离子铣削装置及离子铣削装置的离子源调整方法

文档序号:1047921 发布日期:2020-10-09 浏览:26次 >En<

阅读说明:本技术 离子铣削装置及离子铣削装置的离子源调整方法 (Ion milling device and ion source adjusting method of ion milling device ) 是由 鸭志田齐 高须久幸 上野敦史 岩谷彻 于 2018-02-28 设计创作,主要内容包括:本发明提高通过向试样照射非聚焦的离子束加工试样的离子铣削装置的加工精度、或加工面形状的再现精度。为此,具有试样室(6)、设置于试样室的离子源位置调整机构(5)、经由离子源位置调整机构安装于试样室且射出离子束的离子源(1)、以及以旋转中心为轴旋转的试样台(2),若将离子束的离子束中心(B&lt;Sub&gt;0&lt;/Sub&gt;)和旋转中心(R&lt;Sub&gt;0&lt;/Sub&gt;)一致时的旋转中心的延伸方向设为Z方向,且将与Z方向垂直的面设为XY面,则离子源位置调整机构(5)能够调整离子源(1)的XY面上的位置及Z方向的位置。(The invention provides an ion milling device for processing a sample by irradiating the sample with a non-focused ion beam, which can improve the processing precision or the reproduction precision of the processing surface shape. The ion source device is provided with a sample chamber (6), an ion source position adjusting mechanism (5) arranged in the sample chamber, an ion source (1) which is arranged in the sample chamber through the ion source position adjusting mechanism and emits ion beams, and a sample table (2) which rotates by taking a rotation center as an axis, and the ion beam center (B) of the ion beam is determined 0 ) And center of rotation (R) 0 ) The extending direction of the rotation center when the rotation centers are aligned is the Z direction, and the surface perpendicular to the Z direction is the XY surfaceThe ion source position adjusting mechanism (5) can adjust the position on the XY plane and the position in the Z direction of the ion source (1).)

离子铣削装置及离子铣削装置的离子源调整方法

技术领域

本发明涉及离子铣削装置及离子铣削装置的离子源调整方法。

背景技术

为了观察、分析试样的内部构造,需要使设为目的的内部构造在表面露出。以往具有通过切割、机械研磨制作试样的方法,但这些方法无法避免因对试样施加物理的压力而引起的变形、损伤的产生。离子铣削装置向试样(例如,金属、半导体、玻璃、陶瓷等)的表面或截面照射加速到例如数kV的非聚焦的氩离子束,能够利用溅射现象无应力地将试样表面的***飞,使试样表面平滑化。由于进行用于利用以扫描电子显微镜(SEM:ScanningElectron Microscope)、透射式电子显微镜透(TEM:Transmission Electron Microscope)为代表的电子显微镜观察试样的表面或截面的平滑加工,因此这是优异的特性。

在离子铣削装置中,为了在真空氛围中进行试样的加工,产生离子束的离子束照射部安装于真空容器。若加工试样,则从加工面产生的来自于试样的微小粒子附着于离子束照射部,因此离子铣削装置需要进行定期的清扫。因此,构成为,从真空容器卸下离子束照射部,在维护后再次安装,但是,再安装时,有可能离子束照射部产生安装误差,从离子束照射部照射的离子束的照射方向与之前发生改变。

专利文献1公开了一种离子束照射装置,其将试样(在此为基板)保持于基板保持件,并使其以横切离子束的照射区域的方式进行往复运动,离子束照射部向基板照射离子束。对于上述的课题,在正对离子束照射部的真空容器壁面设置测量照射的离子束的束电流密度分布的离子束测量机构。利用离子束测量机构测量离子束中心位置,将基板的往复运动的行程中心位置设定于离子束中心位置或基于该位置确定的预定位置,由此,即使离子束照射部产生了安装误差,也可保证对基板的离子照射量的均一性。

另一方面,在近年的半导体设备中,集成度飞跃性地提高,因此正在研发将具有细微的立体构造的图案三维地集成的半导体设备。为了进行集成这样的立体构造(三维构造)图案的设备的制造管理,需要评价截面方向的图案。专利文献2公开了如下技术:为了实现这样的立体构造图案的深度方向(或者高度方向)的高精度的测量,在试样表面形成倾斜面,进行图案的深度方向(高度方向)的测量。

现有技术文献

专利文献

专利文献1:日本特开2017-199554号公报

专利文献2:国际公开第2016/002341号

发明内容

发明所要解决的课题

专利文献2中,为了在试样表面形成用于使立体构造图案的截面露出的倾斜面,使用了聚焦离子束(FIB:Focused Ion Beam)装置。但是,就聚焦离子束装置而言,加工速度慢,而且加工范围窄,因此为了在试样表面形成设为目的的倾斜面,耗费时间。因此,发明者们探讨了利用使用加工速度快的非聚焦的离子束的离子铣削装置形成倾斜面。

在将非聚焦的离子束用于试样的加工的情况下,其加工速度依赖于向试样照射的离子束强度、具体而言,通过加速电压施加的离子的速度和离子的数量、以及离子的照射角度。在此,从离子源放出的离子束的强度理想上认为具有强度在离子束中心最高,朝向周边逐渐减小的二项分布的形状。但是,从离子源放出的离子束受构成离子源的电极部件的污浊、电极部件的消耗产生的离子数量的波动、环境引起的电场等的干扰的影响,难以持续保持照射试样的离子束强度恒定。另外,由于因试样的组成、入射角度而引起的铣削速度的差,导致凹凸形成,因此,在向试样照射非聚焦的离子束进行加工时,在离子铣削装置中,一边以离子束中心为轴使试样旋转,一边照射离子束,抑制凹凸的形成,可以得到适于电子显微镜的观察、计测的平滑的加工面。

对本发明的课题进行说明。图2A示出了离子铣削装置的主要部分。具有离子源21、载置试样20的试样台22、以及使试样台22以旋转中心R0为轴沿R方向旋转的试样台旋转驱动源23。来自离子源21的离子束在以离子束中心B0为中心呈放射状扩展的状态下照射载置于试样台22的试样载置面的试样20。本来,前提是旋转中心R0和离子束中心B0一致,但有时由于离子源21的安装误差,如图2A所示地旋转中心R0和离子束中心B0成为偏离ε的状态。图2B表示此时形成于试样20的表面的加工深度。如波形25所示,在从旋转中心R0偏离ε的位置的离子束强度最高的离子束中心B0加工深度最深,随着从此分离,加工深度变小。与之相对地,将旋转中心R0和离子束中心B0一致的情况下的加工深度表示为波形26。这样,可知,由于离子源21的安装误差,加工面的形状相比本来意图的加工面顺滑地、极端的情况下,如图2B的波形25所示地,加工面波动。特别地,在为了进行微细的立体构造图案的观察、计测而有意在试样形成观察面、倾斜面的情况下,能够忽视这样的加工面的形状的变化。

此外,在图2A的例中,以离子束中心B0相对于试样20的表面(或者试样台22的试样载置面)垂直的方式照射离子束,但也可以使试样台22向C方向倾斜,将离子束以低入射角度照射试样20表面。由此,可以得到大范围的加工面。该情况下,也一边使试样台22在倾斜的状态下以旋转中心R0为轴旋转,一边向试样20照射离子束,因此,若旋转中心R0和离子束中心B0偏离(在试样20的表面上,旋转中心R0和离子束中心B0不相交),则同样地旋转中心R0与离子束中心B0的偏离变现为加工面的形状变化,存在不能得到期望的观察面、倾斜面的问题。

在如以往的装置那样采用将离子源直接安装于真空容器的结构的情况下,由于定期的清扫,需要使离子源可装卸,不能将离子源及试样室的离子源装配部的机械加工公差设为0。因此,不能避免再次安装离子源时产生错位。如使用图2A、B说明地,这导致离子铣削装置的加工精度的不均、使加工面形状的再现性降低。

另外,就离子束而言,相距离子源的射出口的距离越长,离子束径越扩展,电流、离子密度越降低。因此,可以认为,在如专利文献1那样离子束测量位置从实际的试样加工位置分离的情况下,为了测量离子束,必须使对离子源施加的电压比进行实际的加工时的条件高地进行测量。但是,若改变离子束的射出条件,则离子束具有的能量变化,因此铣削速度改变,另外,离子的密度分布也改变,进一步地,干扰施加的影响的大小也改变,因此,期望调整以与实际的加工时的射出条件相同的条件进行。因此,为了以实际的加工时的射出条件进行位置调整,有时离子铣削装置的操作人员在试样台上安装例如铜箔这样的加工对象,然后照射实际加工条件下的离子束,在铜箔上残留束痕,以使束痕和旋转中心R0一致的方式实施离子源的位置调整。但是,这样的基于束痕的目视或显微镜观察下的调整对于准确性存在界限,而且大多情况下需要反复多次离子源的装卸进行对位,实时性差,因此操作人员的调整负担大。

鉴于这样的课题,本发明提供可以容易且准确地调整离子源装卸后的离子束中心和试样旋转中心的离子铣削装置、及离子源调整方法。

用于解决课题的方案

本发明的一实施方式的离子铣削装置通过向试样照射非聚焦的离子束,对试样进行加工,该离子铣削装置具有:试样室;设置于试样室的离子源位置调整机构;经由离子源位置调整机构安装于试样室,且射出离子束的离子源;以及以旋转中心为轴旋转的试样台,若将离子束的离子束中心和旋转中心一致时的旋转中心的延伸的方向设为Z方向,且将与Z方向垂直的面设为XY面,则离子源位置调整机构能够调整离子源的XY面上的位置及Z方向的位置。

其它课题和新的特征根据本说明书的记载及附图将变得明了。

发明的效果

能够提高离子铣削装置的加工精度、或加工面形状的再现精度。另外,能够缩短离子铣削装置的维护时间。

附图说明

图1是实施例1的离子铣削装置的主要部分结构图。

图2A是说明本发明的课题的图。

图2B是说明本发明的课题的图。

图3是表示试样台的结构例的图。

图4是离子源的位置调整的块图。

图5是实施例1的离子源的位置调整流程。

图6A是靶板的导电体的形状的一例。

图6B是靶板的导电体的形状的另一例。

图7是实施例2的离子铣削装置的主要部分结构图。

图8是实施例2的离子源的位置调整流程。

具体实施方式

以下,基于附图对本发明的实施例进行说明。

实施例1

图1是实施例1的离子铣削装置的主要部分结构图。具有可保持真空状态的试样室6、离子源1、加工时设置试样(未图示)的试样台2、以及使试样台以旋转中心R0为轴向R方向旋转的试样台旋转驱动源3。此外,如图2A所示,试样台2也可以具有用于改变离子束的入射角度的倾斜机构。另外,在试样室6设有用于观察加工的试样的观察窗7。

在此,离子源1经由将其位置在X方向、Y方向以及Z方向上进行微调整的离子源位置调整机构5安装于试样室6。由此,可以对离子源1的离子束中心B0的位置,具体而言,对XY面(包含X方向及Y方向的面)上的位置及动作距离(Z方向的位置,具体而言是指从离子源1的离子束放出位置到试样台2的距离)进行微调整。另外,如后述地,试样台2的试样载置板可以更换,在进行离子源1的位置调整的情况下,取代试样载置板,设置将用于检测离子束的电流的导电材4设置于含有旋转中心R0的范围的靶板。图1示出该状态。

离子源位置调整机构5具有固定离子源1的支撑部、将离子源位置调整机构5设置于试样室6的基板、以及可将设于基板的支撑部在X方向、Y方向、Z方向上独立移动的离子源移动机构。作为离子源移动机构,例如,能够通过使用用于微距计那样的精密的螺纹机构将离子源1的位置在各方向上微调整。

通过对离子源1施加预定的电压,从离子源1以离子束中心B0为中心呈放射状射出离子束,照射设置于试样台2且在含有旋转中心R0的范围设有导电材4的靶板。就从离子源1射出的离子束而言,在离子束中心B0电流、离子密度高,朝向外侧,电流、离子密度逐渐降低。另外,相距离子源1的距离越长,电流、离子密度越降低。因此,使用导电材4检测离子束电流,以使离子束电流成为期望的大小的方式利用离子源位置调整机构5对离子源1的位置进行微调整,由此能够实现期望的加工精度、或加工面形状的再现精度。

图3表示试样台2的结构例。示出了设置有具有导电材4的靶板30的状态。靶板30以该导电材4与导电材连接板31连接的方式设置。此时,导电材4的中心设为用点划线表示的与旋转中心R0一致的位置。来自离子源的离子束照射以导电材4为中心的区域,但从离子源1以放射状射出离子束,因此根据离子源1与导电材4的距离不同,也存在离子束照射导电材4以外的可能性。为了防止这样的情况下因离子束照射试样台的其它结构部件而引起的电流流入导电材4,导电材4的周围的靶板30设为绝缘材。导电材连接板31连接于使试样旋转的旋转轴33,通过被试样台旋转驱动源3驱动的旋转齿轮34的动力使导电材4旋转,但为了防止导电材4受到的电流向旋转轴33流入,在导电材连接板31与旋转轴33之间设置绝缘材32,遮断电流的流动。另外,导电材4受到的电流由与导电材连接板31接触的旋转接触接点35及束电流检测配线36引出,对电流值进行检测。此外,旋转接触接点35及束电流检测配线36通过束电流检测配线连接器37与其它结构部件绝缘。

图4表示实施例1的离子铣削装置的离子源1的位置调整的块图。特别地,并非限定发明,在此表示使用基于彭宁放电的离子源作为离子源1的例。在负极电极11a、11b之间配置圆筒型的正极电极12,在负极电极11a、11b与正极电极12之间施加放电电压Vd。通过配管15将氩气导入离子源1内,通过磁铁13在正极电极12内作用磁场,由此在正极电极12内产生离子。产生的离子被施加了加速电压Va的加速电极14加速,从离子源1作为离子束放出。

放电电压Vd及加速电压Va通过电源部40生成。另外,电源部40具有电流计,电流计41进行放电电流Vd的计测,电流计42计测在导电材4受到的离子束电流。此外,放电电压Vd及加速电压Va的值由控制部45设定。

另外,离子源1固定于离子源位置调整机构5的支撑部16,通过可以将支撑部16在X方向、Y方向、Z方向上独立移动的离子源移动机构17,离子源1的位置可以微调整。

电源部40、离子源移动机构17以及试样台旋转驱动源3连接于控制部45,从控制部45设定离子束射出条件,另外,根据预定的流程,执行离子源的调整、试样的加工。进一步地,控制部45连接于显示部46,显示部46作为操作人员对控制部45的用户接口发挥功能,并且进行表示控制部45收集到的离子铣削装置的动作状态的感应数据的显示等。例如,作为显示于显示部46的感应数据,包括来自电源部40的放电电压值Vd、放电电流值、加速电压值Va、离子束电流值等。

图5表示在图4所示的离子铣削装置中控制部45执行的离子源1的调整流程。

步骤S51:控制部45利用试样台旋转驱动源3开始试样台2的旋转。如图4所示,以使导电材4的表面相对于从离子源1射出的离子束垂直的方式设置试样台2。通过使试样台2旋转,能够抑制因导电材4导致的电流的检测偏差。

步骤S52:控制部45控制电源部等,从离子源1向导电材4照射离子束。此时,电源部40对离子源1施加的放电电压Vd及加速电压Va按照实际加工试样时施加的电压施加条件。由此,能够高精度地再现加工试样时的离子束。

步骤S53:利用电流计42计测离子束电流。控制部45获取电流计42计测出的离子束电流值。

步骤S54:控制部45以使计测的离子束电流值满足预先决定的基准的方式控制离子源位置调整机构5。在此,离子源位置调整机构5的离子源移动机构17设为被控制部45进行马达控制,首先在X方向上移动,然后在在Y方向上移动,将离子源1的XY面上的位置调整到离子束电流值成为最大的位置。之后,根据需要使其在Z方向上移动,由此基于离子束电流值的值,对离子源1的离子束中心B0的XY面上的位置及动作距离(Z方向的位置)进行微调整。该调整例是一例,能够根据控制部45具备的算法,对离子源1的离子束中心B0的XY面上的位置及动作距离(Z方向的位置)进行微调整。

例如,也可以取代利用离子源位置调整机构5进行Z方向的微调整,或者在Z方向的微调整的基础上,调整对离子源1施加的放电电压值Vd。另外,进行离子源1的调整时设为目标的离子束电流值不限于离子束电流的最大值,例如,也可以确定为上次加工实施时的离子束电流值。

另外,在试样台2中,也能够更换导电材4的形状不同的靶板30、或者相对于靶板30更换形状不同的导电材4。例如,图6A是作为导电材配置以旋转中心R0为中心的圆形状的导电材60的例。进一步地,即使同样的圆形状,也优选使用具有多个直径的同心圆形状的导电材的靶板。由此,能够使用具有与离子束的直径符合的检测范围的导电材进行离子源的调整。作为一例,可以使用导电材4的直径比照射靶板的离子束径小的导电材,并进行如下调整:使利用导电材4探测的离子束电流值成为最大值的方式使离子源1在Z方向上微动。

另一方面,图6B是作为导电材将圆形状的导电材61和直径比导电材61大的圆环形状的导电材62以旋转中心R0为中心配置成同心圆状的例。此时,由导电材61检测的离子束电流值和由导电材62检测的离子束电流值能够由电源部40独立地计测。具体而言,在试样台2设置与导电材61和导电材62对应的2系列的离子束电流引出部,由电源部40计测各个离子束电流值。由此,能够包括照射的离子束外形(能够近似成二项分布的离子束的扩展情况)进行评价,能够进一步提高离子铣削装置的加工精度、或者加工面形状的再现精度。

对于实施例1的离子铣削装置,特别地以其离子源的位置调整为中心进行了说明,但可以进行各种变形。例如,也可以是,控制部45保留将由电流计42计测到的离子束电流值显示于显示部46,操作人员一边确认显示于显示部46的离子束电流值,一边手动调整离子源位置调整机构5的离子源移动机构17的移动量、或者离子源1的放电电压Vd

实施例2

图7是实施例2的离子铣削装置的主要部分结构图。实施例2可以通过更简单的机构进行离子束中心B0与旋转中心R0的对位。在此,对于与实施例1功能相同的结构要素使用相同的符号,并省略重复的说明。

在试样室6的上方设置观察用的显微镜(光学显微镜)73,设为可以从观察窗7观察试样台2的试样载置面。另外,在试样台2的试样载置面设有镜面部件71。作为镜面部件,只要是可以反射离子源1的等离子发光的部件即可,例如,除了一般的镜子,也可以是晶圆。镜面部件只要取代试样搭载于试样台的试样载置板即可。试样台2具有倾斜机构,可以以沿X方向延伸的轴72为中心向C方向倾斜。轴72在试样台2的试样载置面位于与旋转中心R0相交的位置。图7中示出了试样台2以倾斜角T倾斜的状态。此外,倾斜角T定义为离子束中心B0与试样台2的试样载置面的法线形成的角。

使用图8说明在这样的结构的离子铣削装置中进行离子源1的位置调整的方法。

步骤S81:使试样台2相对于离子束中心B0倾斜倾斜角T为45°。在此,试样台2的倾斜机构以轴72为中心倾斜,因此,只要是离子束中心B0和旋转中心R0一致的状态,即使改变试样台2的倾斜,与离子源1的距离也不会发生变化。因此,试样加工时,倾斜角T也可以是45°以外的期望的倾斜角。

步骤S82:利用试样台旋转驱动源3,开始试样台2的旋转。

步骤S83:从离子源1向镜面部件71照射离子束。此时,电源部40对离子源1施加的放电电压Vd及加速电压Va按照实际加工试样时施加的电压施加条件。由此,能够高精度地再现加工试样时的离子束。

步骤S84:利用观察用显微镜73观察镜面部件71,确认从离子源1的射出口放出的等离子发光亮度的中心位置。若为离子束中心B0和旋转中心R0一致的状态,则镜面部件71的旋转中心R0附近看起来以点状或圆形状发光,若为离子束中心B0和旋转中心R0不一致的状态,则由于试样台2旋转而看起来以圆环状发光。

步骤S85:以使在步骤S84确认的离子源1的等离子发光亮度中心位置与试样台2的旋转中心R0一致的方式通过离子源位置调整机构5对离子源1的位置进行微调整。

此外,以上的例子中,设为在试样台2设置镜面部件71的方式进行了说明,但取而代之,通过设置利用离子束的照射而发光的发光部件、例如激光发光元件、或者涂敷了荧光体的试样,也可以得到同样的效果。

符号说明

1、21—离子源,2、22—试样台,3、23—试样台旋转驱动源,4、60、61、62—导电材,5—离子源位置调整机构,6—试样室,7—观察窗,11a、11b—负极电极,12—正极电极,13—磁铁,14—加速电极,15—配管,16—支撑部,17—离子源移动机构,20—试样,30—靶板,31—导电材连接板,32—绝缘材,33—旋转轴,34—旋转齿轮,35—旋转接触接点,36—束电流检测配线,37—束电流检测配线连接器,40—电源部,41、42—电流计,45—控制部,46—显示部,71—镜面部件,72—轴,73—显微镜。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:半导体处理工具中的RF电流测量

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类