一种碳化硅-镁铝尖晶石-铝复合耐火材料

文档序号:1094245 发布日期:2020-09-25 浏览:29次 >En<

阅读说明:本技术 一种碳化硅-镁铝尖晶石-铝复合耐火材料 (Silicon carbide-magnesium aluminate spinel-aluminum composite refractory material ) 是由 李红霞 尚心莲 孙红刚 杜一昊 赵世贤 司瑶晨 夏淼 亢一娜 于 2020-07-07 设计创作,主要内容包括:本发明属于耐火材料技术领域,涉及一种碳化硅-镁铝尖晶石-铝复合耐火材料。涉及的一种碳化硅-镁铝尖晶石-铝复合耐火材料包括骨料和基质;其骨料为碳化硅颗粒;基质中包含富铝镁铝尖晶石细粉或微粉;基质中还加入了经包覆处理的金属铝粉;骨料、基质与结合剂混合均匀后进行机压成型,干燥后在埋碳气氛下最高温度1500℃~1600℃烧成制得以碳化硅为主晶相,镁铝尖晶石和刚玉为次晶相的碳化硅-镁铝尖晶石复合耐火材料。本发明降低了该制品生坯样品的保存难度,提升了材料的高温力学强度,并同时具有热震稳定性高、抗煤渣侵蚀性好、生产成本低廉等优点。(The invention belongs to the technical field of refractory materials, and relates to a silicon carbide-magnesia-alumina spinel-aluminum composite refractory material. The silicon carbide-magnesia alumina spinel-aluminum composite refractory material comprises aggregate and a matrix; the aggregate is silicon carbide particles; the matrix contains aluminum-magnesium-rich spinel fine powder or micro powder; the substrate is also added with metal aluminum powder after coating treatment; the aggregate, the matrix and the binding agent are uniformly mixed and then are subjected to pressure forming, and after drying, the mixture is sintered at the highest temperature of 1500-1600 ℃ in a carbon-embedded atmosphere to obtain the silicon carbide-magnesia alumina spinel composite refractory material taking silicon carbide as a main crystal phase and magnesia alumina spinel and corundum as secondary crystal phases. The invention reduces the storage difficulty of the green body sample of the product, improves the high-temperature mechanical strength of the material, and has the advantages of high thermal shock stability, good coal cinder erosion resistance, low production cost and the like.)

一种碳化硅-镁铝尖晶石-铝复合耐火材料

技术领域

本发明属于耐火材料技术领域,主要涉及一种碳化硅-镁铝尖晶石-铝复合耐火材料。

背景技术

水煤浆气化炉是煤气化领域的重要装置,是以煤和水为主要原料利用水煤浆在高温、高压环境下的燃烧制备气态H2、CO、CO2等化工原料的先进设备。水煤浆气化炉运行工况为:1300℃~1500℃高温、2.0~8.5MPa高压及由CO和H2等气体形成的强还原气氛,其运行期间还伴随着高速气流、熔渣和固体物质对炉衬材料的冲刷和撞击。在高温环境和较高的炉内压力下,气、液、固相物质的不断冲刷导致炉衬材料发生严重的磨损和剥落,从而制约了水煤浆气化炉的正常运行,因此在选择水煤浆气化炉向火面炉衬材料时,其高温力学性能需作为重要的性能指标进行考虑。

目前水煤浆气化炉普遍采用高铬砖(Cr2O3-Al2O3-ZrO2材料,其中Cr2O3>75wt%)为炉衬耐火材料,其高温力学性能高,抗煤渣侵蚀性优良。高铬砖之所以具有优秀的高温力学性能,是因为Cr2O3与Al2O3具有相似的晶体结构,在一定的温度下Al2O3和Cr2O3产生较好的结晶,生成连续的铝铬型固溶体,增加材料基质的结合强度,从而提高其高温力学性能。但是高铬砖的主要成分Cr2O3是一种容易发生价态变化的氧化物,在一定条件下Cr2O3与CaO、Na2O和K2O发生反应会形成易溶于水的Cr6+,当六价铬氧化物进入地下后,地下水源会受到污染,对人类的健康造成一定危害。另外,我国的铬矿资源紧缺,含铬耐火材料生产成本高,因此水煤浆气化炉用无铬耐火材料的开发成为近年来的研究热点。

专利申请文件CN201711187027.6公开了一种碳化硅-镁铝尖晶石复合耐火材料,其以碳化硅颗粒为骨料,镁铝尖晶石、氧化铝、氧化镁的细粉或微粉为基质,并且在基质中加入少量抗氧化剂(Si、Al、C、AlN、B4C、BN中的一种或多种),压制成坯体后于1450~1600℃保护气氛或埋炭气氛下烧成。其所述碳化硅-镁铝尖晶石复合耐火材料具有优秀的抗渣侵蚀和渗透性能,但高温力学性能较差(1400℃埋炭条件下高温抗折强度约2~4MPa),在水煤浆气化炉高温高压及气、液、固体不断冲刷的工况中,材料极易发生磨损和剥落,其优异的抗煤渣渗透和侵蚀性并不能得到体现;其高温力学强度低的主要原因是:在埋炭气氛或保护气氛下烧成,材料中的碳化硅仍会发生少量的氧化,生成的SiO2进入基质,形成低熔点玻璃相,在高温使用过程中,玻璃相由固态转变为液态,破坏了材料基质结构的稳定性,从而导致其高温力学强度远低于常温力学强度;另外,在碳化硅-镁铝尖晶石复合耐火材料中使用金属铝粉作为抗氧化剂,金属铝粉化学性质十分活泼,室温下即可与空气中水蒸气发生反应生成H2逸出并释放大量的热,从而破坏材料内部基质结构,增加了生坯样品的保存难度,同时大幅降低其高温力学强度。

发明内容

为解决上述技术问题,本发明的目的是提出一种碳化硅-镁铝尖晶石-铝复合耐火材料。

本发明为完成上述目的采用如下技术方案:

一种碳化硅-镁铝尖晶石-铝复合耐火材料,耐火材料原料包括骨料和基质;所述的骨料为碳化硅颗粒,加入比例为原料总质量的60%~70%;所述的基质中包含富铝镁铝尖晶石细粉或微粉,加入比例为原料总质量的25%~35%;所述的基质中还加入了经包覆处理的金属铝粉,粒度范围10μm~45μm,加入比例为原料总质量的2%~8%;所述的骨料、基质与结合剂混合均匀后进行机压成型,干燥后在埋碳气氛下最高温度1500℃~1600℃烧成制得以碳化硅为主晶相,镁铝尖晶石和刚玉为次晶相的碳化硅-镁铝尖晶石复合耐火材料;SiC+MgO+Al2O3的质量分数之和大于97%,其中SiC质量分数58%~68%,Al2O3质量分数21%~37.5%,MgO质量分数1.5%~7.5%。

所述的经包覆处理的金属铝粉,是一种经铝溶胶表面包覆处理后的球形金属铝粉,其特征在于经铝溶胶表面包覆处理后,球形金属铝粉的外表面被包覆一层致密Al2O3外壳,经包覆处理的金属铝粉的颗粒球形度为0.8~1(以颗粒球形度计算公式:球形度=,其中Vp=颗粒体积,Sp=颗粒表面积)。

所述的碳化硅颗粒为电熔原料,粒度范围0.1mm~3mm,纯度w(SiC)≥98%;电熔碳化硅颗粒晶体结构完整,致密度大,抗煤熔渣抗侵蚀性和抗氧化性好;要求骨料粒度范围在0.1mm~3mm的主要原因是,碳化硅粒度过小导致原料比表面积较大,烧成过程中氧化程度增加,使材料中液相增多,不利于材料的高温力学性能,碳化硅粒度过大会导致材料生坯成型困难,烧成难度增加;要求SiC质量分数≥98%,是因为纯度较低的碳化硅原料中的SiO2、Fe2O3、Na2O、K2O等杂质相会在高温下会形成低熔点物质,降低耐火制品的高温力学性能和抗渣侵蚀性。

所述的镁铝尖晶石细粉或微粉,采用电熔法或烧结法制备,纯度w(Al2O3+MgO)≥99.0%,其中Al2O3的质量分数为75%~90%,粒度范围为10μm~90μm;镁铝尖晶石是Al2O3和MgO在高温下形成的稳定固溶体,具有较为宽泛的化学组成;要求Al2O3+MgO的总质量分数≥99.0%,高纯度的镁铝尖晶石才能保证良好的抗煤渣侵蚀性;化学计量组成的MgAl2O4中Al2O3的质量分数约为72%,要求镁铝尖晶石中Al2O3的质量分数≥75%,在于保证原料中的MgO均以稳定的尖晶石相存在,在烧成过程中,不生成低熔相(Al2O3+MgO+SiO2);本发明要求镁铝尖晶石的粒度在10μm~90μm,主要从颗粒级配和烧结活性角度考虑,使镁铝尖晶石细粉或微粉可以更好的填充在碳化硅颗粒骨架之间,并且能在相应的烧成工艺下具有较高的活性起到粘结碳化硅颗粒的作用,因而如果尖晶石粉粒度过大,烧结活性差、制品强度低,尖晶石粉太细,活性太高,烧成时制品收缩大,成品率低。

所述包覆金属铝粉为经过铝溶胶包覆处理后具有致密的Al2O3外壳的球形金属铝粉;金属铝粉表面包覆处理方法是:1)以工业铝溶胶(化学分子式为Al2(OH)n·Cl6-n,浓度10%~15%,粘度为14Pa·s~26Pa·s)为载体,加入粒径为10nm~20nm的氧化铝纳米粉,氧化铝纳米粉与铝溶胶质量比为1:10,超声分散5min~10min后得到氧化铝纳米粉均匀分布的铝溶胶;2)将粒径为5~32μm的金属铝粉加入1)中所得含氧化铝纳米粉的铝溶胶中,金属铝粉与溶胶质量比为1:5,超声分散10min~15min后抽滤,得到表面被含活性氧化铝纳米粉的铝溶胶均匀包覆的金属铝粉,在100℃~120℃下干燥24h~48h,得到具有致密氧化铝外壳的金属铝粉,包覆物厚度为2μm~6μm;要求其颗粒球形度0.8~1之间主要原因是:1)增加金属铝粉在基质间的流动性,保证其均匀分散于基质间;2)保证金属铝粉的包覆效果好,由于球形相较于片状或不规则形状结构较为均匀,外壳Al2O3各处厚度较均匀,在高温下受内外作用力相对均匀,不易存在结构薄弱位置。

所述的结合剂为树脂类有机结合剂,是氨基水性树脂、酚醛树脂或糠醛树脂中的一种;成型过程中,树脂起到粘结材料骨料和基质的作用,使成型后材料具有一定强度,高温下树脂烧失,形成残碳,优先于SiC氧化,对SiC的氧化起到延缓作用。

本发明提出一种碳化硅-镁铝尖晶石-铝复合耐火材料,在埋炭气氛下烧成,当烧成温度低于1500℃时,SiC与空气中O2发生反应,SiC发生惰性氧化,生成液相SiO2,与基质中的杂质反应生成低熔点玻璃相;当烧成温度高于1500℃,SiC同时发生惰性氧化和活性氧化,生成物为液相SiO2和气相SiO,基质中液相含量逐渐升高。在制备碳化硅-镁铝尖晶石复合耐火材料时通常直接加入金属铝粉作为抗氧化剂,利用铝粉优先氧化的特性,起到减缓SiC氧化的作用;然而金属铝粉的性质十分活泼,室温至100℃即会与水发生剧烈氧化,生成H2并释放出大量的热,对耐火制品生坯内部结构具有不利影响;在耐火制品中直接加入金属铝粉,一方面限制材料结合剂的使用,另一方面,生坯制品在常温下放置过程中金属铝粉与空气中水蒸气的反应造成制品产生严重的粉化现象,生坯制品的常温保存成为一大难题;另外,在高温烧成过程中,金属铝粉的反应过程和反应形式均不可控,其添加与否对材料高温力学性能的影响有限。

本发明在基质中加入经包覆处理的具有致密活性氧化铝外壳的球形金属铝粉,当烧成温度低于1400℃时,球体内部金属铝粉处于稳定状态,当SiC发生氧化生成时,SiO2与Al2O3反应生成熔点较高的莫来石相,并破坏金属铝粉外壳结构,内部金属铝以气相铝或铝氧化合物形式扩散至材料中,与气氛中的O2、CO或N2迅速反应生成活性很高的Al2O3、Al4C3或AlN,随后进一步与SiC氧化形成的SiO2或SiO反应形成熔点较高的莫来石相(3Al2O3·2SiO2,熔点1900℃),减少了基质中以SiO2为主的低熔点玻璃相(熔点低于1300℃)形成。由于反应物活性很高,部分莫来石生成物以无规则晶须形式存在,起到阻止材料内部裂纹扩展的作用,有利于提高碳化硅-镁铝尖晶石耐火材料高温力学性能;与现有技术相比,本发明同时具有高温力学强度高、热震稳定性高、抗煤渣侵蚀性好、生产成本低廉等特点,保证水煤浆气化炉在1300℃~1500℃下的正常使用。本发明提出一种碳化硅-镁铝尖晶石-铝复合耐火材料,显气孔率14%~18%,体积密度2.67g/cm3~2.83g/cm3,高温抗折强度(1400℃埋碳,30min)12MPa~20MPa。

具体实施方式

结合给出的实施例对本发明加以说明,但不构成对本发明的任何限制。

实施例1:

分别称取纯度w(Al2O3+MgO)=99.0%、粒度为10μm~90μm、尖晶石相=78%的电熔镁铝尖晶石细粉3.5kg,和粒度10μm~20μm、球形度0.90的经包覆处理的金属铝粉0.2kg,一同放入球磨罐中充分混合1h;称取纯度w(SiC)=98.0%、粒度为0.1mm~3mm的碳化硅颗粒6.3kg,与氨基水性树脂0.2kg在碾轮式混砂机中混合均匀后加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入氨基水性树脂0.2kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于110MPa成型为150mm×25mm×25mm的生坯;坯体经110℃干燥6h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1500℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率17.6%,体积密度2.67g/cm-3,常温抗折强度18 MPa,高温抗折强度(1400℃保温30min,埋炭)12 MPa。

实施例2:

分别称取纯度w(Al2O3+MgO)=99.2%、粒度为10μm~90μm、尖晶石相=90%的电熔镁铝尖晶石细粉6.8kg,和粒度10μm~20μm、球形度0.85的经包覆处理的金属铝粉0.6kg,一同放入球磨罐中充分混合1h;称取纯度w(SiC)=98.5%、粒度为0.1mm~3mm的碳化硅颗粒12.6kg,加入0.4kg酚醛树脂在碾轮式混砂机中混合均匀后,加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入酚醛树脂0.4kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于110MPa成型为150mm×25mm×25mm的生坯;坯体经180℃干燥12h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1500℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率17.3%,体积密度2.70g/cm-3,常温抗折强度22 MPa,高温抗折强度(1400℃保温30min,埋炭)13.8 MPa。

实施例3:

分别称取纯度w(Al2O3+MgO)=99.5%、粒度为10μm~90μm、尖晶石相=86%的电熔镁铝尖晶石细粉9kg,和粒度10μm~20μm、球形度0.88的经包覆处理的金属铝粉1.2kg,一同放入球磨罐中充分混合1.5h;称取纯度w(SiC)=98.5%、粒度为0.1mm~3mm的碳化硅颗粒19.8kg,与0.7kg水性树脂在碾轮式混砂机中混合均匀后,加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入水性树脂0.8kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于110MPa成型为150mm×25mm×25mm的生坯;坯体经110℃干燥12h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1550℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率16.5%,体积密度2.74g/cm-3,常温抗折强度26.3 MPa,高温抗折强度(1400℃保温30min,埋炭)14.5 MPa。

实施例4:

分别称取纯度w(Al2O3+MgO)=99%、粒度为10μm~90μm、尖晶石相=89%的电熔镁铝尖晶石细粉12.5kg,和粒度10μm~20μm、球形度0.92的经包覆处理的金属铝粉2.5kg,一同放入球磨罐中充分混合1.5h;称取纯度w(SiC)=98%、粒度为0.1mm~3mm的碳化硅颗粒35kg,与1.2kg酚醛树脂在碾轮式混砂机中混合均匀后,加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入酚醛树脂1.3kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于630T液压机上成型为具有230mm×114mm×65mm长方体形状的生坯;坯体经60℃干燥6h、110℃干燥6h和200℃干燥20h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1550℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率15.8%,体积密度2.78g/cm-3,常温抗折强度35MPa,高温抗折强度(1400℃保温30min,埋炭)16.8 MPa。

实施例5:

分别称取纯度w(Al2O3+MgO)=99.5%、粒度为10μm~90μm、尖晶石相=83%的电熔镁铝尖晶石细粉16.2kg,和粒度10μm~20μm、球形度0.98的经包覆处理的金属铝粉3.6kg,一同放入球磨罐中充分混合1.5h;称取纯度w(SiC)=99%、粒度为0.1mm~3mm的碳化硅颗粒40.2kg,与2kg糠醛树脂在碾轮式混砂机中混合均匀后,加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入糠醛树脂1.6kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于630T液压机上成型为具有230mm×114mm×65mm长方体形状的生坯;坯体经60℃干燥6h、110℃干燥6h和200℃干燥20h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1550℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率15.3%,体积密度2.79g/cm-3,常温抗折强度36MPa,高温抗折强度(1400℃保温30min,埋炭)17.2 MPa。

实施例6:

分别称取纯度w(Al2O3+MgO)=99.3%、粒度为10μm~90μm、尖晶石相=88%的电熔镁铝尖晶石细粉26.4kg,和粒度10μm~20μm、球形度0.88的经包覆处理的金属铝粉5.6kg,一同放入球磨罐中充分混合1.5h;称取纯度w(SiC)=99%、粒度为0.1mm~3mm的碳化硅颗粒48kg,与2.4kg酚醛树脂在碾轮式混砂机中混合均匀后,加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入酚醛树脂2.4kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于630T液压机上成型为具有230mm×114mm×65mm长方体形状的生坯;坯体经60℃干燥6h、110℃干燥6h和200℃干燥20h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1600℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率14.6%,体积密度2.81g/cm-3,常温抗折强度43MPa,高温抗折强度(1400℃保温30min,埋炭)18.3 MPa。

实施例7:

分别称取纯度w(Al2O3+MgO)=99.5%、粒度为10μm~90μm、尖晶石相=83%的电熔镁铝尖晶石细粉25kg,和粒度10μm~20μm、球形度0.98的经包覆处理的金属铝粉8kg,一同放入球磨罐中充分混合1.5h;称取纯度w(SiC)=98.5%、粒度为0.1mm~3mm的碳化硅颗粒67kg,与3kg糠醛树脂在碾轮式混砂机中混合均匀后,加入预混好的镁铝尖晶石与铝粉,搅拌过程中加入糠醛树脂3kg,继续搅拌至均匀,形成砂状料;砂状料经困料后在钢制模具中于630 T液压机上成型为具有230mm×114mm×65mm长方体形状的生坯;坯体经60℃干燥6h、110℃干燥6h和200℃干燥20h后置于填充有100目石墨粉的刚玉匣钵内,对匣钵内试样和石墨进行密封,在电阻炉内1600℃烧成制得碳化硅-镁铝尖晶石复合耐火制品。该碳化硅-镁铝尖晶石复合耐火制品显气孔率14%,体积密度2.83g/cm-3,常温抗折强度47MPa,高温抗折强度(1400℃保温30min,埋炭)20MPa。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种有机陶瓷前驱体和陶瓷制品

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!