用于改善低温下性能的太阳能电池设计

文档序号:1024264 发布日期:2020-10-27 浏览:34次 >En<

阅读说明:本技术 用于改善低温下性能的太阳能电池设计 (Solar cell design for improved performance at low temperatures ) 是由 P·T·肖 C·M·菲泽 X·刘 于 2020-02-18 设计创作,主要内容包括:本发明的名称是用于改善在低温下性能的太阳能电池设计。一种包括至少一个太阳能电池的面板,该太阳能电池具有由砷化镓(GaAs)或砷化铟镓(InGaAs)组成的电池,该太阳能电池具有由p型掺杂的砷化铝镓(AlGaAs)或砷化铟铝镓(InAlGaAs)组成的背面场(BSF),用于在低于-50℃的温度下增强太阳能电池的运行。在一个实例中,背面场包括Al&lt;Sub&gt;x&lt;/Sub&gt;Ga&lt;Sub&gt;1-x&lt;/Sub&gt;As或In&lt;Sub&gt;0.01&lt;/Sub&gt;Al&lt;Sub&gt;x&lt;/Sub&gt;Ga&lt;Sub&gt;1-x&lt;/Sub&gt;As,其中x小于约0.8,例如0.2。背面场可以是利用锌(Zn)或碳(C)p型掺杂的。(The name of the invention is a solar cell design for improved performance at low temperatures. A panel comprising at least one solar cell having a cell comprised of gallium arsenide (GaAs) or indium gallium arsenide (InGaAs), the solar cell having a Back Surface Field (BSF) comprised of p-type doped aluminum gallium arsenide (AlGaAs) or indium aluminum gallium arsenide (InAlGaAs) for use belowEnhancing the operation of the solar cell at a temperature of-50 ℃. In one example, the back surface field includes Al x Ga 1‑x As or In 0.01 Al x Ga 1‑x As, wherein x is less than about 0.8, such As 0.2. The back surface field may be p-type doped with zinc (Zn) or carbon (C).)

用于改善低温下性能的太阳能电池设计

技术领域

本公开一般地涉及用于改善低温下性能的太阳能电池设计。

背景技术

尽管标准的天基太阳能电池在运行在接近或高于室温的任务中使用,但现在太阳能电池的许多新应用需要在远低于-50℃的温度下运行。

例如,UAV(无人飞行器)可以在温度接近-70℃的超过50,000英尺的高度上运行。在另一个实例中,对木星和土星的深空探索在-140至-165℃之间运行。

因此,对于这些越来越常见的应用,低温下的太阳能电池性能至关重要。不幸的是,许多太阳能电池针对接近室温的性能进行优化,而在低温下的性能明显丧失。

因此,具有对在低于约-50℃的温度下运行而优化的装置的太阳能电池设计的需求。

发明内容

本公开描述了一种装置,其包括:包括至少一个太阳能电池的面板,该太阳能电池具有由砷化镓(GaAs)或砷化铟镓(InGaAs)组成的电池,该太阳能电池具有由p型掺杂的砷化铝镓(AlGaAs)或砷化铟铝镓(InAlGaAs)组成的背面场(BSF),用于增强在低于约-50℃的温度下的太阳能电池运行。

背面场可包括AlxGa1-xAs或In0.01AlxGa1-xAs,其中x小于约0.8,例如,其中x=0.2。背面场可以利用锌(Zn)或碳(C)p型掺杂的。

与由磷化铟镓(GaInP)组成的中间电池背面场相比,上述背面场可以与具有较低的势垒高度的中间电池(MC)基体形成异质结。

上述背面场可以与在价带中具有约90meV或更低的势垒高度的中间电池基体形成异质结。势垒高度允许大多数载流子空穴的热化降至低于约-50℃的温度,其消除了与势垒相关的电阻损耗。势垒高度消除了电阻损耗。

在室温和约-150℃的温度之间的温度范围内,太阳能电池的效率随温度降低而单调递增。

本公开还描述了一种方法,其包括:制造包括至少一个太阳能电池的面板,该太阳能电池具有由锌掺杂的砷化铝镓组成的中间电池背面场,用于在低于约 -50℃的温度下增强太阳能电池的运行。

此外,本公开描述了一种方法,其包括:使用包括至少一个太阳能电池的面板产生电流,该太阳能电池具有由砷化镓(GaAs)或砷化铟镓(InGaAs)组成的电池,该太阳能电池具有由p型掺杂的砷化铝镓(AlGaAs)或砷化铟铝镓(InAlGaAs) 组成的背面场,用于在低于约-50℃的温度下增强太阳能电池的运行。

最后,本公开描述了一种装置,其包括:包括至少一个太阳能电池的面板,该太阳能电池具有中间电池基体和中间电池背面场,用于增强在低于约-50℃的温度下太阳能电池运行;其中基体由砷化镓(GaAs)或砷化镓铟(GaInAs)组成,并且背面场由一种材料组成,致使:背面场相对于基体具有小于约100meV的价带偏移;背面场相对于基体具有I型或II型带排列;并且背面场相对于基体保持大于约0meV的导带偏移,以便背面场充当异级(hetero-step)钝化层,并且将少数载流子电子反射回p-n结进行收集。

基面场的晶格常数可以与中间电池基体的晶格常数大约相同。

背面场可以由AlxGa1-xAs组成,其中x小于约0.8。

背面场可以由砷化铝镓铟(AlxGa1-x-yInyAs)组成,其中x小于约0.8,并且选择y以便背面场的晶格常数与基体的晶格常数大约相同。

背面场可以由砷化铝镓锑(aluminum gallium arsenide antimony)(AlxGa1- xAs1-ySby)组成,其中x小于约0.8,并且选择y以相对于基体匹配I型或II型带排列。

在每种情况下,空间飞行器可以包括该面板。

附图说明

现在参考附图,其中相似的参考标记始终代表相应的部分:

图1是三结太阳能电池的层示意图,图解了图1(左图)中的基线太阳能电池和图1(右图)中的新太阳能电池。

图2是对于基线太阳能电池从-150℃至30℃测量的LIV(光-电流-电压)曲线的图。

图3A和3B是提供新的和基线太阳能电池的背面场与基体异质结的带隙图的比较的图。

图4A、4B和4C是显示用于改善低温性能的不同材料情况的可能带排列的图。

图5是对于新太阳能电池从-150℃到30℃测量的LIV曲线的图。

图6是基线和新太阳能电池的背面场的最大功率作为温度的函数的图。

图7A图解了制造太阳能电池、太阳能电池面板和/或卫星的方法。

图7B图解了具有由太阳能电池组成的太阳能电池面板的所得卫星。

图8是功能方框图的形式的太阳能电池面板的图示。

具体实施方式

在下面的描述中,参考构成其一部分的附图,并且其中通过图解的方式显示了可以实践本公开的具体实例。应当理解,在不脱离本公开的范围的情况下,可以利用其他实例并且可以进行结构改变。

概览

本公开描述了用于改善在低温(例如低于-50℃)下的太阳能电池性能的太阳能电池的设计规则。

具体地,在低温性能中的主要限制是异质结电阻的存在,其随温度的降低呈指数增加。在标准三结(3J)太阳能电池中的主要异质结电阻出现在中间电池基体和BSF之间。在价带中材料的偏移充当整流二极管。在标称运行温度下,势垒很容易被收集在电路中的光生空穴克服。在低温下,价带能量的中断或异级充当整流势垒。

先前曾尝试解决在低温下3J太阳能电池性能的该问题。

一种尝试是在低温下使用标准的3J空间太阳能电池并忍受任何低温性能下降。

另一个尝试是改变与中间电池BSF的界面附近的中间电池基体中的p型掺杂。掺杂的变化可以使异质结势垒的宽度变窄,允许增加穿过异质结势垒的隧穿传输并降低异质结电阻。这缓解了问题,但取决于温度和确切的掺杂水平充其量是脆弱的。

本公开通过替换基线BSF材料以减小、消除或重新定向异质结势垒来减小该异质结电阻。具体地,本公开描述的一个实例描述了一种新太阳能电池,该太阳能电池具有由AlGaAs或InAlGaAs组成的中间电池BSF,用于改善在低于约-50℃的温度下的太阳能电池性能。在一个实例中,新BSF包括AlxGa1-xAs或 In0.01AlxGa1-xAs,其中x=0.2。

实验数据表明,相对于基线BSF,在-150℃下,新BSF的效率提高了25%。实际上,新太阳能电池性能比基线太阳能电池高20-30%。

技术描述

图1是层示意图,每个显示了分别包括基线和新III-V 3J太阳能电池100a、 100b的装置的横截面。

图1(左图)显示了如当前制造的基线III-V 3J太阳能电池100a。太阳能电池100a包括5-15mΩ的p掺杂的锗(p-Ge)衬底102,在其上沉积和/或制造标准(std) 成核层104、缓冲层106、下隧道结108、Zn掺杂的GaInP BSF 110a、由GaInAs 基体112和InGaAs发射极114组成的中间电池(MC)、MC窗口116、顶部隧道结118、由GaInP组成的顶部电池(TC)BSF 120、由GaInP组成的TC 122、磷化铝铟(AlInP)窗口124和GaInAs盖126。

图1(右图)显示了根据本公开的新III-V 3J太阳能电池100b,其中利用Zn p 型掺杂的AlGaAs BSF 110b替代了基线太阳能电池100a的中间电池中的GaInP BSF 110a。在一个实例中,BSF 110b包括AlxGa1-xAs,其中x=0.2。在可选的实例中,BSF 110b可包含In0.01AlxGa1-xAs,其中x=0.2。在可选的实例中,BSF 110b 可以是利用碳(C)p型掺杂的。太阳能电池100a、100b可包括为了简化附图而未说明的其他特征,例如抗反射涂层、前后金属触点等。

图2是电流(A)对电压(V)的图,图解了在基线太阳能电池100a的中间电池中使用GaInP BSF 110a的结果。从室温降到-50℃,LIV曲线表现良好,在Voc(开路电压)附近具有线性行为。由于Voc的增加,在此范围内效率随温度的降低而增加。但是,对于低于-50℃的温度,LIV在Voc附近显示非线性。这些非线性导致填充因子的损失以及太阳能电池100a性能的明显损失。这种非线性是由泄漏的二极管整流引起的。

图3A和图3B是提供对AlGaAs BSF 110b和GaInP BSF 110a的带隙图的比较的图,两者均与GaInAs基体112形成异质结。

如图3A所示,建模表明与GaInP BSF 110a相比,AlGaAs BSF 110b与在价带中具有约90meV或更小的较低势垒高度的中间电池基体112形成异质结。较低势垒高度允许将多数载流子空穴的热化降到低得多的温度,即低于约-50℃的温度,这消除了与势垒相关的电阻损耗。

如图3B所示,GaInP BSF 110a在价带中形成了300meV的明显更高的异质结势垒高度。在高于-50℃的温度下,具有足够的热能用于多数载流子空穴热化以跨越该势垒。在低于-50℃的温度下,没有足够的热能,导致异质结电阻在Voc 附近在太阳能电池100a LIV曲线中表现为非线性行为的形式。因此,增加掺杂不会消除该问题。

图4A、4B和4C是显示用于改善低温性能(例如,低于-50℃)的不同材料情况的可能的带排列的图。

图4A显示了与图3A类似的情况,其具有I型偏移,其中价带接近基体材料的价带且获得小于100meV的小偏移。此限制非常重要,因为在低于-50℃的温度下,克服势垒的空穴能量大约不超过-50℃下kT或19.3meV的标准热能的五倍。

图4B显示了可能的设计,其中在基体和BSF之间的价带中没有发生偏移。

图4C显示了可能的设计,其中偏移是II型的和存在负偏移,并且BSF价带能高于基体材料的价带能量。此外,对于II型带排列材料存在接近100meV 的限制,因为异级偏移将形成整流势垒。

对于材料选择,BSF材料的实际能级是变化的,并且是III-V族半导体装置领域技术的人员所熟知的。最好从遵循以下主要标准的材料中选择用于GaAs 或GaInAs基体子电池的BSF材料:首先,它们必须具有低于100meV的价带偏移;其次,它们相对于基体可以是I型或II型带排列;和第三,它们必须对导带保持大于0meV的带偏移,以便它们继续充当异级钝化层,并将少数载流子电子从界面反射并回到p-n结进行收集。

最后,如果BSF的晶格常数与基体的晶格常数接近或大约相同,则材料的选择是优秀的。该标准允许在界面处产生最少数量的缺陷,并且BSF降低了少数载流子的界面复合速度。

针对GaAs和GaInAs作为实例,BSF材料的最佳选择可以选自:AlxGa1-xAs,其中x小于0.8;AlxGa1-x-yInyAs,其中x小于0.8,并且选择y以允许合金BSF 近似地匹配基体材料晶格常数;AlxGa1-xAs1-ySby,其中x小于0.8,并且选择y 以匹配I型或II型排列。多种其他组合可以选自GaNAs、AlGaAs、AlGaAsSb、 AlGaPAs、AlGaPAsSb、AlGaInAs、AlGaInPAs、AlGaInPAsSb、AlGaAsBi、 AlGaInPAsBi、BGaAs、BAlGaAs、BAlGaInAs等的多元合金,以及以上组合的材料合金的进一步的实例。可以提出用于其他基体材料的子电池的进一步组合,例如GaInP、AlGaInP、AlGaInAs、GaInNAs、GaInNAsSb、InPGaInAs和GaAsSb,只要遵循上述标准即可。

图5是电流(A)与电压(V)的图,图解了降低的异质结势垒对新太阳能电池100b性能的影响。与图2中说明的具有GaInP BSF 110a的基线太阳能电池100a 相比,下降到-150℃的最低的测量温度,具有AlGaAs BSF 110b的新太阳能电池 100b显示出表现良好的LIV曲线,特别是在接近Voc时。具有AlGaAs BSF 110b 的新太阳能电池100b仍展现出随着温度降低而增加的Voc。

图6是最大功率(mW/cm2)相对于温度(C)的图,其比较了具有GaInP BSF 110a的基线太阳能电池100a与具有AlGaAs BSF 110b的新太阳能电池100b。

对于GaInP BSF 110a的情况,由于从室温到-50℃时基线太阳能电池100a 的电压升高而导致效率提高。从-50℃到-150℃的温度时,由于高的异质结电阻和Voc附近相关的非线性,基线太阳能电池100a的效率随着温度降低而降低。

对于AlGaAs BSF 110b的情况,对于在大约20℃至30℃的室温和大约-150℃的温度之间的温度范围,新太阳能电池100b的效率随着温度降低而单调增加。从-50℃开始,这种鲜明对比的行为导致低温电池性能的差异。在-150℃下,新太阳能电池100b的效率差异为25%,这对于在这些条件下运行的太阳能电池 100a、100b是明显的改进。

可选方案和修改

出于说明和描述的目的已经呈现了上面阐述的说明书,并且其不旨在详尽的或限制所描述的实例。可以使用许多可选方案和修改来代替上面阐述的具体描述。

例如,尽管AlGaAs和InAlGaAs是迄今为止研究最多的材料,但也可使用多种其他可能的材料。可使用Al0.2Ga0.8As以外的AlGaAs和In0.01Al0.2Ga0.8As以外的InAlGaAs的组合物,以及与Ge/GaAs衬底晶格匹配的InGaAsP合金。

在另一个实例中,尽管本公开描述了被广泛采用的三结太阳能电池,但可将其扩展至覆盖设计为包括用于多数载流子降低异质结电阻的材料的单结、双结或其他多结太阳能电池的任何实例。这将分别包括用于价带或导带的任何BSF 到基体的跃迁或窗口到发射极的跃迁。

在仍另一个实例中,尽管本公开内容一般地描述了新太阳能电池100b,并且BSF110b,具体地如包括某些材料的可选方案可以将新太阳能电池100b和 BSF 110b描述为由这些或其他材料组成或基本上由这些材料或其他材料组成。

类似地,尽管本公开描述了新太阳能电池100a在约-50℃或更低的温度下以期望的方式运行,但是可选方案可将新太阳能电池100描述为在约-100℃或更低的、-150℃或更低的或其他更低的温度下运行。

航空航天应用

可以在制造太阳能电池、太阳能电池面板和/或例如卫星的航空航天飞行器的方法700的背景中描述本公开的实例,如图7A中所示,该方法700包括步骤 702-714,其中,由多种系统718和主体720组成的所得的卫星716如图7B所示,其包括由的一个或多个太阳能电池100b的阵列724组成的面板722。

如图7A说明,在生产前期间,示例性方法700可包括卫星716的规格和设计702,以及用于其的材料采购704。在生产期间,进行卫星716的部件和子组件制造706以及系统集成708,其包括制造卫星716、面板722、阵列724和太阳能电池100b。此后,卫星716可以经过认证和交付710,从而被投入使用 712。在发射之前,卫星716也可以被安排进行维护和保养714(包括修改、重新配置、整修等)。

方法700的每个过程可以由系统集成商、第三方和/或运营商(例如,客户) 进行或执行。对于本说明的目的,系统集成商可以包括但不限于任何数量的制造商和主系统分包商;第三方可以包括但不限于任何数量的卖主、分包商和供应商;并且运营商可以是卫星公司、军事实体、服务机构等。

如图7B所示,通过示例性方法700制造的卫星716可以包括多种系统718 和主体720。卫星716所包括的系统718的实例包括但不限于推进系统726、电气系统728、通信系统730和电力系统732中一种或多种。也可以包括任何数量的其他系统。

功能方框图

图8是根据一个实例,功能方框图的形式的面板722的图示。面板722由阵列724组成,阵列724由单独附于面板722的一个或多个太阳能电池100b组成。至少一个太阳能电池100b具有AlGaAs BSF 110b。每个太阳能电池100b吸收来自光源802的光800,并响应其而产生电输出804。

进一步,本公开包括根据以下条款的实例:

条款1.一种装置,其包括:包括至少一个太阳能电池的面板,该太阳能电池具有由砷化镓(GaAs)或砷化铟镓(InGaAs)组成的电池,该太阳能电池具有由p 型掺杂的砷化铝镓(AlGaAs)或砷化铟铝镓(InAlGaAs)的组成的背面场(BSF),用于在低于约-50℃的温度下增强太阳能电池的运行。

条款2.根据条款1的装置,其中背面场由AlxGa1-xAs或In0.01AlxGa1-xAs组成。

条款3.根据条款2的装置,其中x小于约0.8。

条款4.根据条款3的装置,其中x=0.2。

条款5.根据条款1-4中任一项的装置,其中背面场是利用锌(Zn)或碳(C)p 型掺杂的。

条款6.根据条款1-5中任一项的装置,其中与由磷化铟镓(GaInP)组成的中间电池背面场相比,该背面场与具有较低的势垒高度的中间电池基体形成异质结。

条款7.根据条款1-6中任一项的装置,其中背面场与在价带中具有约90 meV或更小的势垒高度的中间电池基体形成异质结。

条款8.根据条款7的装置,其中势垒高度允许将大多数载流子空穴的热化降至低于约-50℃的温度,其消除了与势垒相关的电阻损耗。

条款9.根据条款7或8的装置,其中势垒高度消除了电阻损耗。

条款10.根据条款1-9中任一项的装置,其中在室温和约-150℃的温度之间的温度范围内,太阳能电池的效率随温度降低而单调增加。

条款11.根据条款1-10中任一项的装置,进一步包括:包括该面板的空间飞行器。

条款12.一种方法,其包括:制造包括至少一个太阳能电池的面板,该太阳能电池具有由砷化镓(GaAs)或砷化铟镓(InGaAs)组成的电池,该太阳能电池具有由p型掺杂的砷化铝镓(AlGaAs)或砷化铝镓铟(InAlGaAs)组成的背面场,用于在低于约-50℃的温度下增强太阳能电池的运行。

条款13.根据条款12的方法,其中背面场由AlxGa1-xAs或In0.01AlxGa1-xAs 组成,其中x小于约0.8。

条款14.根据条款12或13的方法,其中背面场是利用锌(Zn)或碳(C)p型掺杂的。

条款15.一种方法,其包括:使用包括至少一个太阳能电池的面板产生电流,该太阳能电池具有由砷化镓(GaAs)或砷化铟镓(InGaAs)组成的电池,该太阳能电池具有由p型掺杂的砷化铝镓(AlGaAs)或砷化铟铝镓(InAlGaAs)组成的背面场,用于在低于约-50℃的温度下增强太阳能电池的运行。

条款16.根据条款15的装置,其中背面场由AlxGa1-xAs或In0.01AlxGa1-xAs 组成,其中x小于约0.8。

条款17.一种装置,其包括:包括至少一个太阳能电池的面板,该太阳能电池具有中间电池(MC)基体和中间电池背面场(BSF),用于增强在低于约-50℃的温度下太阳能电池的运行;其中基体由砷化镓(GaAs)或砷化镓铟(GaInAs)组成,并且背面场由一种材料组成,使得:背面场相对于基体具有小于约100meV 的价带偏移;和背面场相对于基体具有I型或II型带排列;并且背面场相对于基体保持大于0meV的导带偏移,以便背面场充当异级钝化层,并将少数载流子电子反射回p-n结进行收集。

条款18.根据条款17的装置,其中背面场的晶格常数与中间电池基体的晶格常数大约相同。

条款19.根据条款17或18的装置,其中背面场由砷化铝镓(AlxGa1-xAs)组成,其中x小于约0.8。

条款20.根据条款17-19中任一项的装置,其中背面场由砷化铝镓铟 (AlxGa1-x- yInyAs)组成,其中x小于约0.8,并且选择y以便背面场的晶格常数与基体的晶格常数大约相同。

条款21.根据条款17-19中的任一项的装置,其中背面场由砷化铝镓锑 (AlxGa1- xAs1-ySby)组成,其中x小于约0.8,并且选择y以相对于基体匹配I型或 II型带排列。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:波导型GePb红外光电探测器及其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类