电化学式氢泵

文档序号:1026698 发布日期:2020-10-27 浏览:16次 >En<

阅读说明:本技术 电化学式氢泵 (Electrochemical hydrogen pump ) 是由 鹈饲邦弘 中植贵之 可儿幸宗 于 2019-12-16 设计创作,主要内容包括:一种电化学式氢泵,具备:电解质膜、设在电解质膜的一个主面上的阳极催化剂层、设在电解质膜的另一主面上的阴极催化剂层、设在阳极催化剂层上的阳极气体扩散层、设在阳极气体扩散层上的阳极隔膜、以及在阳极催化剂层与阴极催化剂层之间施加电压的电压施加器,通过电压施加器施加上述电压,使供给到阳极催化剂层上的含氢气体中的氢向阴极催化剂层上移动并升压,阳极气体扩散层包含碳多孔体片,碳多孔体片包含碳纤维和不同于碳纤维的碳材料,碳多孔体片中,阳极隔膜侧的第1表面层的气孔率大于阳极催化剂层侧的第2表面层的气孔率。(An electrochemical hydrogen pump is provided with: the present invention relates to a gas-liquid separator including an electrolyte membrane, an anode catalyst layer provided on one principal surface of the electrolyte membrane, a cathode catalyst layer provided on the other principal surface of the electrolyte membrane, an anode gas diffusion layer provided on the anode catalyst layer, an anode separator provided on the anode gas diffusion layer, and a voltage applier applying a voltage between the anode catalyst layer and the cathode catalyst layer, wherein the voltage applier applies the voltage to move hydrogen in a hydrogen-containing gas supplied to the anode catalyst layer to the cathode catalyst layer and raise the pressure of the hydrogen, the anode gas diffusion layer includes a carbon porous sheet including carbon fibers and a carbon material different from the carbon fibers, and the porosity of a 1 st surface layer on the anode separator side is larger than the porosity of a 2 nd surface layer on the anode catalyst layer side.)

电化学式氢泵

技术领域

本公开涉及一种电化学式氢泵。

背景技术

近年来,由于地球温室化等环境问题、石油资源枯竭等能源问题,氢作为替代化石燃料的清洁性替代能源受到关注。氢即使燃烧也基本上仅放出水,不会排放成为地球温室化原因的二氧化碳,并且基本上不排放氮氧化物等,所以期待其作为清洁能源。另外,作为高效地利用氢作为燃料的装置,有例如燃料电池,正不断推进面向汽车用电源和家用私人发电开发和普及。

在即将到来的氢社会中,除了制造氢以外,还要求开发能够以高密度存储氢并以小容量和低成本运输或利用氢的技术。特别是要促进作为分散型能源的燃料电池的普及,需要配备氢供给基础设施。另外,为了稳定地供给氢,进行了各种制造、提纯和以高密度存储高纯度氢的研究。

例如,专利文献1提出了一种高压制氢装置,其在将固体高分子电解质膜、供电体和隔膜的层叠体用端板夹持的状态下,通过贯穿端板的紧固螺栓来紧固层叠体。在该高压制氢装置中,当在高压侧阴极供电体和低压侧阳极供电体间产生预定压力以上的压差时,固体高分子电解质膜和低压侧阳极供电体变形。于是,高压侧的阴极供电体与固体高分子电解质膜间的接触电阻增加。因此,在专利文献1的高压制氢装置中设有盘簧、螺旋弹簧等的按压单元,即使固体高分子电解质膜和低压侧阳极供电体变形,也将高压侧阴极供电体压向固体高分子电解质膜使其密合。由此,能够抑制高压侧阴极供电体与固体高分子电解质膜间的接触电阻增加。

另外,例如专利文献2中公开了一种阳极供电体,其通过对由钛粉末的烧结体构成的供电体的基部实施压制加工,来使基部的表层部的空隙率低于基部的空隙率。由此,能够提高表层部的致密性和平滑性,所以可减少电解质膜的损伤。

现有技术文献

专利文献1:日本特开2006-70322号公报

专利文献2:日本特开2012-180553号公报

发明内容

本公开一方式(aspect)的课题是提供一种电化学式氢泵作为一例,其能够比以往更加抑制由阳极气体扩散层中的水引起的溢流产生。

为了解决上述课题,本公开一方式的电化学式氢泵具备:电解质膜、设在所述电解质膜的一个主面上的阳极催化剂层、设在所述电解质膜的另一个主面上的阴极催化剂层、设在所述阳极催化剂层上的阳极气体扩散层、设在所述阳极气体扩散层上的阳极隔膜、以及在所述阳极催化剂层与所述阴极催化剂层之间施加电压的电压施加器,通过所述电压施加器施加所述电压,使供给到所述阳极催化剂层上的含氢气体中的氢向所述阴极催化剂层上移动并升压,所述阳极气体扩散层包含碳多孔体片,所述碳多孔体片包含碳纤维和不同于所述碳纤维的碳材料,所述碳多孔体片中,所述阳极隔膜侧的第1表面层的气孔率大于所述阳极催化剂层侧的第2表面层的气孔率。

本公开一方式的电化学式氢泵发挥以下效果,能够比以往更加抑制由阳极气体扩散层中的水引起的溢流产生。

附图说明

图1A是表示第1实施方式的电化学式氢泵一例的图。

图1B是图1A的电化学式氢泵的B部放大图。

图2A是表示第1实施方式的电化学式氢泵一例的图。

图2B是图2A的电化学式氢泵的B部放大图。

图3是表示第1实施方式的电化学式氢泵中的碳多孔体片一例的图。

图4A是表示第1实施方式的电化学式氢泵中的碳多孔体片的SEM截面图像一例的图。

图4B是表示第1实施方式的电化学式氢泵中的碳多孔体片的SEM截面图像一例的图。

图4C是表示第1实施方式的电化学式氢泵中的碳多孔体片的SEM截面图像一例的图。

图5是表示第2实施方式的电化学式氢泵中的碳多孔体片一例的图。

图6A是表示第3实施方式的电化学式氢泵中的碳多孔体片一例的图。

图6B是表示第3实施方式的变形例的电化学式氢泵中的碳多孔体片一例的图。

具体实施方式

专利文献1和专利文献2中,并未讨论由多孔性材料构成的供电体中的水引起的流路堵塞(以下称为溢流)的问题。

在此,例如,电流在电化学式氢泵的阳极电极与阴极电极间流动时,质子与水相伴在电解质膜中从阳极电极向阴极电极移动。此时,当电化学式氢泵的工作温度为预定温度以上的情况下,从阳极电极移动到阴极电极的水(电渗水)以水蒸汽形式存在,阴极电极的氢气压力越高,作为液态水存在的比例就越增加。并且,当阴极电极存在液态水的情况下,该水的一部分会由于阴极电极与阳极电极间的压差被推回到阳极电极,阴极电极的氢压力越高,被推回到阳极电极的水量就越增加。于是,随着阴极电极的氢气压力上升,容易因被推回到阳极电极的水而在阳极电极的阳极气体扩散层中发生溢流。并且,当由于发生这样的溢流而在阳极电极损害气体扩散性的情况下,电化学式氢泵的扩散阻力增加,由此电化学式氢泵的氢升压动作的效率可能会降低。

因此,本公开第1方式的电化学式氢泵具备:电解质膜、设在电解质膜的一个主面上的阳极催化剂层、设在电解质膜的另一个主面上的阴极催化剂层、设在阳极催化剂层上的阳极气体扩散层、设在阳极气体扩散层上的阳极隔膜、以及在阳极催化剂层与阴极催化剂层之间施加电压的电压施加器,通过电压施加器施加上述电压,使供给到阳极催化剂层上的含氢气体中的氢向阴极催化剂层上移动并升压,阳极气体扩散层包含碳多孔体片,碳多孔体片包含碳纤维和不同于所述碳纤维的碳材料,碳多孔体片中,阳极隔膜侧的第1表面层的气孔率大于阳极催化剂层侧的第2表面层的气孔率。

例如,本公开第2方式的电化学式氢泵可以是第1方式的电化学式氢泵,其中,上述碳多孔体片中,第1表面层的碳密度低于第2表面层的碳密度。

根据以上结构,本方式的电化学式氢泵能够比以往更加抑制由阳极气体扩散层中的水引起的溢流产生。

具体而言,通过增大碳多孔体片的阳极隔膜侧的第1表面层的气孔率,容易通过例如碳多孔体片中的含氢气体的流动,来将存在于碳多孔体片内的水向碳多孔体片外排出。另外,通过减小碳多孔体片的阳极催化剂层侧的第2表面层的气孔率,能够抑制由于阴极电极和阳极电极间的压差而被推回到阳极电极的水穿过第2表面层的情况。

如上所述,本方式的电化学式氢泵可抑制阳极气体扩散层中的水引起的溢流产生,结果,能够在阳极电极合适地维持气体扩散性。

本公开第3方式的电化学式氢泵可以是第1方式或第2方式的电化学式氢泵,其中,碳多孔体片中,第1表面层的碳材料的密度低于第2表面层的碳材料的密度。

根据该结构,本方式的电化学式氢泵中,通过碳多孔体片所含的碳材料的密度的高低差,在碳多孔体片中,能够在第1表面层与第2表面层之间合适地设定气孔率的大小关系。

本公开第4方式的电化学式氢泵可以是第1方式~第3方式中任一项所述的电化学式氢泵,其中,碳多孔体片中,碳材料为热固性树脂的碳化物。

热固性树脂由通过加热而聚合的高分子材料构成,是固化而不会复原的树脂。该情况下,作为碳多孔体片所含的碳材料,可以使用热固性树脂的碳化物。例如,如果对浸渗有热固性树脂的碳纤维板进行烧成,则能够得到包含碳纤维和热固性树脂的碳化物的高刚性、高导电性和高气体扩散性的碳多孔体片。

本公开第5方式的电化学式氢泵可以是第1方式~第4方式中任一项所述的电化学式氢泵,其中,碳多孔体片中,第1表面层的碳纤维的密度低于第2表面层的碳纤维的密度。

根据该结构,本方式的电化学式氢泵通过碳多孔体片所含的碳纤维的密度的高低差,在碳多孔体片中,能够在第1表面层与第2表面层之间合适地设定气孔率的大小关系。

本公开第6方式的电化学式氢泵可以是第1方式~第5方式中任一项所述的电化学式氢泵,其中,碳多孔体片中,在第1表面层设有含氢气体流通的流路。

根据该结构,本方式的电化学式氢泵通过在碳多孔体片的阳极隔膜侧的第1表面层设置流路,由此容易通过例如碳多孔体片中的含氢气体的流动,来将存在于该流路内的水向碳多孔体片外排出。由此,本方式的电化学式氢泵可抑制阳极气体扩散层中的水引起的溢流产生,结果,能够在阳极电极合适地维持气体扩散性。

另外,本方式的电化学式氢泵能够在碳多孔体片的阳极隔膜侧的第1表面层使用例如模具成型等简单地设置含氢气体流通的流路。因而,本方式的电化学式氢泵与例如在金属制的阳极隔膜对含氢气体流通的流路进行切削加工的情况相比,容易形成流路。

本公开第7方式的电化学式氢泵可以是第1方式~第6方式中任一项所述的电化学式氢泵,其中,碳多孔体片中,第2表面层包含疏水层。另外,本公开第8方式的电化学式氢泵可以是第1方式~第6方式中任一项所述的电化学式氢泵,其中,碳多孔体片中,在第2表面层上设置疏水层。

根据该结构,本方式的电化学式氢泵通过阳极催化剂层侧的第2表面层所包含的疏水层或者在阳极催化剂层侧的第2表面层上设置的疏水层,能够对碳多孔体片赋予疏水性。于是,能够在上述疏水层中通过含氢气体的流动,使由于阴极电极与阳极电极间的压差而被推回到阳极电极的水快速地向外部排出。因而,本方式的电化学式氢泵可抑制阳极气体扩散层的水引起的溢流产生,结果,能够在阳极电极合适地维持气体扩散性。

本公开第9方式的电化学式氢泵可以是第7方式或第8方式的电化学式氢泵,其中,疏水层包含疏水性树脂和炭黑。

根据该结构,本方式的电化学式氢泵通过疏水层包含疏水性树脂和炭黑,能够合适地体现阳极气体扩散层的疏水性。

以下,参照附图对本公开的实施方式进行说明。再者,以下说明的实施方式全都表示上述各方式的一例。因而,以下示出的形状、材料、构成要素、构成要素的配置位置和连接形态等终究只是一例,只要没有记载到权利要求中,就不限定上述各方式。另外,对于以下构成要素中的、表示上述各方式的最上位概念的独立权利要求中没有记载的构成要素,作为任选的构成要素来说明。另外,附图中附带相同标记的元件有时省略说明。为了容易理解,附图示意性地示出各自的构成要件,对于形状和尺寸比等有时并不是准确的表示。

(第1实施方式)

[装置结构]

图1A和图2A是表示第1实施方式的电化学式氢泵一例的图。图1B是图1A的电化学式氢泵的B部放大图。图2B是图2A的电化学式氢泵的B部放大图。

再者,图1A示出电化学式氢泵100的垂直截面,其包含俯视时穿过电化学式氢泵100的中心和阴极气体导出歧管50的中心的直线。另外,图2A示出电化学式氢泵100的垂直截面,其包含俯视时穿过电化学式氢泵100的中心、阳极气体导入歧管27的中心和阳极气体导出歧管30的中心的直线。

图1A和图2A所示例中,电化学式氢泵100具备至少一个氢泵单元100A。

再者,电化学式氢泵100中层叠有多个氢泵单元100A。例如,图1A和图2A中,层叠了3段氢泵单元100A,但氢泵单元100A的个数不限定于此。也就是说,氢泵单元100A的个数可以基于电化学式氢泵100升压的氢量等运行条件设定为适当的数目。

氢泵单元100A具备电解质膜11、阳极电极AN、阴极电极CA、阴极隔膜16、阳极隔膜17和绝缘体21。并且,在氢泵单元100A中,层叠有电解质膜11、阳极催化剂层13、阴极催化剂层12、阳极气体扩散层15、阴极气体扩散层14、阳极隔膜17和阴极隔膜16。

阳极电极AN设在电解质膜1的一个主面上。阳极电极AN是包含阳极催化剂层13和阳极气体扩散层15的电极。再者,以俯视时围绕阳极催化剂层13的周围的方式设置环形密封构件43,阳极催化剂层13被密封构件43适当地密封。

阴极电极CA设在电解质膜11的另一个主面上。阴极电极CA是包含阴极催化剂层12和阴极气体扩散层14的电极。再者,以俯视时围绕阴极催化剂层12的周围的方式设置环形密封构件42,阴极催化剂层12被密封构件42适当地密封。

如上所述,电解质膜11以与阳极催化剂层13和阴极催化剂层12分别接触的方式被阳极电极AN和阴极电极CA夹持。再者,将阴极电极CA、电解质膜11和阳极电极AN的层叠体称为膜电极接合体(以下记为MEA:Membrane Electrode Assembly)。

电解质膜11具备质子传导性。只要具备质子传导性,电解质膜1就可以为各种结构。例如,作为电解质膜1,可以举出氟系高分子电解质膜、烃系电解质膜,但不限定于此。具体而言,作为电解质膜1,可以使用例如Nafion(注册商标、杜邦公司制),Aciplex(注册商标、旭化成株式会社制)等。

阳极催化剂层13设在电解质膜11的一个主面上。阳极催化剂层13包含例如铂作为催化剂金属,但不限定于此。

阴极催化剂层12设在电解质膜1的另一个主面上。阴极催化剂层12包含例如铂作为催化剂金属,但不限定于此。

作为阴极催化剂层12和阳极催化剂层13的催化剂载体,可举出炭黑、石墨等的碳粒子和导电性氧化物粒子等,但不限定于此。

再者,阴极催化剂层12和阳极催化剂层13中,催化剂金属粒子高分散地担载于催化剂载体上。另外,为了增大电极反应场所,一般将氢离子传导性离聚物成分加入到该阴极催化剂层12和阳极催化剂层13中。

阴极气体扩散层14设在阴极催化剂层12上。另外,阴极气体扩散层14由多孔性材料构成,且具备导电性和气体扩散特性。此外,阴极气体扩散层14具备弹性,以便适当地追随电化学式氢泵100的氢升压动作时因阴极电极CA与阳极电极AN间的压差而产生的构件的位移、变形。

在此,本实施方式的电化学式氢泵100中,阴极气体扩散层14被收纳于阴极隔膜16的凹部,并且在通过紧固器25将氢泵单元100A紧固前,虽然省略图示,但从凹部在其厚度方向上伸出配设。因此,通过紧固器25将氢泵单元100A紧固时,阴极气体扩散层14的厚度以从凹部伸出的量被压缩变形。这是由于以下原因。

电化学式氢泵100的氢升压动作时,由于阴极电极CA与阳极电极AN间的压差,对阳极气体扩散层15、阳极催化剂层13和电解质膜11施加高压,由此阳极气体扩散层15、阳极催化剂层13和电解质膜11发生压缩变形。但是,本实施方式的电化学式氢泵100中,通过上述结构,能够在从由紧固装置25进行的压缩后厚度回到压缩前的厚度的方向上发生弹性变形,以使得阴极气体扩散层14追随阳极气体扩散层15、阳极催化剂层13和电解质膜11的变形。由此,能够合适地维持阴极催化剂层12与阴极气体扩散层14间的接触。

再者,作为阴极气体扩散层14,使用了由碳纤维构成的构件。例如,可以为碳纸、碳布、碳毡等的多孔性碳纤维片。作为阴极气体扩散层14的基材,也可以不使用碳纤维片。例如,作为阴极气体扩散层14的基材,可以使用以钛、钛合金、不锈钢等为原材料的金属纤维的烧结体、以它们为原材料的金属粒子的烧结体等。

阳极气体扩散层15设在阳极催化剂层13上。另外,阳极气体扩散层15由多孔材料构成,且具备导电性和气体扩散性。此外,希望阳极气体扩散层15为高刚性的,以便电化学式氢泵100的氢升压动作时能够抑制因阴极电极CA与阳极电极AN间的压差引起的构件的位移、变形。

在此,图3是表示第1实施方式的电化学式氢泵中的碳多孔体片一例的图。

阳极气体扩散层15具备碳多孔体片15S,其包含碳纤维和不同于碳纤维的碳材料,且阳极隔膜17侧的第1表面层15B的气孔率大于阳极催化剂层13侧的第2表面层15A的气孔率。再者,这样的碳多孔体片15S作为一例,第1表面层15B的碳密度可以低于第2表面层15A的碳密度。

另外,碳多孔体片15S中,上述碳材料可以是热固性树脂的碳化物。该情况下,碳多孔体片材15S可以是例如以热固性树脂和碳纤维为原材料的烧结体。具体而言,热固性树脂由通过加热而聚合的高分子材料构成,是硬化也不复原的树脂。因此,例如,如果对浸渗有热固性树脂的碳纤维板进行烧成,则能够得到包含碳纤维和热固性树脂的碳化物的高刚性、高导电性和高气体扩散性的碳纤维板15S。详情稍后说明。

在此,在以上的碳多孔体片15S中,例如,能够根据碳多孔体片15S所含的碳纤维的密度的高低差,在第1表面层15B与第2表面层15A间合适地设定气孔率的大小关系。也就是说,本例的碳多孔体片15S中,第1表面层15B的碳纤维的密度低于第2表面层15A的碳纤维的密度。由此,能够使第1表面层15B的气孔率大于第2表面层15A的气孔率。

另外,在以上的碳多孔体片15S中,例如,能够根据碳多孔体片15S所含的碳材料的密度的高低差,在第1表面层15B与第2表面层15A间合适地设定气孔率的大小关系。也就是说,本例的碳多孔体片15S中,第1表面层15B的碳材料的密度低于第2表面层15A的碳材料的密度。具体而言,当碳多孔体片15S是例如浸渗有热固性树脂的碳纤维片的烧成体的情况下,烧成前的碳纤维片中的热固性树脂的浸渗量越多,烧成后的碳材料的密度就越高。因而,本例的碳多孔体片15S中,烧成前的第1表面层15B的热固性树脂的浸渗量小于第2表面层15A的热固性树脂的浸渗量。

再者,作为以上的热固性树脂,可以举出例如酚树脂等,但不限定于此。

另外,碳多孔片15S中的气孔径和气孔率可以通过例如水银气孔率计(商品名:Autopore III 9410,株式会社岛津制作所制)来评价,但不限定于此。该水银气孔率计可以利用向细孔压入水银,测定具有数nm~500μm左右的气孔径的气孔的容积。并且,能够根据第1表面层15B和第2表面层15A各自的气孔的容积和固体部分,来得知它们的气孔率。

另外,本实施方式的电化学式氢泵100中,如图3所示,碳多孔体片15S可以是如下构成的层叠体,第1表面层15B的一个主面与阳极隔膜17的主面接触,并且第1表面层15B的另一个主面与第2表面层15A的一个主面接触。并且,如图3所示,第2表面层15A的另一个主面可以与阳极催化剂层13接触。

再者,图3的碳多孔体片15S可以由单一碳纤维片制作,也可以由多个碳纤维片制作。

前者的情况下,可以通过在烧成前,仅使碳纤维片的一面浸渗热固性树脂来得到碳多孔体片15S。

后者的情况下,可以通过在烧成前,层叠热固性树脂的浸渗量不同的2枚碳纤维片来得到碳多孔体片材15S。再者,该情况下,碳纤维片的层叠数可以是3层以上。例如,可以在与第1表面层15B对应的碳纤维片和与第2表面层15A对应的碳纤维片之间设置中间层(未图示)等,该中间层包含浸渗有热固性树脂的碳纤维片的烧成体,其气孔率小于第1表面层15B且大于第2表面层15A。

接着,参照附图对第1实施方式的电化学式氢泵100中的碳多孔体片15S的SEM截面观察结果的一例进行说明。

图4A、图4B和图4C是表示第1实施方式的电化学式氢泵中的碳多孔体片的SEM截面图像一例的图。

图4A示出以500倍的倍率观察碳多孔体片15S的部分截面的图像。图4B示出图4A中的B部放大图像(2000倍)。图4C示出图4B的C部放大图像(5000倍)。

再者,SEM截面观察在以下的电子枪的条件下进行。

·加速电压:4kV

·发射电流:SS40

另外,作为碳多孔体片15S,使用了包含碳纤维和碳材料(酚树脂系热固性树脂的碳化物)的东海碳株式会社制的碳纤维片(商品名:トカレフレックス)。

如图4C所示,能够确认出在碳纤维间的间隙(图中暗的部分)存在热固性树脂的碳化物(图中亮的部分)。也就是说,由于这样的碳化物填埋碳纤维间的间隙,所以合适地控制烧成前的碳纤维片中浸渗的热固性树脂的浸渗量,由此能够将碳纤维片的气孔率调整为预期值。

再者,存在于图4A中的B部上方的最上层的明亮部分是对在与B部的碳纤维延伸的方向不同的方向上延伸的碳纤维进行切断时产生的碳纤维的损伤部。另外,存在于图4A中的B部下方的空洞部(图中暗的部分)是在切断碳纤维时产生的碳纤维的裂纹。

阳极隔膜17是设在阳极电极AN上的构件。阴极隔膜16是设在阴极电极CA上的构件。并且,在阴极隔膜16和阳极隔膜17各自的中央部设有凹部。这些凹部各自之中分别收纳有阴极气体扩散层14和阳极气体扩散层15。

这样,通过用阴极隔膜16和阳极隔膜17夹持上述MEA,由此形成了氢泵单元100A。

在阴极隔膜16的与阴极气体扩散层14接触的主面设有俯视时为蛇形的阴极气体流路32,阴极气体流路32例如包含多个U形折返部分和多个直线部分。并且,阴极气体流路32的直线部分在垂直于图1A的纸面的方向上延伸。不过,这样的阴极气体流路32仅为示例,不限定于本例。例如,阴极气体流路也可以由多个直线状流路构成。

在阳极隔膜17的与阳极气体扩散层15接触的主面设有俯视时为蛇形的阳极气体流路33,阳极气体流路33例如包含多个U形折返部分和多个直线部分。并且,阳极气体流路33的直线部分在垂直于图2A的纸面的方向上延伸。不过,这样的阳极气体流路33仅为示例,不限定于本例。例如,阳极气体流路可以由多个直线状的流路构成。

另外,在导电性的阴极隔膜16与阳极隔膜17之间,以设为围绕MEA周围的方式***环状且平板状的绝缘体21。由此,防止了阴极隔膜16与阳极隔膜17的短路。

在此,电化学式氢泵100具备:设在氢泵单元100A中的层叠方向的两端上的第1端板和第2端板;以及将氢泵单元100A、第1端板和第2端板在层叠方向上紧固的紧固器25。

再者,图1A和图2A所示例中,阴极端板24C和阳极端板24A各自分别对应于上述第1端板和第2端板。也就是说,阳极端板24A是在氢泵单元100A的各构件层叠了的层叠方向上,在位于一端的阳极隔膜17上设置的端板。另外,阴极端板24C是在氢泵单元100A的各构件层叠了的层叠方向上,在位于另一端的阴极隔膜16上设置的端板。

只要能够将氢泵单元100A、阴极端板24C和阳极端板24A在层叠方向上紧固,紧固器25就可以为各种结构。

例如,作为紧固器25,可以举出螺栓和带盘簧的螺母等。

此时,紧固器25的螺栓可以仅贯穿阳极端板24A和阴极端板24C,但本实施方式的电化学式氢泵100中,该螺栓贯穿了3段氢泵单元100A的各构件、阴极供电板22C、阴极绝缘板23C、阳极供电板22A、阳极绝缘板23A、阳极端板24A和阴极端板24C。并且,将上述层叠方向上位于另一端的阴极隔膜16的端面、上述层叠方向上位于一端的阳极隔膜17的端面分别经由阴极供电板22C和阴极绝缘板23C以及阳极供电板22A和阳极绝缘板23A的各个板,分别用阴极端板24C和阳极端板24A夹持,通过紧固器25来对氢泵单元100A施加预期的紧固压力。

如上所述,本实施方式的电化学式氢泵100中,通过紧固器25的紧固压力来在上述层叠方向上以层叠状态合适地保持3段氢泵单元100A,并且紧固器25的螺栓贯穿了电化学式氢泵100的各构件,所以能够合适地抑制这各个构件的面内方向上的移动。

在此,本实施方式的电化学式氢泵100中,连通有从氢泵单元100A的各个阴极气体扩散层14流出的阴极气体(氢)流动的阴极气体流路32。以下,参照附图对阴极气体流路32各自连通的结构进行说明。

首先,如图1A所示,阴极气体导出歧管50由设在3段氢泵单元100A的各构件和阴极端板24C的贯穿孔、以及设在阳极端板24A的非贯穿孔的连接而构成。另外,在阴极端板24C设有阴极气体导出路径26。阴极气体导出路径26可以由从阴极电极CA排出的氢(H2)流通的配管构成。并且,阴极气体导出路径26与上述阴极气体导出歧管50连通。

此外,阴极气体导出歧管50经由阴极气体通过路径34的各个路径与氢泵单元100A的各个阴极气体流路32的一个端部连通。由此,穿过了氢泵单元100A的各个阴极气体流路32和阴极气体通过路径34的氢在阴极气体导出歧管50合流。并且,合流了的氢被导向阴极气体导出路径26。

这样,氢泵单元100A的各个阴极气体流路32经由氢泵单元100A的各个阴极气体通过路径34和阴极气体导出歧管50连通。

在阴极隔膜16与阳极隔膜17之间、阴极隔膜16与阴极供电板22C之间、阳极隔膜17与阳极供电板22A之间,以俯视时围绕阴极气体导出歧管50的方式设置O形环等的环状密封构件40,阴极气体导出歧管50被该密封构件40适当地密封。

如图2A所示,在阳极端板24A设有阳极气体导入路径29。阳极气体导入路径29可以由供向阳极电极AN的阳极气体流通的配管构成。再者,作为这样的阳极气体,可以举出例如包含水蒸汽的含氢气体等。并且,阳极气体导入路径29与筒状的阳极气体导入歧管27连通。再者,阳极气体导入歧管27由设在3段氢泵单元100A的各构件和阳极端板24A中的贯穿孔的连接而构成。

另外,阳极气体导入歧管27经由氢泵单元100A的各个阳极气体流路33的一个端部和第1阳极气体通过路径35的各个路径连通。由此,从阳极气体导入路径29供给到阳极气体导入歧管27的阳极气体穿过氢泵单元100A的各个第1阳极气体通过路径35分配到各个氢泵单元100A。然后,在被分配的阳极气体穿过阳极气体流路33期间,将阳极气体从阳极气体扩散层15向阳极催化剂层13供给。

另外,如图2A所示,在阳极端板24A设有阳极气体导出路径31。阳极气体导出路径31可以由从阳极电极AN排出的阳极气体流通的配管构成。并且,阳极气体导出路径31与筒状的阳极气体导出歧管30连通。再者,阳极气体导出歧管30由设在3段氢泵单元100A的各构件和阳极端板24A的贯穿孔的连接而构成。

另外,阳极气体导出歧管30经由各个第2阳极气体通过路径36与氢泵单元100A的各个阳极气体流路33的另一端部连通。由此,穿过了氢泵单元100A的各个阳极气体流路33的阳极气体通过各个第2阳极气体通过路径36被供给到阳极气体导出歧管30,在此合流。然后,合流了的阳极气体被导向阳极气体导出路径31。

在阴极隔膜16与阳极隔膜17之间、阴极隔膜16与阴极供电板22C之间、阳极隔膜17与阳极供电板22A之间,以俯视时围绕阳极气体导入歧管27和阳极气体导出歧管30的方式设置O形环等的环形密封构件40,阳极气体导入歧管27和阳极气体导出歧管30被密封构件40适当地密封。

如图1A和2A所示,电化学式氢泵100具备电压施加器102。

电压施加器102是在阳极催化剂层13与阴极催化剂层12之间施加电压的装置。也就是说,电化学式氢泵100是通过由电压施加器102施加上述电压,使供给到阳极催化剂层13上的含氢气体中的氢向阴极催化剂层12上移动并升压的装置。

具体而言,电压施加器102的高电位被施加于阳极催化剂层13,电压施加器102的低电位被施加于阴极催化剂层12。只要能够在阳极催化剂层13与阴极催化剂层12间施加电压,电压施加器102就可以为各种结构。例如,电压施加器102可以是调整施加到阳极催化剂层13与阴极催化剂层12之间的电压的装置。此时,电压施加器102在连接到蓄电池、太阳能电池、燃料电池等的直流电源时具备DC/DC转换器,在连接到商用电源等的交流电源时具备AC/DC转换器。

另外,电压施加器102例如可以是调整施加于阳极催化剂层13与阴极催化剂层12间的电压、流通于阳极催化剂层13与阴极催化剂层12间的电流以使供给到氢泵单元100A的功率变为预定的设定值的功率型电源。

再者,图1A和2A所示例中,电压施加器102的低电位侧的端子连接至阴极供电板22C,电压施加器102的高电位侧的端子连接至阳极供电板22A。阴极供电板22C与上述层叠方向上位于另一端的阴极隔膜16电接触,阳极供电板22A与上述层叠方向上位于一端的阳极隔膜17电接触。

虽然省略图示,但也可以构建具备上述电化学式氢泵100的氢供给系统。该情况下,适当地设置氢供给系统的氢供给动作所需的设备。

例如,氢供给系统中可以设置露点调整器(例如加湿器),该露点调整器对通过阳极气体导出路径31从阳极电极AN排出的高加湿状态的含氢阳极气体和通过阳极气体导入路径29从外部氢供给源供给的低加湿状态的含氢阳极气体混合而成的混合气体的露点进行调整。此时,外部氢供给源的含氢阳极气体可以有例如水电解装置生成。

另外,氢供给系统中可以设置例如检测电化学式氢泵100的温度的温度检测器、暂时存储从电化学式氢泵100的阴极电极CA排出的氢的储氢器、检测储氢器内的氢气压力的压力检测器等。

再者,上述电化学式氢泵100的结构和氢供给系统中的未图示的各种设备仅是示例,不限定于本例。

例如,可以采用不设置阳极气体导出歧管30和阳极气体导出路径31,而是将通过阳极气体导入歧管27向阳极电极AN供给的阳极气体中的氢(H2)的总量在阴极电极CA升压的盲端结构。

[动作]

以下,参照附图对电化学式氢泵100的氢升压动作的一例进行说明。

以下动作可以通过例如未图示的控制器的运算电路从控制器的存储电路读取控制程序来执行。不过,利用控制器执行以下动作不一定是必须的。操作者可以执行其部分动作。另外,以下,对于向电化学式氢泵100的阳极电极AN供给包含水蒸汽的含氢气体作为阳极气体的情况进行说明。

首先,向电化学式氢泵100的阳极电极AN供给低压含氢气体,并且电压施加器102的电压被供向电化学式氢泵100。

于是,在阳极电极AN的阳极催化剂层13中,通过氧化反应将氢分子分离为氢离子(质子)和电子(式(1))。质子在电解质膜1内传导并向阴极催化剂层2C移动。电子通过电压施加器102向阴极的阴极催化剂层2C移动。

然后,在阴极催化剂层2C中,通过还原反应再次生成氢分子(式(2))。再者,已知质子在电解质膜1中传导时,预定水量的水作为电渗水从阳极电极AN与质子相伴地向阴极电极CA移动。

此时,可以通过使用未图示的流量控制器增加氢导出路径中的压损来增加在阴极电极CA生成的氢(H2)的压力。再者,作为氢导出路径,可以举出例如图2A的阴极气体导出路径26。另外,作为流量调整器,可以举出例如设在氢导出路径中的背压阀、调整阀等。

阳极电极:H2(低压)→2H++2e-...(1)

阴极电极:2H++2e-→H2(高压)...(2)

这样,在电化学式氢泵100中,通过电压施加器102施加上述电压,向阳极电极AN供给的含氢气体中的氢在阴极电极CA升压。由此,执行电化学式氢泵100的氢升压动作,在阴极电极CA升压了的氢被临时存储在例如未图示的储氢器中。另外,在储氢器存储的氢被及时地供给到需氢体中。再者,作为需氢体,可以举出例如利用氢发电的燃料电池等。

在此,例如,当电流在电化学式氢泵100的阳极电极AN与阴极电极CA之间流动时,质子与水相伴地从阳极电极AN在电解质膜11中向阴极电极CA移动。此时,当电化学式氢泵100的动作温度为预定温度以上的情况下,从阳极电极AN移至阴极电极CA的水(电渗水)以水蒸汽形式存在,阴极电极CA的氢气压力越高,以液态水形式存在的比例就越增加。并且,当在阴极电极CA存在液态水的情况下,该水的一部分由于阴极电极CA与阳极电极AN之间的压差而被推回到阳极电极AN,且阴极电极CA的氢气压力越高,被推回到阳极电极AN的水量就越增加。于是,随着阴极电极CA的氢气压力上升,由于被推回到阳极电极AN的水而容易在阳极电极AN的阳极气体扩散层15发生溢流。并且,由于产生这样的溢流,气体扩散性在阳极电极AN受损,该情况下电化学式氢泵100的扩散阻力增加,由此电化学式氢泵100的氢升压动作的效率可能降低。

因此,如上所述,本实施方式的电化学式氢泵100中,阳极气体扩散层15具备碳多孔体片15S,碳多孔体片15S包含碳纤维和不同于碳纤维的碳材料,阳极隔膜17侧的第1表面层15B的气孔率大于阳极催化剂层13侧的第2表面层15A的气孔率。因此,本实施方式的电化学式氢泵100能够比以往更加抑制阳极气体扩散层15中的水引起的溢流产生。

具体而言,通过增大碳多孔体片15S的阳极隔膜17侧的第1表面层15B的气孔率,容易使碳多孔体片15S内存在的水通过例如碳多孔体片15S中的含氢气体的流动而向碳多孔体片15S外排出。另外,通过减小碳多孔体片15S的阳极催化剂层13侧的第2表面层15A的气孔率,能够抑制由于阴极电极CA与阳极电极AN之间的压差而被推回到阳极的水穿过第2表面层15A。

如上所述,本实施方式的电化学式氢泵100可抑制阳极气体扩散层15中水引起的溢流产生,结果,能够在阳极电极AN合适地维持气体扩散性。

在此,专利文献1和专利文献2的电化学式氢泵中,气体扩散层由钛等的金属材料构成。并且,当气体扩散层由钛等的金属材料构成的情况下,需要采用铂等的贵金属进行表面镀敷。这是由于以下原因。

由钛等的金属材料构成气体扩散层时,金属材料经由催化剂层与质子传导性的电解质膜接触。并且,为了获得质子传导性,该电解质膜(高分子膜)大多具有硫酸基团作为侧链。于是,将湿润状态的含氢气体向气体扩散层供给时,金属材料与强酸性的水分接触,由此金属离子可能从金属材料向水分中溶出。

也就是说,当由金属材料构成气体扩散层的情况下,需要抑制气体扩散层在酸性状态下的金属离子溶出。例如,大多通过在这样的金属材料的表面利用酸性状态下难以发生离子溶出的贵金属实施表面镀敷,由此在金属材料的表面形成导电性被膜。这会成为电化学式氢泵的成本上升的原因。再者,在金属材料的表面形成氧化被膜的方法使气体扩散层的导电性降低,所以是不期望的。

因此,为了抑制气体扩散层在酸性环境中的金属离子溶出,发明人研究了使用在酸性环境下具有耐腐蚀性、且成本低的碳系气体扩散层,发现了以下课题,即,由于阴极电极CA中的压力的影响,阳极气体扩散层15在设在阳极隔膜17的阳极气体流路33弯曲。

鉴于这样的课题,如上所述,本实施方式的电化学式氢泵100中,由浸渗有热固性树脂的碳纤维片的烧结体构成碳多孔体片15S。例如,可以在充满氮气等的还原性气氛内预先烧成浸渗有热固性树脂的碳纤维片。

如上所述,本实施方式的电化学式氢泵100中,热固性树脂通过烧成而碳化,由此碳材料和碳纤维彼此增强,所以能够实现碳多孔体片15S的高刚性。由此,由于电化学式氢泵100的氢升压运行时产生的阴极电极CA与阳极电极AN间的压差而使碳多孔体片15S的变形的情况被抑制。例如,本实施方式的电化学式氢泵100能够降低由于上述压差而使碳多孔体片15S在设在阳极隔膜17的阳极气体流路33弯曲的可能性。

另外,本实施方式的电化学式氢泵100通过将热固性树脂进行烧成使其碳化,由此能够得到碳化物的导电体。由此,本实施方式的电化学式氢泵100中,该导电体与碳纤维接触,所以能够实现碳多孔体片15S的高导电性。

另外,本实施方式的电化学式氢泵100通过将热固性树脂进行烧成而使其碳化,由此在碳多孔体片15S中容易形成与外部连通的细孔(连通孔),所以能够实现碳多孔体片15S的高气体扩散性。

另外,本实施方式的电化学式氢泵100通过预先烧成浸渗有热固性树脂的碳纤维片,由此能够减少源自热固性树脂的含氢气体的水分中的有机成分。也就是说,在含氢气体的水分中溶出的有机成分可能成为阻碍阳极催化剂层13和阴极催化剂层12的反应性、以及电解质膜11的质子传导性等的污染成分,但本实施方式的电化学式氢泵100通过上述结构,能够减轻这样的不良情况。

(第2实施方式)

图5是表示第2实施方式的电化学式氢泵中的碳多孔体片一例的图。

除了以下说明的碳多孔体片15S的构成和制法、以及阳极隔膜17的构成以外,本实施方式的电化学式氢泵100与第1实施方式的电化学式氢泵100相同。

本实施方式的电化学式氢泵100中,如图5所示,碳多孔体片15S在第1表面层15B设有含氢气体流通的流路33A。也就是说,替代设在阳极隔膜17的阳极气体流路33(参照图1B和图2B),在碳多孔体片15S的第1表面层15B设置流路33A。

例如,可以通过层叠多个气孔率不同的碳纤维片,如下所述地在碳多孔体片15S内形成流路33A。再者,这样的多个碳纤维片例如可以是碳纤维密度不同的碳纤维片。

另外,图5的碳纤维片的层叠数只是例示,并不限定于本例。例如,在与第1表面层15B对应的碳纤维片和与第2表面层15A对应的碳纤维片之间可以设置中间层(未图示),所述中间层包含浸渗有热固性树脂的碳纤维片的烧成体,其气孔率小于第1表面层15B且大于第2表面层15A。

首先,对于碳纤维密度低的碳纤维片(以下称为第1碳纤维片)使用适当的模具(未图示),将构成流路33A的狭缝成型加工成例如俯视为蛇形。

接着,将热固性树脂涂布到第1碳纤维片的表面。于是,从第1碳纤维片的表面中未形成上述狭缝的部分浸渗热固性树脂。再者,此时,适当地设定热固性树脂的流动性,以使得第1碳纤维片的狭缝不被热固性树脂密封。

接着,将热固性树脂涂布到碳纤维的密度高的碳纤维片(以下称为第2碳纤维片)的表面。于是,从第2碳纤维片的整个表面浸渗热固性树脂。

接着,将浸渗有热固性树脂的第1碳纤维片和浸渗有热固性树脂的第2碳纤维片重叠。于是,通过两者的热固性树脂的聚合作用,第1碳纤维片与第2碳纤维片接合。

接着,将第1碳纤维片与第2碳纤维片的层叠体在充满例如氮气等的还原性气氛内烧成。

这样,得到图5的碳多孔体片15S。也就是说,浸渗有热固性树脂的第1碳纤维片的烧成体相当于图5的碳多孔体片15S的阳极隔膜17侧的第1表面层15B。另外,浸渗有热固性树脂的第2碳纤维片的烧成体相当于图5的碳多孔体片15S的阳极催化剂层13侧的第2表面层15A。

再者,以上的碳多孔体片15S的制法和构成是例示,并不限定于本例。

如上所述,本实施方式的电化学式氢泵100,通过在多孔质碳片15S的阳极隔膜17侧的第1表面层15B设置流路33A,容易通过例如含氢气体在碳多孔体片15S中的流动来将存在于流路33A内的水向碳多孔体片15S外排出。由此,本实施方式的电化学式氢泵100中,阳极气体扩散层15中的水引起的溢流产生被抑制,结果,能够在阳极电极AN合适地维持气体扩散性。

另外,本实施方式的电化学式氢泵100,在碳多孔体片15S的阳极隔膜17侧的第1表面层15B,使用例如模具成型等简单地设置含氢气体流通的流路33A。因而,本实施方式的电化学式氢泵100中,与例如在金属制的阳极隔膜17中切削加工出含氢气体流通的流路的情况相比,更容易形成流路。

除了上述特征以外,本实施方式的电化学式氢泵100可以与第1实施方式的电化学式氢泵100相同。

(第3实施方式)

图6A是表示第3实施方式的电化学式氢泵中的碳多孔体片一例的图。

除了在第2表面层115A包含疏水层15H以外,第3实施方式的电化学式氢泵100的碳多孔体片15S与第1实施方式的电化学式氢泵100相同。

如上所述,随着阴极电极CA的氢气压力上升,由于被推回到阳极电极AN的水而容易在阳极电极AN的阳极气体扩散层15产生溢流。

因此,本实施方式的电化学式氢泵100中,通过阳极催化剂层13侧的第2表面层115A所含的疏水层15H,对碳多孔体片15S赋予疏水性。例如,当第2表面层115A是以碳纤维为原材料的烧结体的情况下,可以如图6A所示,通过使上述烧结体浸渗包含氟系树脂等疏水性树脂的材料,来以该第2表面层115A包含疏水层15H的方式构成碳多孔体片15S。于是,能够将由于阴极电极CA与阳极电极AN间的压差而被推回到阳极电极AN的水,在上述疏水层15H中通过含氢气体的流动而快速地向外部排出。因而,本实施方式的电化学式氢泵100中,阳极气体扩散层15中的水引起的溢流产生被抑制,结果,能够在阳极电极AN合适地维持气体扩散性。

再者,作为包含疏水性树脂的材料,可以举出例如将PTFE微粉分散在溶剂中而成的溶液等。

另外,疏水层15H可以是包含疏水性树脂和炭黑的层。该情况下,通过使包含疏水性树脂和炭黑的材料浸渗于第2表面层115A,来形成第2表面层115A所含的疏水层15H。再者,作为包含疏水性树脂和炭黑的材料,可以举出例如将PTFE和炭黑的微粉分散在溶剂中而成的溶液等。由此,通过疏水层15H包含疏水性树脂和炭黑,能够合适地体现阳极气体扩散层15的疏水性。

再者,以上的疏水层15H的制法和构成是例示,并不限定于本例。

除了上述特征以外,本实施方式的电化学式氢泵100可以与第1实施方式或第2实施方式的电化学式氢泵100相同。

(变形例)

图6B是表示第3实施方式的变形例的电化学式氢泵中的碳多孔体片一例的图。

除了在第2表面层115A上设有疏水层15H以外,本变形例的电化学式氢泵100的碳多孔体片15S与第1实施方式的电化学式氢泵100相同。

本变形例的电化学式氢泵100中,通过设在阳极催化剂层13侧的第2表面层115A上的疏水层15H,对碳多孔体片15S赋予疏水性。例如,可以通过将包含氟系树脂等疏水性树脂的材料涂布到第2表面层115A上,如图6B所示,在第2表面层115A上形成疏水层15H。于是,能够将由于阴极电极CA与阳极电极AN间的压差而被推回到阳极电极AN的水,在上述疏水层15H中通过含氢气体的流动快速地向外部排出。因而,本实施方式的电化学式氢泵100中,阳极气体扩散层15中的水引起的溢流产生被抑制,结果,能够在阳极电极AN合适地维持气体扩散性。

再者,作为包含疏水性树脂的材料,可以举出例如将PTFE微粉分散在溶剂中而成的溶液等。另外,作为包含疏水性树脂的材料的涂布方法,可以举出例如喷涂法等。

另外,疏水层15H可以是包含疏水性树脂和炭黑的层。该情况下,通过在第2表面层115A上涂布包含疏水性树脂和炭黑的材料,来在第2表面层115A上形成疏水层15H。再者,作为包含疏水性树脂和炭黑的材料,可以举出例如将PTFE微粉和炭黑分散在溶剂中而成的溶液等。另外,作为包含疏水性树脂和炭黑的材料的涂布方法,可以举出例如喷涂法等。由此,通过疏水层15H包含疏水性树脂和炭黑,能够合适地体现阳极气体扩散层15的疏水性。

再者,以上的疏水层15H的制法和构成是例示,并不限定于本例。

除了上述特征以外,本变形例的电化学式氢泵100可以与第1实施方式或第2实施方式的电化学式氢泵100相同。

再者,只要彼此不排除对方,第1实施方式、第2实施方式、第3实施方式和第3实施方式的变形例就可以相互组合。

对于本领域技术人员来说,上述说明中显然包含本公开的众多改良和其他实施方式。因此,上述说明应仅被解释为例示,且是出于教导本领域技术人员实施本公开的最佳方式而提供的。能够实质性地变更其工作条件、组成、结构和/或功能而不会脱离本公开的精神。

产业上的可利用性

本公开一方式能够利用于电化学式氢泵,其能够比以往更加抑制阳极气体扩散层中的水引起的溢流产生。

附图标记说明

11:电解质膜

12:阴极催化剂层

13:阳极催化剂层

14:阴极气体扩散层

15:阳极气体扩散层

15A:第2表面层

15B:第1表面层

15H:疏水层

15S:碳多孔体片

16:阴极隔膜

17:阳极隔膜

21:绝缘体

22A:阳极供电板

22C:阴极供电板

23A:阳极绝缘板

23C:阴极绝缘板

24A:阳极端板

24C:阴极端板

25:紧固器

26:阴极气体导出路径

27:阳极气体导入歧管

29:阳极气体导入路径

30:阳极气体导出歧管

31:阳极气体导出路径

32:阴极气体流路

33:阳极气体流路

33A:流路

34:阴极气体通过路径

35:第1阳极气体通过路径

36:第2阳极气体通过路径

40:密封构件

42:密封构件

43:密封构件

50:阴极气体导出歧管

100:电化学式氢泵

100A:氢泵单元

102:电压施加器

115A:第2表面层

AN:阳极电极

CA:阴极电极

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:利用EFG法的单晶生长用的模具、利用EFG法的单晶生长方法及利用EFG法得到的单晶

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!