光学透明超疏水薄膜

文档序号:1078049 发布日期:2020-10-16 浏览:19次 >En<

阅读说明:本技术 光学透明超疏水薄膜 (Optically transparent super-hydrophobic film ) 是由 J.T.辛普森 于 2019-02-27 设计创作,主要内容包括:公开了一种易于施涂、透明、粘合良好且超疏水的涂层。一方面,一种用于涂覆基底的方法包括提供具有表面的基底,邻近该表面布置涂料组合物,该组合物包括疏水氟化溶剂、包括疏水氟化聚合物的粘合剂、以及疏水热解法二氧化硅纳米粒子。还公开了一种包括涂料层的制品,该涂料层包括部分暴露在其外表面上的多个纳米粒子。(An easy-to-apply, transparent, well-adhering and superhydrophobic coating is disclosed. In one aspect, a method for coating a substrate includes providing a substrate having a surface, disposing a coating composition adjacent the surface, the composition including a hydrophobic fluorinated solvent, a binder including a hydrophobic fluorinated polymer, and hydrophobic fumed silica nanoparticles. Also disclosed is an article comprising a coating layer comprising a plurality of nanoparticles partially exposed on an outer surface thereof.)

光学透明超疏水薄膜

相关申请的交叉引用

本申请要求2018年2月27日提交的第62/635,993号美国临时专利申请、2018年5月29日提交的第15/991,873号美国专利申请和2019年2月26日提交的第16/286,545号美国专利申请的优先权;每个专利的全部内容在此引入作为参考。

背景技术

除非本文中另有指示,否则本部分中描述的材料不是本申请中权利要求的现有技术,并且通过包括在本部分中不被认为是现有技术。

具有优异防水性能的超疏水表面和涂层(coating)在许多努力领域都有潜在的应用。与光学透明的超疏水涂层一样,已经获得了粘合良好的光学透明涂层。但是仍然需要易于施涂、光学透明、粘合良好、超疏水的涂层或薄膜。这是因为当使用传统的薄膜材料和方法时,能够实现这三个特性的物理性能往往是相互排斥的。例如,超疏水材料通常具有微米至纳米的表面粗糙度,其倾向于散射光并使光学透明度难以实现。同样,具有高光学透明度的材料倾向于具有低表面粗糙度(即非常光滑的表面),并且通常不允许与低表面能(lowsurface energy)疏水材料粘合良好。还存在对在大量磨损后仍能保持疏水性的超疏水涂层的需求。

发明内容

在一个方面,本公开提供了一种涂覆基底的方法,该方法包括提供具有表面的基底;邻近该表面布置涂料组合物;该组合物包括疏水氟化溶剂、包括疏水氟化聚合物的粘合剂和二氧化硅纳米粒子;以及蒸发氟化溶剂。

另一方面,本公开提供了一种包括涂料层的制品,该涂料层具有内表面和相对的外表面,邻近基底表面布置该内表面,其中该涂料层包括疏水氟化聚合物和多个纳米粒子,并且至少一部分纳米粒子部分暴露在涂料层的外表面上。

通过阅读以下

具体实施方式

,并参考适当的附图,这些以及其他方面、优点和替代方案对于本领域普通技术人员来说将变得显而易见。

附图说明

图1示出了根据本公开的方面的示例超疏水光学薄膜的视图,该示例超疏水光学薄膜包括各种薄膜层和相关联的疏水纳米粒子。

图2示出了根据本公开的方面的示例超疏水光学薄膜的视图,包括各种薄膜层、相关联的疏水纳米粒子和来自被置换的纳米粒子的凹陷。

图3描绘了根据示例实施例的方法的流程图。

具体实施方式

以下具体实施方式描述了所公开的方法、组合物和结构的各种特征和功能。本文描述的说明性实施例不意味着是限制性的。容易理解的是,所公开的方法、组合物和结构的某些方面可以以各种不同的配置进行排列和组合,所有这些都在本文中被考虑。

描述了一种超疏水组合物,其在不牺牲疏水性或光学透明度的情况下易于施涂且粘合良好。本文所用的“超疏水”描述水接触角至少约为130°的表面或涂层。同样如本文所用,“光学透明”涂层透射波长在300nm至1500nm范围内的入射光的至少约90%。本文所用的“粘合良好”是指当作为涂层或薄膜施涂到基底上时,该组合物粘附到基底上,从而不容易用相对少量的剪切力(例如摩擦)或暴露于环境条件(例如,阳光、雨水、风等)而除去。

一方面,本公开提供了一种组合物,包括:

疏水氟化溶剂;

包括疏水氟化聚合物的粘合剂;

疏水热解法二氧化硅纳米粒子;以及

可选地,疏水气凝胶纳米粒子。

疏水氟化溶剂可以是能够溶解本文所述粘合剂的氟化材料。为了提供所得膜或涂层的良好光学透明度,组合物包括在整个沉积过程中良好分散的粒子是有益的。粒子太大或分散不良会导致超疏水表面浑浊。理想的分散可以通过使用合适的疏水氟化溶剂来实现,该溶剂可以作为分散剂。在一些实施例中,疏水氟化溶剂可以包括氟化烷烃、氟化三烷基胺、氟化环烷烃、氟化杂环烷烃或其组合。在一些实施例中,氟化组合物可以是全氟化的。合适的氟化溶剂可从多种来源、诸如Sigma Aldrich(St.Louis,MO),3M(Maplewood,MN)等商购获得。合适的氟化溶剂包括全氟辛烷、2H、3H-全氟戊烷、全氟三丁胺、全氟萘烷和全氟壬烷等,例如FluorinertTM FC-40、FluorinertTM FC-75、FluorinertTM FC-770或等同或类似材料。

在一些实施例中,疏水氟化溶剂可以包括交联硅烷(cross-linking silane)。交联硅烷可以选自本领域已知的具有至少一个硅原子的交联剂。合适的交联硅烷可从多种来源、诸如Sigma Aldrich(密苏里州圣路易斯),3M(Maplewood,MN)等商获得。合适的交联硅烷包括例如具有氢化物官能团、乙烯基官能团等的硅烷,例如,NovecTM 2702、Novec TM2202、Novec TM 1720或等效或类似材料。当包括交联硅烷时,组合物中使用的粘合剂的量可以降低至组合物的约0.3重量%(wt.%)至约1.0重量%。

氟化聚合物粘合剂可以包括能够溶解在本文所述的疏水氟化溶剂中的疏水氟化聚合物。粘合剂可以使疏水粒子粘附到基底的表面,但是如果粘合剂选择不当或使用量错误,粘合剂可能会影响所得薄膜或涂层的光学透明度。氟化聚合物粘合剂优选是光学透明和无定形的。在一些实施例中,氟化聚合物粘合剂可以是氟烷基聚合物、氟烷氧基聚合物、全氟烷基聚合物、全氟烷氧基聚合物或其组合。合适的氟化聚合物粘合剂可从许多来源、诸如Solvay(比利时布鲁塞尔)商购获得。合适的氟化聚合物粘合剂可以包括,例如,AF和AD。

组合物中粘合剂的量与组合物形成具有本文所述的所需超疏水、光学透明和粘合良好性能的膜或涂层的能力有关。如果在组合物中使用太多的粘合剂,纳米粒子可能被粘合剂吞没到这样的程度,即表面失去其纳米纹理,从而失去其超疏水性能的程度。如果使用的粘合剂太少,纳米粒子可能不能有效地粘合到基底上,并且对基底的粘附可能受到影响。在一些实施例中,氟化聚合物粘合剂以组合物的约0.3重量%至约1.5重量%存在。在其它实施例中,粘合剂以组合物的约0.8重量%至约1.2重量%存在。粘合剂也可以以组合物的约0.3重量%至约1.4重量%、约0.4重量%至约1.5重量%、约0.3重量%至约1.3重量%、约0.4重量%至约1.3重量%、约0.4重量%至约1.2重量%、约5重量%至约1.2重量%、约0.5重量%至约1.1重量%、约0.5重量%至约1.0重量%、约0.6重量%至约1.0重量%、约0.7重量%至约1.4重量%、约0.5重量%至约1.5重量%、约0.5重量%至约1.2重量%、或约0.3重量%至约0.9重量%存在。

现有技术中已知多种热解法二氧化硅材料,包括例如具有不同粒子尺寸分布或平均粒子尺寸的热解法二氧化硅、或者甚至表面处理的热解法二氧化硅。在本文另外描述的某些实施例中,热解法二氧化硅纳米粒子是高表面积、纳米结构化和/或纳米多孔粒子,其平均粒子尺寸为约200nm或更小。平均热解法二氧化硅纳米粒子尺寸代表了粒子的平均线性尺寸(例如,在基本球形粒子的情况下为平均直径),并且它可以代表平均晶粒(grain)或微晶尺寸,或者在团聚粒子的情况下,代表平均团聚尺寸。在一些实施例中,平均热解法二氧化硅纳米粒子尺寸可以小于约100nm、小于约75nm或小于约50nm。然而,极小的热解法二氧化硅纳米粒子(例如,几纳米或更小)可能难以分散。在一些实施例中,平均热解法二氧化硅纳米粒子尺寸为约10nm至约200nm、约25nm至约100nm或约40nm至约60nm。

疏水热解法二氧化硅纳米粒子可以是用疏水硅烷化学改性(modify)的二氧化硅纳米粒子。在一些实施例中,纳米粒子用氟化材料进行化学处理。在其他实施例中,纳米粒子用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)进行化学处理。由热解法二氧化硅制成的胶态二氧化硅通过合适的工艺制备,以减小粒子尺寸并改变表面性能。通过在高的温度下用表面改性硅化合物(例如二甲基二氯化硅)在气相水解的条件下生产二氧化硅材料来改性表面性能以生产热解法二氧化硅。热解法二氧化硅纳米粒子的疏水性能是用选自包括有机硅烷、氟化硅烷和二硅氮烷的组的至少一种化合物进行处理的结果。

合适的有机硅烷包括但不限于烷基氯硅烷;烷氧基硅烷,例如甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三乙氧基硅烷、乙基三乙氧基硅烷、n-丙基三乙氧基硅烷、i-丙基三乙氧基硅烷、i-丙基三乙氧基硅烷、丁基三乙氧基硅烷、丁基三乙氧基硅烷、己基三乙氧基硅烷、辛基三乙氧基硅烷、3-巯基丙基三乙氧基硅烷、n-辛基三乙氧基硅烷、苯基三乙氧基硅烷和聚三乙氧基硅烷;三烷氧基芳基硅烷;异辛基三甲氧基硅烷;N-(3-三乙氧基甲硅烷基丙基)氨基甲酸乙氧基乙氧基乙氧基乙酯;N-(3-三乙氧基甲硅烷基丙基)氨基甲氧基乙氧基乙氧基乙基氨基甲酸酯;聚二烷基硅氧烷,包括例如聚二甲基硅氧烷;芳基硅烷,包括例如取代和未取代的芳基硅烷;烷基硅烷,包括例如取代和未取代的烷基硅烷,包括例如甲氧基和羟基取代的烷基硅烷;和它们的组合。合适的烷基氯硅烷包括,例如,甲基三氯硅烷、二甲基二氯硅烷、三甲基氯硅烷、辛基甲基二氯硅烷、辛基三氯硅烷、十八烷基甲基二氯硅烷和十八烷基三氯硅烷。其他合适的材料包括,例如,甲基甲氧基硅烷,诸如甲基三甲氧基硅烷、二甲基二甲氧基硅烷和三甲基甲氧基硅烷;甲基乙氧基硅烷,诸如甲基三乙氧基硅烷、二甲基二乙氧基硅烷和三甲基乙氧基硅烷;甲基乙酰氧基硅烷,诸如甲基三乙酰氧基硅烷、二甲基二乙酰氧基硅烷和三甲基乙酰氧基硅烷;乙烯基硅烷,诸如乙烯基三氯硅烷、乙烯基甲基二氯硅烷、乙烯基二甲基氯硅烷、乙烯基三甲氧基硅烷、乙烯基甲基二甲氧基硅烷、乙烯基二甲基甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基甲基二乙氧基硅烷和乙烯基二甲基乙氧基硅烷。

合适的氟化硅烷包括氟化烷基、烷氧基、芳基和/或烷基芳基硅烷、以及全氟化烷基、烷氧基、芳基和/或烷基芳基硅烷。合适的氟化烷氧基硅烷的示例是全氟辛基三甲氧基硅烷。

合适的二硅氮烷包括例如六甲基二硅氮烷、二乙烯基四甲基二硅氮烷和双(3,3-三氟丙基)四甲基二硅氮烷。环硅氮烷也是合适的,并且包括例如八甲基环四硅氮烷。

合适的疏水热解法二氧化硅纳米粒子可从许多来源、包括Cabot Corporation(Tuscola,IL)、商品名为CAB-O-SIL、和Degussa,Inc.(Piscataway,NJ)、商品名为AEROSIL商购获得。合适的疏水热解法二氧化硅粒子包括例如AEROSIL[R]R 202、AEROSIL[R]R 805、AEROSIL[R]R 812、AEROSIL[R]R 812S、AEROSIL[R]R 972、AEROSIL[R]R 974、AEROSIL[R]R8200、AEROXIDE[R]LE-1和AEROXIDE[R]LE-2。

在一些实施例中,疏水热解法二氧化硅纳米粒子以组合物的约0.01重量%至约0.5重量%存在。在其它实施例中,疏水热解法二氧化硅纳米粒子以组合物的约0.08重量%至约0.12重量%存在。疏水热解法二氧化硅纳米粒子也可以以组合物的约0.03重量%至约0.5重量%、约0.04重量%至约0.5重量%、约0.03重量%至约0.4重量%、约0.04重量%至约0.4重量%、约0.04重量%至约0.3重量%、约0.05重量%至约0.2重量%、约0.05重量%至约0.1重量%、约0.05重量%至约0.1重量%、约0.06重量%至约0.1重量%、约0.07重量%至约0.1重量%、约0.05重量%至约0.5重量%、约0.05重量%至约0.3重量%、或约0.01重量%至约0.09重量%存在。

在一些实施例中,组合物可以进一步包括疏水气凝胶纳米粒子。疏水热解法二氧化硅纳米粒子与疏水气凝胶纳米粒子的组合可以提供具有额外拒水性的涂层或薄膜。包括疏水气凝胶纳米粒子但没有热解法二氧化硅纳米粒子的超疏水涂层可以提供超疏水、光学透明的薄膜。但是这些薄膜在很小的剪切力下就会破碎。因此,这种涂层容易被摩擦破坏,并且不能对涂覆的表面提供长的保护。然而,包括疏水热解法二氧化硅纳米粒子的组合物提供了更耐久的超疏水涂层,其可以很好地粘合到玻璃表面。将疏水气凝胶与疏水热解法二氧化硅结合,通过“隐藏”在粘合良好的热解法二氧化硅纳米粒子之间,保护气凝胶免受摩擦剪切力(见图1)。疏水气凝胶纳米粒子的添加可以进一步提高薄膜的超疏水性能,同时保持良好的耐久性。

合适的疏水气凝胶纳米粒子是非常高表面积(600-800m2/g)的粒子,其密度在约100至200kg/m3之间,并且平均粒子尺寸为约200nm或更小。平均气凝胶纳米粒子尺寸代表粒子的平均线性尺寸(例如,在基本球形粒子的情况下为平均直径),并且它可以代表平均晶粒或微晶尺寸,或者在团聚粒子的情况下,代表平均团聚尺寸。在一些实施例中,平均气凝胶纳米粒子尺寸可以小于约100nm、小于约75nm或小于约50nm。然而,极小的气凝胶纳米粒子(例如,几微米或更小)可能难以分散。在一些实施例中,平均气凝胶纳米粒子尺寸为约10nm至约200nm、约25nm至约100nm或约40nm至约60nm。

疏水气凝胶纳米粒子可以由前驱体粉末(precursor powder)获得,该前驱体粉末被处理以将平均粒子尺寸减小到约200nm或更小。疏水气凝胶纳米粒子可以包括纳米级表面粗糙、即以粒子表面的凹陷特征和/或孔分隔的突出或尖锐特征为特征的纳米级表面纹理。包括具有这种纳米级表面粗糙的粒子的涂料组合物可以产生具有更高水接触角的涂层,从而增强疏水性。如本领域普通技术人员将认识到的,表面纹理的尺度小于粒子的平均尺寸;通常,表面粗糙至少小约50%。例如,平均粒子尺寸为约100nm的气凝胶粒子可以包括平均粒子尺寸为约25nm或更小的表面粗糙,并且平均粒子尺寸为约50nm的疏水粒子可以包括平均粒子尺寸为约25nm或更小的表面粗糙。

合适的气凝胶前驱体粉末可从许多来源、包括Cabot Corp.(Boston,Mass.)商购获得。合适的气凝胶前驱体粉末以商品名Aerogel,

Figure BDA0002653050570000062

Aerogel和

Figure BDA0002653050570000063

Aerogel出售,且包括例如ENOVATM Aerogel IC 3110、ENOVATM AerogelMT1100、ENOVATM AerogelMT 1200、ENOVATM AerogelIC 3120。这些多孔纳米结构粒子的粒子尺寸范围为约5微米至4mm,但是可以如下所述进行机械研磨或超声处理,以获得用于形成超疏水涂层的尺寸减小的粒子(例如,小于约50nm)。

另一方面,本公开提供了一种制备本文所述组合物的方法。该方法涉及:

(a)将疏水氟化溶剂、包括疏水氟化聚合物的粘合剂、热解法二氧化硅纳米粒子和可选的疏水气凝胶纳米粒子组合;

(b)混合该组合;和

(c)干燥该混合物以提供组合物。

在该组合物包括疏水气凝胶纳米粒子的实施例中,组合物可以进一步包括在混合之前添加的疏水气凝胶纳米粒子。例如,如果聚集的纳米粒子足够大以散射大量的光,通过超声处理的混合(例如,用声波探针)可以用于破碎疏水热解法二氧化硅纳米粒子和/或疏水气凝胶纳米粒子的聚集。

有利的是,本发明人已经确定这种组合物可以容易地施涂到基底上,以提供粘合良好的、光学透明的疏水涂层。因此,本公开的另一方面是一种用于涂覆基底的方法。图3示出了涂覆基底的示例方法300。在框302,方法300可以包括提供具有表面的基底,并且在框304,邻近表面布置涂料组合物。在某些实施例中,方法300可以包括在框304处布置涂料组合物之前,在框308处处理基底。该组合物包括疏水氟化溶剂、包括疏水氟化聚合物的粘合剂和疏水热解法二氧化硅纳米粒子。在框306,该方法可以进一步包括蒸发氟化溶剂。

各种组合物的量和特性可以如上文关于本公开的组合物所述。例如,在本文另外描述的某些实施例中,涂料组合物还包括疏水气凝胶纳米粒子。

因此,在本文另外描述的某些实施例中,粘合剂以0.3重量%至1.5重量%范围内的量存在于涂料组合物中。例如,在某些这样的实施例中,粘合剂以涂料组合物的0.5重量%至1.5重量%、或0.8重量%至1.5重量%、或0.3重量%至1.2重量%、或0.8重量%至1.2重量%的范围内的量存在。在本文另外描述的某些实施例中,二氧化硅纳米粒子以0.01重量%至0.5重量%的范围内的量存在于涂料组合物中。例如,在某些这样的实施例中,二氧化硅纳米粒子以涂料组合物的0.03重量%至0.5重量%、或0.05重量%至0.5重量%、或0.08重量%至0.5重量%、或0.01重量%至0.4重量%、或0.01重量%至0.25重量%、或0.01重量%至0.12重量%、或0.03重量%至0.4重量%、或0.05重量%至0.25重量%、或0.08重量%至0.12重量%范围内的量存在。在本文另外描述的某些实施例中,气凝胶纳米粒子以0.1重量%至0.5重量%的范围内的量存在于涂料组合物中。例如,在某些这样的实施例中,气凝胶纳米粒子以涂料组合物的0.2重量%至0.5重量%、或0.3重量%至0.5重量%、或0.1重量%至0.4重量%、或0.1重量%至0.3重量%、或0.15重量%至0.45重量%的范围内的量存在。

例如,在本文另外描述的某些实施例中,二氧化硅纳米粒子的平均尺寸,或二氧化硅纳米粒子和气凝胶纳米粒子的平均尺寸在10nm至200nm、或25nm至200nm、或50nm至200nm、或100nm至200nm、或10nm至150nm、或10nm至100nm、或10nm至50nm、或25nm至150nm、或50nm至100nm的范围内。在一些实例中,可能希望二氧化硅纳米粒子和气凝胶纳米粒子的平均尺寸等于或小于电磁辐射波长(即,无线电波和/或光)的10%,以便使粒子对电磁辐射透明。

在本文另外描述的某些实施例中,布置涂料组合物包括将组合物喷涂到基底表面上。有利的是,本发明人已经确定,与本领域已知的其它粘合良好、超疏水、光学透明的薄膜不同,本文另外描述的可喷涂组合物可以容易地处理和施涂。虽然常规的组合物通常通过复杂、昂贵和麻烦的工艺,诸如物理气相沉积来施加,但是本文所述的组合物可以通过例如喷涂、旋涂或浸涂,或者通过本领域已知的任何其它沉积技术来施涂到基底上。通常,组合物沉积在由光学透明材料,诸如玻璃或丙烯酸形成的透明基底上,然而也可以使用其它基底。

在本文另外描述的某些实施例中,蒸发氟化溶剂包括在氟化溶剂沸点以上的温度处空气干燥或加热基底和/或沉积的组合物。例如,当使用FluorinertTM Fc-40(沸点为165℃)作为氟化溶剂时,可将基底加热至超过165℃的温度,以促进氟化溶剂的蒸发。

如上所述,交联硅烷可以被包括在涂料组合物中。在某些这样的实施例中,该方法进一步包括固化所布置的涂料组合物。在本文另外描述的某些实施例中,固化所布置的涂料组合物包括将所布置的组合物加热到足以提供交联涂层的温度。例如,在某些这样的实施例中,该方法包括邻近基底表面布置包括交联硅烷的涂料组合物,并在至少150℃或至少175℃或至少200℃的温度下固化所布置的涂料组合物、持续足以提供交联涂料组合物的一段时间。在某些这样的实施例中,该方法包括将涂料组合物固化30分钟(min)至90分钟、或45分钟至90分钟、或60分钟至90分钟、或30分钟至75分钟、或30分钟至60分钟、或45分钟至75分钟范围内的一段时间。例如,在本文另外描述的某些实施例中,固化所布置的涂料组合物包括将所布置的组合物加热至足以提供交联涂层的温度(例如,至少150℃的温度)约60分钟。

在本文另外描述的某些实施例中,该方法包括处理基底(例如,在方法300的框308)。例如,在某些这样的实施例中,处理基底包括在基底表面的至少一部分上沉积硅烷(即,在布置涂料组合物之前)。在另一个示例中,在本文另外描述的某些实施例中,处理基底包括等离子体蚀刻基底。在某些这样的实施例中,等离子体蚀刻基底在基底表面上产生羟基官能团。

有利的是,本发明人已经确定,处理基底表面和/或布置包括交联硅烷的涂料组合物可以提高涂料组合物对基底的粘附性(例如,当基底是高度亲水的材料、诸如玻璃时)。在本文另外描述的某些实施例中,包括邻近未处理的基底表面(例如,缺乏显著羟基官能团和/或硅烷官能团的表面)布置交联硅烷的涂料组合物。在其它实施例中,邻近所布置的基底表面(例如,等离子蚀刻和/或硅烷官能化的表面)布置缺少交联硅烷的涂料组合物。当然,在本文另外描述的某些实施例中,包括邻近所布置的基底表面(例如,等离子蚀刻表面)布置交联硅烷的涂料组合物。

本公开的另一方面是通过本文所述的方法制备的涂覆的基底。例如,在某些实施例中,涂覆的基底是包括基底和在基底的至少一部分上的超疏水涂层的结构。当涂层在基底上时,所得的膜是超疏水的、光学透明的并与基底粘合良好。超疏水涂层可以具有至少130°的水接触角。在某些这样的实施例中,超疏水涂层具有至少150°的水接触角。例如,水接触角可以是至少130°、至少135°、至少140°、至少145°、至少150°、至少155°、至少160°、至少165°、至少170°或至少175°。在一些实施例中,水接触角包括前进水接触角(advancingwater contact angle)和后退水接触角(receding water contact angle)。

在一些实施例中,对于300nm和1500nm之间的波长,或者对于400nm和700nm之间的可见光波长,超疏水涂层可以具有至少95%的透光率。基底也可以是光学透明材料,诸如玻璃或塑料。在基底也是光学透明的实施例中,涂覆的基底允许光(例如,来自激光或光学传感器的光)以有限的干涉透射穿过基底和超疏水涂层。涂层的超疏水性质还可以通过限制水(例如,雨水)和污垢或灰尘在表面上积累的能力来使基底保持清洁和干燥。

超疏水涂层也可以以不允许通过摩擦或暴露于环境条件(例如,阳光、雨水、风等)而被去除的方式粘附到基底上。超疏水涂层的这一方面允许单次施涂在基底上保持长时间,并且是超疏水、光学透明涂层以前不知道的特性。

在一些实施例中,该结构还包括布置在超疏水涂层和基底之间的硅烷层。硅烷可用于在施涂超疏水组合物之前改变基底表面的表面能或润湿性。硅烷可以是具有直链烷基、支链烷基或芳基的含硅化合物,包括双峰硅烷,并且可以可选地被氟化。在一些实施例中,硅烷是疏水硅烷。合适的硅烷包括,例如,有机乙氧基硅烷、三甲氧基硅烷、(全氟丁基)乙基三乙氧基硅烷、(3,3,3-三氟丙基)三甲氧基硅烷和本文所述的任何硅烷。然而,当氟化溶剂包括交联硅烷时,氟化硅烷层可能不是必需的。

本公开的另一个方面是一种包括涂料层的制品,该涂料层具有内表面和相对的外表面,邻近基底表面布置该内表面。涂料层包括疏水氟化聚合物和多个纳米粒子,并且至少一部分纳米粒子部分暴露在涂料层的外表面上。在某些实施例中,涂料层是本文中另外描述的涂料组合物的干燥产物。因此,在这样的实施例中,各种组合物的量和特性可以如上文关于本公开的组合物所述。

例如,在本文另外描述的某些实施例中,纳米粒子选自二氧化硅纳米粒子和气凝胶纳米粒子中的一种或多种。在某些这样的实施例中,纳米粒子的平均尺寸在10nm至200nm的范围内。例如,在如本文另外描述的某些实施例中,纳米粒子选自二氧化硅纳米粒子和气凝胶纳米粒子中的一种或多种,并且具有在10nm至200nm、或25nm至200nm、或50nm至200nm、或100nm至200nm、或10nm至150nm、或10nm至100nm、或10nm至50nm、或25nm至150nm、或50nm至100nm范围内的平均尺寸。

在本文另外描述的某些实施例中,纳米粒子相对均匀地分散在整个涂料层中。在其他实施例中,纳米粒子被定位在涂料层的外表面上(例如,将纳米粒子沉积到涂料层表面上的产物)。

在某些方面,部分暴露在涂料层外表面上的纳米粒子可以例如、由于天气的影响而从涂料层上移位,在涂料层的外表面上提供相应的凹陷(见图2)。本发明人已经有利地确定,这种凹陷具有涂料层的纳米粒子尺度上的平均尺寸,可以提供疏水纳米纹理表面(例如,单独或与部分暴露的纳米粒子结合)。

因此,在本文另外描述的某些实施例中,涂料层的外主表面进一步包括多个凹陷。在某些这样的实施例中,凹陷的平均尺寸在10nm至200nm、或25nm至200nm、或50nm至200nm、或100nm至200nm、或10nm至150nm、或10nm至100nm、或10nm至50nm、或25nm至150nm、或50nm至100nm的范围内。

在本文另外描述的某些实施例中,涂料层进一步包括交联的硅烷(例如,固化包括交联硅烷的涂料组合物的产物)。在本文另外描述的某些实施例中,基底包括多个羟基(例如,等离子体蚀刻基底表面的产物)。在本文另外描述的某些实施例中,基底表面包括氟化硅烷(例如,将硅烷沉积到基底表面上的产物)。在本文另外描述的某些实施例中,制品的外主表面具有至少130°的水接触角。例如,在某些这样的实施例中,外主表面具有至少135°、或至少140°、或至少150°、或至少155°、或至少160°的水接触角。

在某些实施例中,对于300nm至1500nm范围内的波长,或者对于400nm至700nm范围内的可见波长,通过制品的涂料层的光透射率至少为95%。在本文另外描述的某些实施例中,基底也可以是光学透明材料,诸如例如玻璃或塑料。在某些实施例中,基底是光学透明的,并且涂料层和基底允许光(例如,来自激光或光学传感器)以相对小的干涉(例如,有效地没有干涉)透射穿过基底和涂料层。

示例

示例1:超疏水组合物的形成

无定形含氟聚合物粘合剂溶解在氟化溶剂中。添加疏水热解法二氧化硅纳米粒子。可选地,添加疏水气凝胶纳米粒子。将混合物与声波探针混合,以破碎疏水热解法二氧化硅粒子和疏水气凝胶粒子的聚集,并干燥以提供所需的材料。表1列出了示例组合物以及每种组合物的量占组合物的重量百分比。

表1示例组合物

Figure BDA0002653050570000111

示例2:超疏水涂层方法

将疏水硅烷添加到痕量水和异丙醇或丙酮的混合物中,以提供1体积%(vol.%)的硅烷溶液。将可选的等离子蚀刻玻璃晶片(wafer)浸泡在溶液中,然后在烘箱中于约100℃加热约15-20分钟之前风干,以提供硅烷官能化的表面。

通过在约50℃下搅拌粘合剂粉末和溶剂约10分钟,在氟化溶剂中制备无定形含氟聚合物粘合剂的1-2重量%涂层溶液,以提供光学透明的、完全溶解的含氟聚合物溶液。将溶液旋涂到硅烷功能化的晶片上,以提供150-450nm的涂层。在烘箱中于约200℃加热约60分钟之前,将涂覆的晶片风干。

通过以30分钟的增量与声波探针混合直到纳米粒子充分分散,在1-2重量%含氟聚合物涂层溶液中制备包括0.1重量%气凝胶纳米粒子和0.2重量%二氧化硅纳米粒子的纳米粒子涂层溶液。纳米粒子溶液被喷射到涂覆的晶片上,以提供部分嵌入涂料层中的50-75nm的纳米粒子。然后,在烘箱中于约200℃加热约60分钟之前,将晶片风干。

所得涂层的折射率约为1.33,并且涂层的水接触角约为165°。

示例3:超疏水涂层方法

将含氟聚合物粘合剂和交联硅烷在氟化溶剂中的2重量%的涂布溶液旋涂到等离子蚀刻玻璃晶片上,以提供150-450nm的涂层。在烘箱中于约150℃加热约60分钟之前,将涂覆的晶片风干,以提供交联的涂料层。

通过与声波探针混合约3小时,在2重量%含氟聚合物/交联硅烷涂布溶液中制备包括0.1重量%气凝胶纳米粒子和0.2重量%二氧化硅纳米粒子的纳米粒子涂布溶液,直到纳米粒子充分分散。将纳米粒子溶液喷涂到涂覆的晶片上,以提供部分嵌入涂料层中的纳米粒子。将晶片风干,然后在约150℃的烘箱中加热约60分钟。

所得涂层的折射率约为1.41。

示例4:超疏水涂层方法

使用物理气相沉积(physical vapor deposition,PVD)将含氟聚合物粘合剂的层沉积到可选的等离子蚀刻玻璃晶片上。沉积后,将根据实施例2或3的纳米粒子涂覆溶液喷涂到涂覆的晶片上,以提供部分嵌入涂料层中的纳米粒子。将晶片风干,然后在150-200℃的烘箱中加热60分钟。

示例5:涂层的极端风化

将实施例2的涂覆的晶片经受长时间的模拟降雨和风。部分嵌入的纳米粒子的一部分从涂层中被移位出来,导致包括剩余的部分嵌入的纳米粒子和纳米级凹陷的表面(见图2)。风化后的表面保持超疏水,水接触角约为135°。

应该理解,本文描述的部署仅仅是为了示例的目的。这样,本领域技术人员将会理解,可以使用其他部署和其他元件来代替,并且根据期望的结果,一些元件可以被完全省略。

虽然本文已经公开了各个方面和实施例,但是其他方面和实施例对于本领域技术人员来说是显而易见的。本文公开的各个方面和实施例是为了说明的目的,而不是为了限制,真正的范围和精神由所附权利要求以及这些权利要求赋予的等同物的全部范围来指示。还应当理解,本文使用的术语仅仅是为了描述特定的实施例,而不是为了限制。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:粘合带

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!