具有完全穿透的增强物的织造碳纤维增强的钢基体复合材料

文档序号:1108872 发布日期:2020-09-29 浏览:21次 >En<

阅读说明:本技术 具有完全穿透的增强物的织造碳纤维增强的钢基体复合材料 (Woven carbon fiber reinforced steel matrix composite with fully penetrating reinforcement ) 是由 M·P·罗威 于 2020-03-23 设计创作,主要内容包括:本发明涉及具有完全穿透的增强物的织造碳纤维增强的钢基体复合材料。该复合材料包括钢基体与由穿透进入该基体至显著深度的单个纤维形成的增强碳纤维。纤维通常具有限定的直径和穿透深度与纤维直径的大比率。用于形成该复合材料的指定方法具有实现穿透深度与纤维直径的大比率的独特能力。(The present invention relates to a woven carbon fiber reinforced steel matrix composite with fully penetrating reinforcement. The composite material includes a steel matrix and reinforcing carbon fibers formed from individual fibers that penetrate into the matrix to a significant depth. The fibers typically have a defined diameter and a large ratio of penetration depth to fiber diameter. The specified method for forming the composite material has the unique ability to achieve a large ratio of penetration depth to fiber diameter.)

具有完全穿透的增强物的织造碳纤维增强的钢基体复合材料

相关申请的交叉引用

这一申请要求2019年3月21日提交的美国临时申请号62/821,762的权益,其通过引用以其全文并入本文。

技术领域

本公开内容总体上涉及金属/聚合物复合材料,并且更特别地涉及钢与增强碳纤维的轻质复合材料及其制造方法。

背景技术

出于总体上呈现本公开内容的上下文的目的,在本文中提供背景描述。在这个背景部分中可描述的程度下目前署名的发明人的工作以及在申请时可能没有以其他方式作为现有技术的描述的各方面,既没有清楚地也没有暗示地被承认是本技术的现有技术。

钢,包括铁的各种碳强化合金,拥有优异的强度与重量比性质,已使其固定在各种高载荷应用中。而许多现代应用将受益于在维持或甚至减小其密度的同时扩大钢的强度、拉伸强度或其它强度。这些包括汽车应用,在该应用中重量/密度改进可产生显著的效率益处。

金属基体复合材料可通常相对于基底金属提供强度增强,同时降低密度。钢基体复合材料可难以形成,因为钢的高熔融温度与许多基体材料的分解温度不相容。尝试将熔融的增强材料***预成形钢基体中的方法不合适,因为增强材料将通常不能够穿透钢基体至足够深度。因此对本发明的钢基体复合材料和用于制造它们的方法将有益的是产生增强材料进入钢基体中的显著的或甚至完全的穿透深度。

发明内容

这个部分提供公开内容的一般概述,并且不是其完整范围或其所有特征的全面公开。

在各个方面,本教导提供具有烧结钢纳米颗粒的连续钢基体和被包封在钢基体内的至少一个增强碳纤维的复合材料。该至少一个增强碳纤维可由具有小于约5mm的平均横截面直径的纤维形成。该至少一个增强碳纤维可穿透该连续钢基体到至少1cm的穿透深度,并且在许多情况下可具有200:1或更大的穿透深度与纤维直径的比率。

在其它方面中,本教导提供复合材料。该复合材料包括至少结构碳纤维组分,该结构碳纤维组分由具有小于约1mm的平均横截面直径的纤维形成,和围绕该结构碳纤维组分和在该结构碳纤维组分内形成的烧结钢纳米颗粒的连续钢基体。该结构碳纤维组分的纤维可穿透该连续钢基体到至少1cm的穿透深度,并且在许多情况下可具有200:1或更大的穿透深度与纤维直径的比率。

从本文提供的描述,增强以上连接(couple)技术的各种方法和适用性的进一步领域将变得明显。在这个概述中的描述和具体实例仅意图为说明目的并且不意图限制本公开内容的范围。

附图说明

从详细描述和附图将更充分地理解本教导,其中:

图1A是具有钢基体与两层增强碳纤维的复合钢的横截面;

图1B是一部分碳纤维的透视图;和

图2是用于形成图1A中所示类型的复合材料的方法的一部分的示图。

应注意出于描述一些方面的目的,本文列出的附图意在举例说明本技术当中的方法、算法和设备的一般特性。这些附图可能没有精确地反映任何给出方面的特性,并且不必意图限定或限制这个技术的范围内的具体实施方案。此外,一些方面可包括来自附图组合的特征。

具体实施方式

本公开内容总体上涉及包括钢基体与集成至该基体中的增强碳纤维的复合材料。该复合材料具有比钢显著更低的密度,并具有相当大的强度。用于形成聚合物-钢复合材料的方法包括组合增强碳纤维组分例如芳族聚酰胺与钢纳米颗粒并烧结该钢纳米颗粒以便形成具有在其中集成增强碳纤维的钢基体。

常规的钢在大于约1200℃的温度下熔融。这样的高温将立即破坏接触的各种增强碳纤维,其在约450℃或更小下分解。因此,用于形成钢/聚合物复合材料的本技术使用钢纳米颗粒,从而降低钢的熔点至小于约450℃。当组合和加热时,这允许钢纳米颗粒在增强碳纤维组分周围烧结,而不破坏增强碳纤维组分。结果是在钢基体中贯穿的增强碳纤维的层(一个或多个)或伸长纤维。

本公开内容的复合材料可具有比常规钢显著更低的密度,在一个实例中低至60%。该复合材料还可提供相当大的结构强度,包括拉伸强度。

参考图1A,碳纤维增强的钢基体复合材料(CF-SMC)100包括连续钢基体110和至少一个增强碳纤维120,该至少一个增强碳纤维120至少部分被包封在钢基体内。如所示,可作为织物、布、编织物、织纱等的层提供增强碳纤维120。在其它情况下,可作为纤维、纱或多个排列纤维提供增强碳纤维120。

连续钢基体110通常包括烧结钢纳米颗粒,并且组成上包括至少铁和碳的合金。连续钢基体110可任选地包括以下任一、几种或所有:锰、镍、铬、钼、硼、钛、钒、钨、钴、铌、磷、硫和硅。钢基体110的各种元素成分的相对比率可取决于期望的应用,并且将通常可基于本领域技术人员的常识进行选择。例如,需要不锈钢的应用可包括以大于或等于11重量%的总重量存在的铬。在一种公开的实例中,钢基体由分别以钢基体的重量计99.08%、0.17%和0.75%存在的铁、碳和锰构成。将理解如这里使用的术语“重量”可与术语“质量”互换。

在一些实施方式中,如在短语“连续钢基体110”中使用的术语“连续”可意味着钢基体形成为统一的整体或者作为统一的整体存在。在这样的实施方式中,并且作为反面实例,例如用胶黏剂或者用焊接保持在一起的由两种不同钢体形成的结构将是不连续的。在一些实施方式中,如本文使用的术语“连续”可意味着连续钢基体110遍及它占据的体积基本上是组成和结构均匀的。为了简化,连续钢基体110在本文中将替代地被称作“钢基体110”,即词语“连续”有时将被省略而不改变含义。

在CF-SMC 100的一些实施方式中,至少一个增强碳纤维120可完全被包封在连续钢基体110内。在各种实施方式中,表述“被包封在连续钢基体110内”可意味着至少一个增强碳纤维120是部分或完全地:被包在连续钢基体110中、被封闭在连续钢基体110中、被包围在连续钢基体110中、被集成至连续钢基体110中或以其它方式被连续钢基体110接触地围住。在一些实施方式中,表述“被包封在连续钢基体110内”可意味着包含至少一个增强碳纤维120的单个纤维的至少一部分被连续钢基体110接触地围住。在一些实施方式中,表述“被包封在连续钢基体110内”可意味着连续钢基体110部分或完全地:围绕至少一个增强碳纤维120形成或以其它方式围绕至少一个增强碳纤维120接触地设置。

在一些实施方式中,说明至少一个增强碳纤维120“被包封在钢基体内”的表述意味着钢基体110围绕增强碳纤维120和在增强碳纤维120内形成,其中在钢基体110的表面和增强碳纤维120的表面之间的接触足够高以相对于钢基体110将增强碳纤维120固定。在一些实施方式中,说明增强碳纤维120“被包封在钢基体内”的表述意味着钢基体110的相互作用表面出现在构成增强碳纤维120的各个聚合物纤维的所有侧面并与其结合。

在各种实施方式中,表述“在钢基体的表面和增强碳纤维的表面之间的接触足够高以相对于钢基体将增强碳纤维固定”可意味着增强碳纤维120的至少50%、或至少60%、或至少70%、或至少80%、或至少90%的表面积与钢基体接触。

大体上,CF-SMC 100将具有小于纯钢密度的总密度。例如,低碳钢例如AISI牌号1005至1025具有约7.88g/cm3的密度。与此相对,本公开内容的示例性CF-SMC 100具有4.8g/cm3的密度(低碳钢密度的约61%)。与这相比,最近开发的钢-铝合金具有的密度是低碳钢密度的大约87%。

虽然图1A说明具有两层增强碳纤维120被包封在钢基体110内的CF-SMC 100,但是应理解复合材料可包括大于或等于一的任何层数的增强碳纤维120。换句话说,在一些实施方式中,至少一个增强碳纤维120可包括多个相互接触或空间分离的增强碳纤维层。还应理解在CF-SMC 100内的增强碳纤维120与钢基体110的重量比可大幅变化,并且考虑到各种聚合物例如芳族聚酰胺(约2.1g/cm3)和钢的明显不同的密度,这样的变化将对CF-SMC 100的密度有直接影响。

因此,在一些实施方式中,本公开内容的CF-SMC 100将具有小于7g/cm3的密度。在一些实施方式中,本公开内容的CF-SMC 100将具有小于6g/cm3的密度。在一些实施方式中,本公开内容的CF-SMC 100将具有小于5g/cm3的密度。

图1B显示一部分示例性碳纤维140(例如可构成本教导的一部分的至少一个结构碳纤维)的透视图。在许多实施方式中,至少一个结构碳纤维可包括具有平均横截面直径D的纤维140。这包括由纤维140形成的编织物或织物。在许多这样的实施方式中,平均横截面直径可小于约5mm、或小于约1mm、或小于约0.5mm、或小于约0.1mm。参考图1A,在各种实施方式中,至少一个结构碳纤维可穿透钢基体至从钢基体的外表面起测量的最小深度(本文称作“穿透深度”)P。在各种实施方式中,穿透深度可为至少约1cm、或至少约5cm、或至少约10cm。因此,可将钢基体中的碳纤维穿透描述为具有如穿透深度与纤维直径的比率所限定的长度与宽度比率。在各种实施方式中,碳纤维穿透长度与宽度比率可大于约200:1、或大于约103:1、或大于约104:1、或大于约105:1。在一些实施方式中,结构碳纤维将在至少一个维度(dimension)上从一个表面130A至相对表面130B基本上穿过钢基体整体。

将理解通过除了具有以下讨论的类型的那些方法之外的方法制备的碳纤维增强的钢复合材料将不能够实现纤维直径和穿透深度的这样的穿透尺寸。例如,用液体(例如溶解的)碳纤维浸渍预成形、多孔钢基体的尝试将不会实现例如以上所述的穿透深度或长度与宽度比率,因为毛细作用将不足以克服深度穿透的粘滞阻力,并且因此碳纤维穿透将被限制至亚厘米深度。

还公开了用于形成CF-SMC100的方法。参考图2,该方法包括提供钢纳米颗粒210的步骤。术语“钢纳米颗粒210”通常是指主要由具有平均最大尺寸小于100nm的钢颗粒构成的样品。钢纳米颗粒210的单个颗粒将通常由组成上如以上关于CF-SMC100的钢基体110描述的任何合金构成。如此,钢纳米颗粒210的单个颗粒将通常包括铁和碳;并且可任选地包括以下任一、几种或所有:锰、镍、铬、钼、硼、钛、钒、钨、钴、铌、磷、硫和硅。

如以上关于CF-SMC100的钢基体110所述,钢纳米颗粒210的各种元素成分的相对比率可取决于期望的应用,并且将通常可基于本领域技术人员的常识进行选择。在一种公开的实例中,钢纳米颗粒210的单个颗粒由分别以重量计99.08%、0.17%和0.75%存在的铁、碳和锰构成。

在各个方面中,可通过任何合适的方法测定钢纳米颗粒210的平均最大尺寸,包括但不限于X-射线衍射(XRD)、透射电子显微法、扫描电子显微法、原子力显微法、光子相关光谱法、纳米颗粒表面积监测、凝结颗粒计数器、微分迁移率分析(DifferentialMobilityAnalysis)、扫描迁移率颗粒尺寸测定(Scanning MobilityParticle Sizing)、纳米颗粒跟踪分析、气溶胶飞行时间质谱法或气溶胶颗粒质量分析。

在一些实施方式中,平均最大尺寸将是以质量计的平均值,并且在一些实施方式中将是以数量(population)计的平均值。在一些情况下,钢纳米颗粒210可具有小于约50nm、或小于约40nm、或小于约30nm、或小于约20nm、或小于约10nm的平均最大尺寸。

在一些方面中,平均最大尺寸可具有相对标准偏差。在一些这样的方面中,相对标准偏差可小于0.1,并且钢纳米颗粒210可因此被认为是单分散的。

继续参考图2,用于形成CF-SMC 100的方法还包括组合钢纳米颗粒210与增强碳纤维组分220以产生未退火组合物(combination)的步骤215。增强碳纤维组分220在所有方面均与如以上关于CF-SMC 100所述的增强碳纤维120相同,不同之处是增强碳纤维组分220尚未集成在如以上限定的钢基体110中或被包封在钢基体110内。因此,增强碳纤维组分220可包括例如碳纤维,其以被设计成在至少一个维度(dimension)上,在一些方面中在至少两个维度上赋予拉伸强度的任何构造形成。

在许多实施方式中,组合步骤215将包括顺序组合至少一层钢纳米颗粒210和至少一层增强碳纤维组分220,使得未退火组合物由一层或多层的每层为钢纳米颗粒210和增强碳纤维组分220构成。可使用任何层数的钢纳米颗粒210和任何层数的增强碳纤维组分220。将理解在期望增强碳纤维120在CF-SMC 100的外表面处的实施方式中,增强碳纤维组分220将是未退火组合物中首先和/或最后顺序层叠的组分;并且在期望增强碳纤维120在CF-SMC100的外表面之间的实施方式中,增强碳纤维组分220的层将在钢纳米颗粒210的层之前和之后。

组合步骤215将通常包括在模型、铸型、模具或其它具有与待形成的CF-SMC 100的期望形状相应的空隙空间的成形结构内组合钢纳米颗粒210和增强碳纤维组分220。在一些特定实施方式中,将在热压模型250内组合至少一层钢纳米颗粒210和至少一层增强碳纤维组分220。

在一些实施方式中,用于形成CF-SMC 100的方法可包括操作未退火组合物中的钢纳米颗粒210进入增强碳纤维组分220中的空隙的步骤。这样的操作步骤可有效的使未退火组合物中的钢纳米颗粒210和增强碳纤维组分220之间的接触表面积最大化,从而改进增强碳纤维120集成至最终形成的CF-SMC 100的钢基体110中的有效性。操作钢纳米颗粒210进入增强碳纤维组分220中的空隙可通过任何有效的提高钢纳米颗粒210和增强碳纤维组分220之间的接触表面积的工序来实现,包括但不限于:压制、搅动、摇动、振动、声处理或任何其它合适的工序。

用于形成CF-SMC 100的方法还包括烧结钢纳米颗粒210的步骤,从而将钢纳米颗粒210转化为钢基体110使得增强碳纤维组分220变为集成至钢基体110中的增强碳纤维120,并因此将未退火组合物转化为CF-SMC 100。烧结步骤通常包括加热未退火组合物至小于450℃并足够高以烧结钢纳米颗粒210的温度。在一些实施方式中,烧结步骤可包括加热未退火组合物至大于400℃且小于450℃的温度。在一些实施方式中,烧结步骤可包括加热未退火组合物至大于420℃且小于450℃的温度。

在一些实施方式中,可通过热压即通过施加升高的压力260同时施加升高的温度来实现烧结步骤。在一些使用热压的实施方式中,升高的压力可为至少30MPa,并且在一些实施方式中,升高的压力可为至少60MPa。取决于温度和压力的烧结条件,烧结步骤的持续时间可变化。在一些实施方式中,烧结步骤可进行在2-10小时范围内的持续时间,并且在一个公开的实施例中进行4小时的持续时间。

通过用钢粉和碳纤维布的交替层装入模型来制造碳纤维增强的钢基体复合材料(CF-SMC)。使用的钢粉可为纳米颗粒、<45微米粉末、或两种尺寸状况(regime)的混合物。碳纤维布的编织足够松以允许在纤维之间的穿透,使得允许增强物周围的钢基体在固化之后是连续的。

在不活泼气氛下(在氩手套箱内)将碳纤维布和钢粉装在模型中以防止形成氧化的表面。然后在800℃下使用60MPa的压力在氩气流下压实最终的冲头和模型组件1小时。

碳纤维具有比钢低(~3.75倍)的密度并具有更高的拉伸强度。向钢基体添加多个碳纤维层降低了最终复合材料的重量(根据较低的碳纤维密度)并提高了拉伸强度(根据其对复合材料机械强度的贡献)。

将理解在一些情况下,假设钢纳米颗粒210具有期望的组成,通过常规方法可能难以实现平均最大尺寸和/或平均最大尺寸的相对标准偏差。例如,包括通过研磨、弧***(arc detonation)或其它已知工序将大块钢破碎成微粒钢的“自顶向下”方法将通常提供对于有效的烧结成均匀、坚固的钢基体110而言太大和/或太不均匀的钢颗粒。“自底向上”方法,例如包括溶解的阳离子的化学还原的那些方法,由于相关阳离子的不相容的溶解度或甚至不可用,将通常不适合于各种合金纳米颗粒。例如,适合于与阳离子铁化学共还原以形成钢的阳离子碳可能难以获得。另外,甚至这些技术或其它技术可有效的以实验室规模产生具有给定组成的钢纳米颗粒210时,扩大规模仍然可能证明是不可行或不经济的。

出于这些原因,可在许多实施方式中通过使用阴离子元素试剂配合物(AERC)的新型钢纳米颗粒210合成来进行提供钢纳米颗粒210的步骤。AERC通常是由与氢化物分子配合的一种或多种元素构成并具有下式的试剂:

Q0·Xy 式I,

其中Q0表示一种或多种元素的组合,每种形式上为零氧化态并且相对于彼此不必是等摩尔比的;X表示氢化物分子,并且y是大于零的整数或分数值。可通过球磨包括以下的混合物形成式I的AERC:(i)一种或多种元素中每种的粉末,以期望的摩尔比存在;和(ii)氢化物分子的粉末,以相对于与y对应的组合的一种或多种元素的摩尔比存在。在许多实施方式中,氢化物分子将是硼氢化物,并且在一些具体实施方式中氢化物分子将是硼氢化锂。

使式I的AERC与合适的溶剂和/或配体分子接触将导致形成基本上由一种或多种元素构成的纳米颗粒,该一种或多种元素以等同于它们存在于AERC中的比率存在于纳米颗粒中。

因此,适合于在钢纳米颗粒210合成中使用的AERC通常具有下式:

FeaCbMd·Xy 式II,

其中Fe是单质铁,形式上为零氧化态;C是单质碳,形式上为零氧化态;M表示为零氧化态的一种或多种元素,一种或多种元素中每种选自包括以下的组:Mn、Ni、Cr、Mo、B、Ti、V、W、Co、Nb、P、S和Si;X是如关于式I限定的氢化物分子;a是大于零的分数或整数值;b是大于零的分数或整数值;d是大于或等于零的分数或整数值;和y是大于或等于零的分数或整数值。将理解a、b和c的值将通常对应于钢的期望组成中各个组分的摩尔比。还应理解仅为了简化将M和d显示为单数值,并且M和d可对应于以相对于彼此非等摩尔量存在的多种元素。式II的AERC可替代地被称作钢-AERC。

可通过球磨包括以下的混合物实现钢-AERC的形成:(I)氢化物分子例如硼氢化锂的粉末;和(II)包括以下的预制钢混合物(i)铁粉末、(ii)碳粉末、和(iii)任选地一种或多种元素的粉末,所述元素选自包括以下的组:Mn、Ni、Cr、Mo、B、Ti、V、W、Co、Nb、P、S和Si。这种混合物将包括铁粉末、碳粉末和任选的一种或多种所选元素的粉末,重量比与期望的钢产物中这些各种组分的重量比相同。例如,为了合成具有按重量计12%Ni、17%Cr、2.5%Mo、1%Si、2%Mn、0.08%C、0.045%P和0.03S的不锈钢316型产物,待与氢化物分子的粉末组合用于球磨的预制钢混合物应包括以列出的重量百分比存在的这些元素中每种的粉末。

因此,在一些实施方式中,用于合成钢纳米颗粒的公开的方法包括使钢-AERC例如由式I或II限定的一种与溶剂接触的步骤。在一些实施方式中,用于合成钢纳米颗粒的公开的方法包括使钢-AERC例如由式I或II限定的一种与配体接触的步骤。在一些实施方式中,用于合成钢纳米颗粒的公开的方法包括使钢-AERC例如由式I或II限定的一种与溶剂和配体接触的步骤。使钢-AERC与合适的溶剂和/或配体接触将导致具有由钢-AERC的组成和因此由形成钢-AERC的预制钢混合物的组成所决定的合金组成的钢纳米颗粒210的形成。

合适的配体的非限制性实例可包括非离子配体、阳离子配体、阴离子配体、两性配体、两性离子配体、和聚合物配体以及它们的组合。这样的配体通常具有基于烃的、基于有机硅烷的或基于氟碳化合物的亲脂性结构部分。在不意为限制的情况下,可为合适的配体类型的实例包括烷基硫酸盐和磺酸盐、石油和木质素磺酸盐、磷酸酯、磺基琥珀酸酯、羧酸盐、醇、乙氧基化醇和烷基酚、脂肪酸酯、乙氧基化酸、链烷醇酰胺、乙氧基化胺、氧化胺、腈、烷基胺、季铵盐、羧基甜菜碱、磺基甜菜碱或聚合物配体。在一些特定实施方式中,配体可为腈、胺和羧酸盐中的至少一种。

合适的溶剂的非限制性实例可包括能够通过非结合或瞬态结合相互作用的方式与AERC的成分相互作用的任何分子物质,或分子物质的组合。在不同的实施方式中,适合于从钢-AERC合成钢纳米颗粒210的溶剂可为烃或芳族物质,包括但不限于:直链、支化、或环状的烷基或烷氧基,或者单环或多环芳基或杂芳基。在一些实施方式中,溶剂将是非配位或空间位阻醚(sterically hindered ether)。如所述的术语溶剂可在一些变体中包括氘化或氚化形式。在一些实施方式中,溶剂可为醚例如THF。

关于以下实施例而言进一步说明本发明。需要理解提供这些实施例来说明本发明的具体实施方案并且不应将这些实施例解释为限制本发明的范围。

实施例1.钢纳米颗粒合成

向球磨罐添加0.0136g碳、0.06g锰、7.9264g铁和6.28g硼氢化锂。这在不活泼气氛下球磨4小时。用THF洗涤钢-AERC产物,从而导致形成具有99.08%Fe、0.17%C和0.75%Mn组成的钢纳米颗粒。分离所形成的钢纳米颗粒。

实施例2.复合钢的形成

将实施例I的钢纳米颗粒与碳纤维编织物的分散层装入冲头和模型中。在这个装料步骤过程中促使钢纳米颗粒粉末进入碳纤维编织物的纤维之间的间隙。然后在430℃和60MPa下烧结材料4小时。产物是复合钢,具有如图1和2中所示集成至钢基体中的增强碳纤维。

前述描述本质上仅是说明性的并且绝不意图限制公开内容、其应用或用途。如本文使用的,短语A、B和C中的至少一种应解释为意指使用非排他性逻辑“或”的逻辑(A或B或C)。应理解可在没有改变本公开内容原理的情况下采用不同的顺序执行方法内的各个步骤;除非另外指出,可独立地或同时进行各个步骤。范围的公开包括在整个范围内的所有范围和细分范围的公开。

本文使用的标题(例如“背景技术”和“发明内容”)和子标题仅意图用于本公开内容内主题的一般组织,并不意在限制技术或其任何方面的公开。具有所述特征的多个实施方案的列举不意图排除具有额外特征的其它实施方案,或者包括所述特征的不同组合的其它实施方案。

如本文使用,术语“包含”和“包括”以及它们的变体意在为非限制性的,使得列表或连续项的列举没有排除也可用于本技术的装置和方法中的其它类似项。类似地,术语“可”和“可以”以及它们的变体意在为非限制性的,使得实施方案可或可以包含一些要素或特征的列举没有排除不含有那些要素或特征的本技术的其它实施方案。

本公开内容的广泛教导可以各种形式实施。因此,虽然该公开内容包括特定的实施例,但是本公开内容的真实范围不应被如此限制,因为在研究说明书和权利要求书时,其它修改对于技术人员而言将变得明显。本文中参考一个方面或各个方面意味着在至少一个实施方案或方面中包括与实施方案相关所描述的特定特征、结构或特性。短语“在一方面”(或其变体)的出现不必然是指相同的方面或实施方案。

虽然已经描述了特定实施方案,但是对于申请人或其它本领域技术人员可产生目前没有预见或可能没有预见的替代、修改、变化、改进和实质等同物。因此,提交的和可修改的所附权利要求意图包括所有这样的替代、修改、变化、改进和实质等同物。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:带筋壁板蠕变时效成形过程中外形精度控制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!