一种大型接地网接地电阻多要素评价方法

文档序号:104416 发布日期:2021-10-15 浏览:34次 >En<

阅读说明:本技术 一种大型接地网接地电阻多要素评价方法 (Large-scale grounding grid grounding resistance multi-factor evaluation method ) 是由 向念文 张永纯 王立天 杨建兴 程凌云 赵海军 徐宗奇 阳晋 杨翠玲 李伟 魏定 于 2021-06-29 设计创作,主要内容包括:本发明提供一种大型接地网接地电阻多要素评价方法,属于变电站接地网技术领域。该方法包括:获取大型接地网参数并建立原始数据库,建立接地网仿真计算模型,获取接地电阻R在11种影响要素变化下的评价值,获取接地网接地电阻多要素评价值集合。与现有技术相比,本发明实施例考虑了水平接地导体结构参数、垂直接地导体结构参数、土壤结构参数等多要素对性能指标的影响,对大型接地网的工频特性评价更加全面、准确。(The invention provides a multi-factor evaluation method for ground resistance of a large-scale grounding grid, and belongs to the technical field of transformer substation grounding grids. The method comprises the following steps: acquiring large-scale grounding grid parameters, establishing an original database, establishing a grounding grid simulation calculation model, acquiring evaluation values of the grounding resistance R under 11 influence element changes, and acquiring a grounding grid grounding resistance multi-element evaluation value set. Compared with the prior art, the method and the device have the advantages that the influence of multiple factors such as the horizontal grounding conductor structure parameters, the vertical grounding conductor structure parameters, the soil structure parameters and the like on the performance indexes is considered, and the power frequency characteristic evaluation of the large grounding grid is more comprehensive and accurate.)

一种大型接地网接地电阻多要素评价方法

技术领域

本发明属于变电站接地网技术领域,具体涉及一种大型接地网接地电阻的多要素评价方法。

背景技术

牵引变电所是高速铁路牵引供电系统的重要组成部分,其功能是通过内设的牵引变压器将从电力系统获取的高压工频交流电变为单相工频交流电,然后再经馈线将电能输送至接触网上供给相应的电力机车使用。牵引变电所接地网是保证变电所安全稳定运行的重要组件,变电站发生工频接地故障时,若接地网不能正常运行,会造成人员伤亡与设备损失。为了避免事故发生,需要对接地网进行安全性能的准确评价,接地电阻是接地网评价的一个重要指标。

目前,牵引变电所接地网设计与评价普遍是依靠经验公式再加上技术人员的自身经验完成。由于考虑的因素较少,存在着以下问题:

1)传统方法中,基于电路理论的分析方法将接地网等效为电路网络,优点是概念清晰,但计算精度不高;基于传输线理论的分析方法忽略了接地网导体间的电磁耦合,不适用于大型接地网的分析。

2)经验公式考虑的因素较少,没有考虑土壤的不均匀性、导体的分布等因素,在评价大型接地网时存在缺陷。

发明内容

本发明要解决的技术问题是目前在大型接地网的安全性能评价中,由于过于依赖经验公式和个人经验而导致的接地网评价不全面不准确的问题。

本发明的目的是这样实现的,本发明提供了一种大型接地网接地电阻多要素评价方法,包括以下步骤:

步骤1,获取大型接地网参数并建立原始数据库

步骤1.1,影响要素的确定

将大型接地网记为接地网,根据已知的统计数据,将影响接地网接地电阻变化的影响要素归类为三类,共11种,将11种影响要素中的任意一种记为影响要素Mαβ,其中,α为影响要素类别的编号,α=α1,α2,α3,α1为水平接地导体影响要素,α2为垂直接地导体影响要素,α3为土壤结构影响要素;β为影响要素Mαβ在各类中的序号,β=1,2…;具体的,包括:

水平接地导体影响要素网孔大小水平接地导体形状双层地网间距和外接地网间距

垂直接地导体影响要素接地网四边及内部垂直接地导体数量避雷针处垂直接地导体数量门型架构处垂直接地导体数量所有垂直接地导体长度外部垂直接地导体长度垂直接地导体分布情况

土壤结构影响要素土壤分层及各层土壤电阻率情况

步骤1.2,采集原始数据并建立原始数据库

根据步骤1.1给出的影响要素,采集各个影响要素的原始数据,具体的,首先现场采集接地网土壤状况、现场测量接地网所在区域的土壤电阻率,再根据接地网的设计图纸,获取接地网的结构参数信息;

根据采集得到的各个影响要素的原始数据建立接地网的原始数据库;

在原始数据库中,将每一个影响要素的所有原始数据组成一个集合,共得到11个影响要素的原始数据的集合,将影响要素Mαβ的原始数据的集合记为原始数据集合Mαβ′,该影响要素集合Mαβ′中共包括E个原始数据,E为正整数,α=α1,α2,α3,β=1,2…;

步骤2,建立接地网仿真计算模型

步骤2.1,构建土壤分层模型

所述土壤分层模型由T层土壤组成,T为土壤层数,将T层土壤中的任意一层记为土壤层j,j=1,2…T,记土壤层j的厚度为Hj、土壤层j的电阻率为ρj

步骤2.2,设定接地网导体的拓扑结构

所述接地网导体的拓扑结构中包括Q个水平接地导体,W个垂直接地导体和一根电流注入导体;Q个水平接地导体截面积相同、埋深相同,将水平接地导体截面积记为S1、水平接地导体埋深记为S2;W个垂直接地导体截面积相同、长度相同,将垂直接地导体截面积记为S3、垂直接地导长度记为S4;将电流注入导体的截面积记为S5,电流注入导体的长度记为S6

将接地网简化为矩形,以接地网四角中任意一角为坐标原点O建立空间三维直角坐标系,将Q个水平接地导体中的任意一个水平接地导体记为水平接地导体ΓA,A为水平接地导体的编号,A=1,2...Q,水平接地导体ΓA在空间三维直角坐标系中的起点坐标和终点坐标分别为(x1A,y1A,z1A)和(x2A,y2A,z2A);将W个垂直接地导体中的任意一个垂直接地导体记为垂直接地导体ΨB,B为垂直导体的编号,B=1,2...W,垂直接地导体ΨB在空间三维直角坐标系中的起始坐标和终点坐标分别为(x3B,y3B,z3B)和 (x4B,y4B,z4B);将电流注入导体在空间三维直角坐标系中的起始坐标和终点坐标分别为(x5,y5,z5)和(0,0,0);

根据土壤分层模型、接地网导体的拓扑结构,并综合步骤1.1给出的11种影响要素,在仿真软件CDEGS环境下,完成接地网仿真计算模型的建立;

步骤2.3,评价指标的设定

在仿真软件CDEGS环境下,将接地网仿真计算模型中的电流注入导体记作导体He,将注入导体He的电流值记为注入电流I,将与注入电流I对应的电位升记为电位升U,将与注入电流I、电位升U对应的接地网的接地电阻值记为接地电阻R,R=U/I;

将接地电阻R作为接地网接地电阻多要素评价方法的评价指标;

步骤3,获取接地电阻R在11种影响要素变化下的评价值

步骤3.1,确定仿真基准式G

在步骤1得到的每一个原始数据集合Mαβ′中,任意选择一个原始数据作为基准值Hαβ,α=α1,α2,α3,β=1,2…,即对应11个原始数据集合Mαβ′共得到11个影响要素的11个基准值Hαβ,将该11 个基准值Hαβ代入接地网仿真模型构成一个仿真基准式G;

步骤3.2,计算影响要素Mαβ的评价接地电阻值Rαβ,具体过程为:

提取原始数据集合Mαβ′中的E个原始数据,并分别取代其基准值Hαβ代入仿真基准式G进行仿真,得到与E个原始数据对应的电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值Rαβ,Rαβ=U1/I;

步骤3.3,按照步骤3.2的方法对11种影响要素依次进行仿真,得到11种影响要素对应的11个评价接地电阻值Rαβ

步骤4,获取接地网接地电阻多要素评价值集合

将步骤3.3得到的11种影响要素对应的11个评价接地电阻值 Rαβ的集合记为接地网接地电阻多要素评价值集合R0

优选地,步骤1所述接地网的结构参数信息包括接地网的结构、接地网面积,接地网埋深;水平接地导体分布情况、水平接地导体截面积,水平接地导体埋深,水平接地导体数量;垂直接地导体的分布情况、垂直接地导体截面积,垂直接地导体长度,垂直接地导体数量,电流注入导体截面积,电流注入导体长度。

优选地,一种大型接地网接地电阻多要素评价方法,其特征在于,步骤1还包括在建立原始数据库后,对原始数据库中的数据进行归一化处理,使得原始数据库中的数据保持维度统一。

与现有技术相比,本发明的有益效果如下:

1、针对大型接地网的特点,基于CDEGS仿真软件,采用矩量法进行分析,考虑接地网导体之间的所有电磁耦合,对接地网模型的计算结果更加准确。

2、考虑了对接地电阻评价有影响的多种要素,如土壤均匀度、双层地网、导体分布情况等等,使得接地网的安全性能评价更加全面、科学。

附图说明

图1为本发明评价方法的流程图;

图2为本发明的评价方法中多影响要素的基本构成图;

图3为本发明实施例中接地网仿真计算模型中水平接地导体示意图;

图4为本发明实施例中接地网仿真计算模型中垂直接地导体示意图;

图5为本发明实施例中接地网仿真计算模型中避雷针与门型架构位置示意图;

图6为本发明实施例中接地网仿真计算模型中土壤结构示意图。

具体实施方式

下面借助附图对本发明评价方法进行详细论述。

图1为本发明评价方法的流程图,由图1可见,本发明大型接地网接地电阻多要素评价方法,包括以下步骤:

步骤1,获取大型接地网参数并建立原始数据库

步骤1.1,影响要素的确定

将大型接地网记为接地网,根据已知的统计数据,将影响接地网接地电阻变化的影响要素归类为三类,共11种,将11种影响要素中的任意一种记为影响要素Mαβ,其中,α为影响要素类别的编号,α=α1,α2,α3,α1为水平接地导体影响要素,α2为垂直接地导体影响要素,α3为土壤结构影响要素;β为影响要素Mαβ在各类中的序号,β=1,2…。具体的,包括:

水平接地导体影响要素网孔大小水平接地导体形状双层地网间距和外接地网间距

垂直接地导体影响要素接地网四边及内部垂直接地导体数量避雷针处垂直接地导体数量门型架构处垂直接地导体数量所有垂直接地导体长度外部垂直接地导体长度垂直接地导体分布情况

土壤结构影响要素土壤分层及各层土壤电阻率情况

图2给出了以上影响要素的基本构成。

步骤1.2,采集原始数据并建立原始数据库

根据步骤1.1给出的影响要素,采集各个影响要素的原始数据,具体的,首先现场采集接地网土壤状况、现场测量接地网所在区域的土壤电阻率,再根据接地网的设计图纸,获取接地网的结构参数信息;

根据采集得到的各个影响要素的原始数据建立接地网的原始数据库;

在原始数据库中,将每一个影响要素的所有原始数据组成一个集合,共得到11个影响要素的原始数据的集合,将影响要素Mαβ的原始数据的集合记为原始数据集合Mαβ′,该影响要素集合Mαβ′中共包括E个原始数据,E为正整数,α=α1,α2,α3,β=1,2…;

在本实施例中,步骤1所述接地网的结构参数信息包括接地网的结构、接地网面积,接地网埋深;水平接地导体分布情况、水平接地导体截面积,水平接地导体埋深,水平接地导体数量;垂直接地导体的分布情况、垂直接地导体截面积,垂直接地导体长度,垂直接地导体数量,电流注入导体截面积,电流注入导体长度。

在本实施例中,步骤1还包括在建立原始数据库后,对原始数据库中的数据进行归一化处理,使得原始数据库中的数据保持维度统一。

步骤2,建立接地网仿真计算模型

步骤2.1,构建土壤分层模型

所述土壤分层模型由T层土壤组成,T为土壤层数,将T层土壤中的任意一层记为土壤层j,j=1,2…T,记土壤层j的厚度为Hj、土壤层j的电阻率为ρj

图6给出了本实施例中接地网仿真计算模型中土壤结构示意图。

步骤2.2,设定接地网导体的拓扑结构

所述接地网导体的拓扑结构中包括Q个水平接地导体,W个垂直接地导体和一根电流注入导体;Q个水平接地导体截面积相同、埋深相同,将水平接地导体截面积记为S1、水平接地导体埋深记为S2;W个垂直接地导体截面积相同、长度相同,将垂直接地导体截面积记为S3、垂直接地导长度记为S4;将电流注入导体的截面积记为S5,电流注入导体的长度记为S6

将接地网简化为矩形,以接地网四角中任意一角为坐标原点O建立空间三维直角坐标系,将Q个水平接地导体中的任意一个水平接地导体记为水平接地导体ΓA,A为水平接地导体的编号,A=1,2...Q,水平接地导体ΓA在空间三维直角坐标系中的起点坐标和终点坐标分别为(x1A,y1A,z1A)和(x2A,y2A,z2A);将W个垂直接地导体中的任意一个垂直接地导体记为垂直接地导体ΨB,B为垂直导体的编号,B=1,2...W,垂直接地导体ΨB在空间三维直角坐标系中的起始坐标和终点坐标分别为(x3B,y3B,z3B)和 (x4B,y4B,z4B);将电流注入导体在空间三维直角坐标系中的起始坐标和终点坐标分别为(x5,y5,z5)和(0,0,0)。

根据土壤分层模型、接地网导体的拓扑结构,并综合步骤1.1给出的11种影响要素,在仿真软件CDEGS环境下,完成接地网仿真计算模型的建立。

图3给出了为本实施例中接地网仿真计算模型中水平接地导体示意图,图4给出了本实施例中接地网仿真计算模型中垂直接地导体示意图,图5给出了本实施例中接地网仿真计算模型中避雷针与门型架构位置示意图。

步骤2.3,评价指标的设定

在仿真软件CDEGS环境下,将接地网仿真计算模型中的电流注入导体记作导体He,将注入导体He的电流值记为注入电流I,将与注入电流I对应的电位升记为电位升U,将与注入电流I、电位升U对应的接地网的接地电阻值记为接地电阻R,R=U/I。

将接地电阻R作为接地网接地电阻多要素评价方法的评价指标。

步骤3,获取接地电阻R在11种影响要素变化下的评价值

步骤3.1,确定仿真基准式G

在步骤1得到的每一个原始数据集合Mαβ′中,任意选择一个原始数据作为基准值Hαβ,α=α1,α2,α3,β=1,2…,即对应11个原始数据集合Mαβ′共得到11个影响要素的11个基准值Hαβ,将该11 个基准值Hαβ代入接地网仿真模型构成一个仿真基准式G;

步骤3.2,计算影响要素Mαβ的评价接地电阻值Rαβ,具体过程为:

提取原始数据集合Mαβ′中的E个原始数据,并分别取代其基准值Hαβ代入仿真基准式G进行仿真,得到与E个原始数据对应的电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值Rαβ,Rαβ=U1/I;

步骤3.3,按照步骤3.2的方法对11种影响要素依次进行仿真,得到11种影响要素对应的11个评价接地电阻值Rαβ

步骤4,获取接地网接地电阻多要素评价值集合

将步骤3.3得到的11种影响要素对应的11个评价接地电阻值 Rαβ的集合记为接地网接地电阻多要素评价值集合R0

下面,以高速铁路徐州段某牵引变电所接地网为例,按照本发明评价方法对该地网进行接地电阻的多维度评价。

步骤1、步骤2同上。

在本实施例中,首先确定图2的11种影响要素。其次,现场采集高速铁路徐州段某牵引变电所接地网的土壤状况及土壤电阻率,再根据调取接地网的设计图纸,获取接地网的结构参数信息,收集了高速铁路徐州段某牵引变电所接地网的结构参数,并建立了原始数据库,并进行了归一化处理。

具体的,本实施例中接地网所在区域的电阻率为300Ωm,接地网占地面积为7200m2,水平接地导体截面积S1=185mm2,水平接地导体埋深S2=0.8m,垂直接地导体截面积S3=250mm2,垂直接地导体长度S4=2.5m,电流注入导体的截面积S5=250mm2,电流注入导体的长度S6=0.5m。水平接地导体数量Q=72,垂直接地导体数量W=84。

另外本发明的仿真计算是利用软件包CDEGS完成的。CDEGS是由加拿大安全工程服务与技术公司开发的,用于精确分析接地、电磁场、电磁干扰等问题的软件。目前国内外接地问题普遍采用该软件进行仿真分析,其计算原理就是矩量法。

步骤3,在接地网仿真计算模型中,将11个影响要素的原始数据输入接地网仿真计算模型中,得到11种影响要素对应的11个评价接地电阻值Rαβ

步骤3.1,确定仿真基准式G

在步骤1得到的每一个原始数据集合Mαβ′中,任意选择一个原始数据作为基准值Hαβ,α=α1,α2,α3,β=1,2…,即对应11个原始数据集合Mαβ′共得到11个影响要素的11个基准值Hαβ,将该11 个基准值Hαβ代入接地网仿真模型构成一个仿真基准式G;

具体的,本实施例中对接地网仿真计算模型中11个影响要素选取以下基准值:网孔大小10×10m2,水平接地导体形状为圆柱体,双层地网间距0m,外接地网间距0m,接地网四边及内部垂直接地导体数量为50根,避雷针处垂直接地导体数量为4根,门型架构处垂直接地导体数量为0根,所有垂直接地体导体长度为2.5m,外部垂直接地导体长度为2.5m,垂直接地导体分布情况如说明书附图4所示,土壤分层为单层,单层土壤电阻率为200Ω·m。

步骤3.2,计算影响要素Mαβ的评价接地电阻值Rαβ,具体过程为:

提取原始数据集合Mαβ′中的E个原始数据,并分别取代其基准值Hαβ代入仿真基准式G进行仿真,得到与E个原始数据对应的电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值Rαβ,Rαβ=U1/I;

步骤3.3,按照步骤3.2的方法对11种影响要素依次进行仿真,得到11种影响要素对应的11个评价接地电阻值Rαβ

其中,网孔大小避雷针处垂直接地导体数量门型架构处垂直接地导体数量土壤分层及各层土壤电阻率情况等四个影响要素对应的4个评价接地电阻值的仿真计算如下。

(1)与网孔大小对应的评价接地电阻值

将接地网网孔的长边长度设为C1,短边长度设为C2。从原始数据集中提取网孔大小的所有原始数据,组成一个影响要素原始数据的集合,记为原始数据集合CS为原始数据的个数,提取原始数据集合中的数据,并分别取代其基准值Hαβ带入仿真基准式G进行仿真,得到与各个原始数据对应的电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值仿真结果

(2)与避雷针处垂直接地导体数量对应的评价接地电阻值

设在原始数据库中,避雷针处的垂直导体数量包括4种情况。即与影响要素对应的原始数据集合中包括4个原始数据,将该4个原始数据分别取代其基准值Hαβ带入仿真基准式G进行仿真,得到与4个原始数据对应的电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值仿真结果

(3)与门型架构处垂直接地导体数量对应的评价接地电阻值

设在原始数据库中,避雷针处的垂直导体数量包括5种情况。即与影响要素对应的原始数据集合中包括5个原始数据,将该5个原始数据分别取代其基准值Hαβ带入仿真基准式G进行仿真,得到与5个原始数据对应的电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值仿真结果

(4)与土壤分层及各层土壤电阻率情况对应的评价接地电阻值

高速铁路徐州段某牵引变电所接地网土壤结构比较复杂。在原始数据库中,土壤结构分为8种不同情况,将每种土壤结构中土壤的层数记为T,将T层土壤中的任意一层记为土壤层j,j=1,2…T,记土壤层j的厚度为Hj、土壤层j的电阻率为ρj,即与影响要素对应的原始数据集合中包括8×T组原始数据,将该8×T组原始数据分别取代其基准值Hαβ带入仿真基准式G进行仿真,得到与8×T组原始数据对应的8×T个电位升U,取其中数值最大的电位升U记为最大电位升U1,计算此时的接地电阻值并记为评价接地电阻值仿真结果

步骤4,获取接地网接地电阻多要素评价值集合R0

最后仿真得到的数据为:

R0={1.622,18.311,0.933,0.713,1.631,1.083,1.082,1.644, 4.705,1.641,6.352}。

很明显,从本次仿真结果看,水平接地导体形状外部垂直接地导体长度土壤分层及各层土壤电阻率情况对接地电阻的影响比较大。

由以上技术方案可见,本发明基于CDEGS仿真软件建立接地网的仿真计算模型,采用电磁场理论中的矩量法进行分析。综合考虑水平接地导体、垂直接地导体和土壤结构参数等多种要素对接地网安全性能评价中接地电阻这一重要指标的影响,得到接地电阻在多种情况下的评价值。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:纯水冷却装置电导率值异常问题的检测系统及检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!