,根据本发明的方法包括以下接连步骤:

a)在酸性条件下处理粉碎的纤维材料,使得实现5-250的P因子;b)在约120-175℃的蒸煮温度下,用碱性蒸煮液蒸煮纤维材料,以生产浆料,c)在从蒸煮中排出浆料之前,将碱性洗涤液馈送到浆料中,以冷却并且/或者洗涤浆料;d)将白液馈送到蒸煮后的浆料中并与其混合,e)在70-110℃下处理浆料5-120分钟;f)在步骤e)之后,从浆料中去除第一滤液,这样生产的滤液用作浆料洗涤液被逆流输送到浆料流;以及g)在步骤e)之后。从浆料中分离出第二滤液,该第二滤液被输送至步骤b),以构成蒸煮液的至少一部分;以及h)在步骤g)之后,将浆料输送至氧气阶段并进行进一步处理。

在步骤a)中,形成酸性蒸煮废液;如果需要,则可以从纤维材料中提取出该酸性蒸煮废液。在步骤d)中,可以将白液在蒸煮器的底部处供应到浆料中,或供应到从蒸煮器中去除的浆料中。

步骤f)和g)的目的是从浆料中去除至少两种滤液,其中,第一滤液具有最高可能的有效碱浓度。首先,从浆料中分离出具有高有效碱浓度(至少50g NaOH/l)的滤液。该滤液在步骤c)中用作逆流到浆料流的浆料洗涤液。还从碱提取后的浆料中分离出第二滤液,其碱浓度低于第一滤液。该滤液在蒸煮器中用作碱的来源,并被添加至步骤b)。例如,第一滤液可以是在分馏式洗涤器的增稠阶段期间生产的滤液,因此其包含从碱提取后的浆料中分离出的液相。第二滤液通常是在洗涤阶段期间生产的滤液。滤液可以在同一件设备中形成,诸如分馏式洗涤器或接连的压榨机和洗涤压榨机。其它布置结构也是可能的。碱提取也可以在不经分馏式洗涤的情况下进行。分馏式洗涤的优点在于其有助于实现更高的碱浓度和更有效的半纤维素去除。

在碱提取阶段之前,浆料未经氧脱木素处理。当在该可能的氧气阶段之前进行碱提取时,在碱提取和氧气阶段之后的酸性阶段中,不会发生残留硫化物向硫化氢的转化。

氧脱木素处理阶段是本身已知的碱性阶段,其通常在加压下发生,并且其中,氧气在纤维周围存在至少一部分的反应时间。氧气阶段可以具有一个、两个或更多个步骤,在这种情况下,反应步骤包括化学混合和反应容器或通过管完成的反应延迟。通常,将氧气和碱以及可能地是还有防止金属损坏纤维的抑制剂按剂量加入氧气阶段中,或者通过其它手段去除纤维中夹带的金属或使该金属不反应。

在一个实施例中,蒸煮阶段在连续的单个或两个容器式液压或汽相蒸煮器中进行。该方法可以在一个或多个蒸煮容器中进行,例如用蒸煮器和预水解容器的组合。

在一个实施例中,蒸煮阶段作为分批蒸煮器工艺进行。

溶解的木聚糖与碱提取滤液一起进入蒸煮。当在蒸煮中维持足够高的有效碱浓度(至少20g NaOH/l)时,来自碱提取的已溶解的木聚糖不会在接近蒸煮末尾时以有害量沉淀在纤维材料(诸如碎屑)中。蒸煮的第一部分可以具有较低的碱浓度,在这种情况下,一些木聚糖可以沉淀,这是因为一旦蒸煮的碱浓度升高到高水平,则已沉淀的木聚糖就再次溶解。

在根据本发明的所述解决方案中,将蒸煮所需的全部或大部分、即至少60%、通常至少80%、最优选地是超过90%的白液供应到蒸煮后的漂前(brown stock)碱提取中并与其混合。在蒸煮阶段与氧气阶段之间,在70-110℃、优选地是80-100℃的温度范围内进行碱提取。白液可以用作碱提取中的碱的来源。白液的有效碱浓度为90-130g/l NaOH,通常为100-120g/l。根据该新的解决方案,完全不引入新鲜的蒸煮液(即,白液),或将不超过40%、通常低于20%的新鲜的蒸煮液(即,白液)引入蒸煮器或蒸煮阶段自身中。

碱提取之后的浆料增稠和/或洗涤的滤液朝向蒸煮器或蒸煮器设备逆流行进到浆料流。由此供应的白液积聚在这些循环中,这有助于实现碱提取所需的碱浓度。换句话说,当滤液逆流循环时,碱在蒸煮器洗涤之后的浆料增稠和/或洗涤与碱提取之间积聚。因此,即使浆料浓度通常为8-12%,也实现了所需的碱浓度水平。

可以根据需要处理白液和滤液,以实现碱提取所需的温度水平,该温度水平为70-110℃,优选地为80-100℃。在工业规模上,温度通常为70-95℃。碱提取中的处理时间超过5分钟,通常为5-120分钟。在碱提取中,浆料悬浮液的液相的有效碱浓度为60-120g/l,优选地为65-110g/l,最优选地为70-110g/l。浆料洗涤器的富含碱的滤液中的一些滤液被输送至蒸煮阶段,而一些滤液被供应到蒸煮阶段的末尾,例如在蒸煮器的底部。至关重要的是,所有或几乎所有滤液(至少80%)循环通过蒸煮器,这是因为否则的话,有价值的化学物质将会随着经过蒸煮器行进到蒸发器设备的滤液而流失。从蒸煮阶段获得的富含碱的黑液(其有效碱浓度超过20g NaOH/l)一直循环到蒸煮工艺的开始,其中消耗了碱,以在被带到蒸发器设备的黑液中实现正常的残留碱水平,即在10g NaOH/l之下。

根据该新方法的关键特征,在蒸煮与碱提取之间,浆料未经氧脱木素处理。在碱提取之后,对浆料进行进一步处理,这通常包括开始的氧气阶段。当在氧气阶段之前进行碱提取时,浆料的残留硫化物在氧气阶段期间被氧化,并且在氧气阶段之后进行的酸性处理期间没有形成硫化氢的风险。

可以在漂白阶段中对浆料进行进一步处理,该漂白阶段可以包括例如酸性阶段A、Z和D以及碱性阶段E和P。在该进一步处理阶段期间,可以进一步降低浆料中的木聚糖浓度。优选地是,可以在酸性阶段、即A阶段(其中,温度可以为100-130℃并且pH为2-3)中增强木聚糖的去除。在碱提取阶段之后并且优选地是在氧气阶段之后进行A阶段。

在根据本发明的所述解决方案中,半纤维素的去除也可以用酸处理来增强,例如使用正常的预水解阶段或各种酸浆料处理。根据本发明的所述解决方案可以有利地是在蒸煮之前与轻度酸处理相结合,其中,酸水解中的P因子为5-250,并且木材所包含的半纤维素的一部分溶解。可以在预水解容器中进行这种类型的酸处理,就像在使用预水解硫酸盐蒸煮工艺时通常进行的那样,但是温度比通常情况更低或延迟比通常情况更短。酸处理也可以在蒸煮容器的顶部区段中以汽相或液相进行。在连续放入蒸煮器设备中,通常在处于大气压下的碎屑仓中蒸制碎屑,并延迟约10-45分钟。可以通过将碎屑仓加压至约1-10巴的压力来生成轻度酸处理,此时可以将蒸制温度提高至超过120℃,并开始发生水解反应。碎屑仓中的目标是5-50的P因子值。优选地是,碎屑仓的压力水平可以为约2巴并且温度为约135℃,此时常压的碎屑仓仅需要微小的改变,并且可以利用低压馈送器将碎屑供应到该仓中。当在碎屑仓中以汽相进行水解处理时,实际的将碎屑馈送到蒸煮器中可以在碱性条件下发生,以避免由于酸性条件而对仓外碎屑馈送设备造成的磨损。在汽相水解期间形成的冷凝物可以被回收并循环回到进入所述仓的碎屑中,这更快地降低碎屑的pH值并加速水解反应。

附图说明

参考所提供的附图更详细地解释新方法,其中,在图1中示意性地示出了本发明的一个实施例。

具体实施方式

图1呈现了可以实施新方法的典型系统。该系统至少包括蒸煮容器2、碱提取容器3和洗涤器4。蒸煮器2是汽相蒸煮器,但是它也可以是液压蒸煮器。该方法可以在一个或多个蒸煮容器中进行,例如利用蒸煮器和预水解容器的组合进行。特别是在具有多个蒸煮容器的布置结构中,该方法的实施可能与此处描述的细节有所不同,但是适用相同的操作原理。该系统还包括水解反应器5,该水解反应器具有顶部分离器6,该顶部分离器经由管线7从碎屑供应系统(未示出)接收粉碎的硬木基纤维材料悬浮液,诸如碎屑浆料。

预水解容器5可以是汽相反应器或液压容器,其具有用于将材料加热至期望的水解温度的加热循环。

供应材料被输送至位于容器5的顶部处的倒置的顶部分离器6。容器的顶部区段可以是汽相区域,纤维材料通过该汽相区域从顶部分离器6落到液体和碎屑柱的表面。在顶部分离器中,液体与纤维材料分离,并经由管线8行进至碎屑供应系统。可以引入蒸汽和加压空气,以产生用于水解的合适的压力和温度。纤维材料的温度升高到高于自水解温度(自水解温度可以超过140℃,例如155℃)并维持在该温度下,以促进水解。目标是5-250的P因子值,它决定了上述条件。当从纤维材料中释放出有机酸时,发生自水解。如果添加稀酸,则水解温度可能在150℃以下,例如在150至120℃之间。纤维材料和液体在容器5中向下并流流动。所形成的水解产物可通过筛网9被移除至管线10,并带到进一步处理。

在水解容器5的底部,将稀释液经由管线11从蒸煮容器2添加到纤维材料,以帮助将纤维材料经由管线12运输至蒸煮器2的顶部分离器13。回流管线11中的稀释液是碱性的,因此当材料从预水解容器流到蒸煮器2时,稀释液使纤维材料变为碱性。来自黑液过滤器的废料可以经由管线15被引入管线11;废料包含纤维和未蒸煮的纤维材料。

纤维材料处于碱性状态,诸如在pH 13或接近于pH 13,例如在pH 12-14。作为示例,例如取决于在蒸煮器中的停留时间和碱浓度,纤维材料可以在120-175℃或130-160℃的温度范围内被保持在蒸煮器中。在这种情况下,H因子为100-500,通常为200-300。

通过添加蒸汽以及可能的是还有空气或惰性气体来升高并控制蒸煮器2中的温度。蒸煮器可以是汽相容器或全液压容器。水解容器的底部处的压力是蒸汽压力与纤维材料和液体柱的液压压力的组合。该组合的压力高于蒸煮器的顶部处的压力。这种压差将纤维材料经由管线12、14运输至蒸煮器的顶部分离器。此外,当蒸煮器为液压蒸煮容器时,加热液循环可以用于将纤维材料加热至期望的温度。

蒸煮器可以包括多个并流和逆流的蒸煮区域。最上面的蒸煮区域可以是纤维材料和液体的并流区域。

蒸煮器包括筛网16、17和18。在区域I中用蒸煮液对纤维材料进行处理。区域I中的温度(例如通过馈送蒸汽来控制)例如为144℃。所供应的蒸煮液的有效碱浓度通常为20-50g NaOH/l,其在区域I中被消耗,使得经由筛网16去除的蒸煮废液的有效碱浓度小于10gNaOH/l。例如为4g NaOH/l,并且其温度例如为151℃。区域I的蒸煮废液通常经由管线19运送至蒸发器设备。

蒸煮区域I之后是逆流蒸煮区域II,该逆流蒸煮区域在筛网16和17之间。尽管已将处理示出为逆流,但处理也可以是并流。在区域II的末尾,蒸煮废液被提取到循环20中,该循环包括一个或多个筛网17、一个泵21和一个间接热交换器22。蒸煮液经由管线23被添加到循环20的材料中。将蒸煮所需的大部分的碱剂量(例如50%)经由通向循环20的管线23添加到纤维材料悬浮液。这将导致在蒸煮器中的高的有效碱浓度,该有效碱浓度超过25gNaOH/l,优选地是超过35g/l。在悬浮液流动到并流蒸煮区域III之前,加热的循环20通常将纤维材料悬浮液及其蒸煮液加热到蒸煮温度,该蒸煮温度通常为120-175℃。为了实现高的碱浓度和高的pH而经由管道23添加的蒸煮液可以具有以下特征:木材上的总碱为约8-16%,有效碱浓度为约40-80g/l(通常约50-70g/l)(以NaOH测量),并且流量约为浆料的2.0-6.0m3/BDMT(m3/全干公吨),通常约为浆料的3.0-5.0m3/BDMT。管线23的蒸煮液的有效碱浓度例如为58g NaOH/l,并且其温度例如为94℃。

如果需要,则白液可以经由管线20'被输送至循环20。

随着蒸煮反应的继续进行,纤维材料在蒸煮温度下在蒸煮器区域III中向下并流行进。现在,在蒸煮器的下部,利用筛网组件18从蒸煮后的纤维材料(诸如碎屑)中提取出热的蒸煮废液。来自位于更远处的浆料洗涤器的洗涤滤液经由一个或多个管道27而被供应到蒸煮器的底部,以结束蒸煮反应并降低蒸煮后的碎屑浆料的温度。

然后,将浆料经由排出装置25从蒸煮器中移除至管道26。

经由筛网组件18和管道24从蒸煮器中提取出热的蒸煮废液。该热液具有相对较高的新鲜碱浓度,即,残留碱浓度。管道24中的液体的有效碱浓度通常为至少20g/l,优选地是至少约为25g/l,例如41g/l。包含碱和硫化物的该液体经由管道24被输送至回流管线11,以用于在所供应的碎屑的预处理中或在区域I中使用。管道24中的液体的温度可以例如为143℃。

蒸煮后的浆料经由管线26被输送至容器3中的碱提取。容器3可以是常规的蒸煮器卸料罐或另一类型的容器。离开蒸煮器的浆料的有效碱浓度为60-110g NaOH/l,例如91g/l,并且其温度为70-110℃,例如102℃。供应来自管线34的、蒸煮工艺和碱提取所需的白液,并将其与在管线26中流动的浆料混合。白液的有效碱浓度为90-130g/l NaOH,通常为100-120g/l,例如115g/l。碱提取在70-110℃(例如90℃)的温度下进行。从蒸煮器排出的浆料的温度可以通过调节在蒸煮器的底部处添加到浆料的洗涤滤液的温度来调节。碱提取的持续时间为5-120分钟。

碱提取后的浆料经由管线28从容器3被带到浆料增稠器或洗涤器4,该浆料增稠器或洗涤器可以例如是压榨机、洗涤压榨机或分馏式洗涤器,并且可以有其中的一个或多个。来自氧气阶段或漂白阶段的水或滤液经由管线33被输送至用于洗涤液的洗涤器。目的是从浆料中分离出至少两种滤液,其中,第一滤液具有高的有效碱浓度。第一滤液可以是在分馏式洗涤器的增稠阶段期间产生的滤液,该滤液由此包含从碱提取后的浆料中分离出的液相。第二滤液通常是在洗涤阶段期间产生的滤液。滤液可以在同一件设备(诸如分馏式洗涤器或接连的压榨机和洗涤压榨机)中形成。

首先,从浆料中分离出具有高的有效碱浓度(例如94g NaOH/l)的滤液。来自滤液罐29的这一滤液用作蒸煮器的底部处的洗涤液,这有助于实现最高可能的碱提取浓度水平。蒸煮器的洗涤区域是逆流的,其中,管线27的富含碱的洗涤液经由筛网18将蒸煮区域III的蒸煮液从蒸煮器中移出,并继续在容器3中对浆料进行碱提取。

从浆料获得的更稀的滤液在蒸煮器中用作碱的来源,并将其经由管线23从滤液罐30带到循环20,再通过循环20将其添加到蒸煮区域。经由管线23和循环20将蒸煮所需的大部分的碱剂量(至少50%)添加到纤维材料悬浮液。

滤液包含在碱提取期间从纤维材料中分离出的木聚糖。因为在接近蒸煮的末尾维持了足够高的有效碱浓度(至少20g NaOH/l),所以在蒸煮期间,来自碱提取的溶解的木聚糖不会以有害量沉淀在纤维材料(诸如碎屑)中。

通过为管线布置间接热交换器(未示出),可以利用从蒸煮器提取出的蒸煮废液24和/或19的热量来加热管线23的滤液。

首先,经由滴管31和管线32将浆料从洗涤器4中去除到进一步处理,该进一步处理通常包括氧气阶段。可以在漂白阶段对浆料进行进一步处理,该漂白阶段例如可以包括:酸性阶段A、Z(臭氧)和D(二氧化氯)以及碱性阶段E(提取)和P(过氧化物)。在进一步处理阶段期间,可以进一步降低浆料中的木聚糖浓度。

优选地是,在酸阶段、即A阶段(其中,温度可以为100-130℃并且pH为2-3)可以进一步增强木聚糖的去除。A阶段在碱提取阶段之后,优选地是在氧气阶段之后。

示例1:

在实验室中分析了根据本发明的方法。原材料是木聚糖浓度为12.1%的硬木碎屑。当碎屑以正常的碱度蒸煮时,在卡伯数为17.1的情况下蒸煮产量为53.3%,并且浆料中的木聚糖浓度为14.5%,这意味着保留了碎屑中的62%的原始木聚糖。

当根据该方法以较高的碱浓度蒸煮碎屑时,在卡伯数为14.5的情况下蒸煮产量为50.4%,并且浆料中的木聚糖浓度为12.3%,这意味着保留了碎屑中的50%的原始木聚糖。当在50℃的温度下对该浆料进行碱提取时,其产生卡伯数为8.7且木聚糖浓度为5.0%的浆料。因此,仅保留了碎屑中的16%的原始木聚糖。当对应的碱提取的温度为90℃时,浆料的卡伯数为8.8,并且其木聚糖浓度为5.9%,并且保留了碎屑中的20%的原始木聚糖。实验室测试表明,两种浆料都可以用作溶解浆料,特别是在适当的进一步处理和/或预处理之后,并且在70-100℃的正常的漂前洗涤温度范围内,也可以非常成功地进行碱提取,并且对于成功的碱提取来说,高碱度蒸煮产生比正常的更好的起点。

示例2:

在实验室中分析了根据本发明的方法。原材料是木聚糖浓度为15.5%的硬木碎屑。当首先对碎屑进行200P因子的预水解阶段以及在高碱浓度下的蒸煮阶段时,在卡伯数为10.2的情况下蒸煮产量为44.2%,并且浆料中的木聚糖浓度为5.5%。因此,保留了碎屑中的16%的原始木聚糖。当在90℃的温度和约80g/l的碱浓度下对该浆料进行碱提取时,其生产卡伯数为6.9且木聚糖浓度为2.6%的浆料。预水解、蒸煮和碱提取之后的总产量为42.3%。因此,仅保留了7%的原始木聚糖。当在实验室中使用相同的原材料,利用500P因子的常规预水解蒸煮来生产溶解浆料时,产量为39.4%,卡伯数为6.6,并且浆料中的木聚糖浓度为2.5%。这些实验室测试表明,与使用常规的预水解工艺时相比,利用碱提取,可以以明显更高的产量生产出优质的溶解浆料。

新解决方案的优点:

该方法比以前更简单、更经济地将碱提取连接到同一生产线上的蒸煮工艺,这是因为蒸煮的碱度避免了碎屑中的过多的木聚糖沉淀。当在氧气阶段之前进行碱提取时,在随后的酸性阶段中不会发生残留硫化物向硫化氢的转化。利用根据本方法的碱提取,可以大大减轻预水解阶段,这显着提高浆料产量。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有增加的弯曲刚度和横向强度的纸产品及其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!