核发电中过滤流体的方法和装置

文档序号:1117262 发布日期:2020-09-29 浏览:13次 >En<

阅读说明:本技术 核发电中过滤流体的方法和装置 (Method and apparatus for filtering fluid in nuclear power generation ) 是由 理查德·达姆 弗朗索瓦·库萨克 徐坚 王玮炎 林颖辉 于 2018-10-05 设计创作,主要内容包括:一种用于核发电设施的流体进口的过滤装置,包含一级和二级框架。一级框架界定围闭体积,围闭体积具有至少一个入口开口和与流体进口流体连通的至少一个出口开口。一级过滤器支撑在一级框架上,一级过滤器覆盖入口开口,使得流体通过一级过滤器进入围闭体积。二级框架位于一级框架围闭的体积内。二级过滤器支撑在二级框架上,二级过滤器界定与出口开口连通的围闭流道,使得流体通过二级过滤器和围闭流道进入至少一个出口开口。(A filter arrangement for a fluid inlet of a nuclear power generating facility includes primary and secondary frames. The primary frame defines an enclosed volume having at least one inlet opening and at least one outlet opening in fluid communication with the fluid inlet. A primary filter is supported on the primary frame, the primary filter covering the inlet opening such that fluid passes through the primary filter into the enclosed volume. The secondary frame is located within the volume enclosed by the primary frame. A secondary filter is supported on the secondary frame, the secondary filter defining an enclosed flow passage in communication with the outlet opening such that fluid passes through the secondary filter and the enclosed flow passage into the at least one outlet opening.)

核发电中过滤流体的方法和装置

技术领域

本发明涉及流体过滤,尤其是在核发电站中从冷却水过滤物质。

背景技术

核发电设施使用大量水,这些水通过一个或多个环路循环,用于冷却系统部件等目的。水聚集在例如集水池中,并且再循环。

随着水通过系统部件循环,水中可能夹带如微粒和纤维物质的碎屑。此类物质可能会带来污染系统部件的风险。因此可在再循环之前过滤水。

过滤性能可受到如过滤器表面积和孔隙大小等参数影响。性能要求可包括流体通过量或碎屑去除率,以及压头损失。极细过滤器可去除小碎屑,尽管代价是巨大的压力损失。相反,粗过滤器可去除较大碎屑,但要以让较小颗粒或纤维通过为代价。过滤器表面积可能受到可用物理空间的约束。

发明内容

一种用于核发电设施的流体进口的示例过滤装置,其包含:界定一级围闭体积的一级框架,与围闭体积流体连通的至少一个入口开口,以及与流体进口流体连通的至少一个出口开口;支撑在框架上的一级过滤器,一级过滤器覆盖至少一个入口开口,使得流体通过一级过滤器进入围闭体积;一级围闭体积内的二级框架;支撑在二级框架上的二级过滤器,二级框架界定与至少一个出口开口连通的围闭流道,使得流体通过二级过滤器和围闭流道进入至少一个出口开口。

一些实施方式中,二级过滤器可能包裹在二级框架周围,以围闭围闭流道。

一些实施方式中,二级过滤器可限定围闭流道。

一些实施方式中,二级过滤器可界定圆柱形过滤表面。

一些实施方式中,二级过滤器可界定具有复数个多边形边的过滤表面。

一些实施方式中,二级框架围绕每边的边缘支撑第二过滤器的复数个多边形边。

一些实施方式中,二级过滤器可焊接至二级框架。

一些实施方式中,过滤装置可包含形成波纹的复数个二级框架,波纹具有复数个峰来支撑一级过滤器和二级过滤器,二级过滤器由每个二级框架支撑,每个二级过滤器界定与各自的出口开口连通的围闭流道。

一些实施方式中,二级框架相对于流经二级过滤器的流体倾斜,使得流体迫使邻近每个峰的二级框架向彼此移动,以使峰偏向二级过滤器。

一些实施方式中,二级过滤器的总表面积可能至少占一级过滤器的表面积的5%。

一些实施方式中,二级过滤器的总表面积可能至少占一级过滤器的表面积的10%。

一些实施方式中,二级过滤器的总表面积可能至少占一级过滤器的表面积的20%。

一些实施方式中,二级过滤器的总表面积可能至少占一级过滤器的表面积的40%。

一些实施方式中,一级过滤器的孔隙大小大于二级过滤器的孔隙大小。

一种用于核发电设施的示例流体过滤装置,其包含:流体管道;复数个过滤器模块,每个过滤器模块与流体管道连通,以通过过滤器模块将流体吸入流体管道。每个过滤器模块包含:界定一级围闭体积的一级框架,与围闭体积流体连通的至少一个入口开口,以及与流体管道流体连通的至少一个出口开口;支撑在框架上的一级过滤器,一级过滤器覆盖至少一个入口开口,使得流体通过一级过滤器进入围闭体积;一级围闭体积内的二级框架;支撑在二级框架上的二级过滤器,二级框架界定与至少一个出口开口连通的围闭流道,使得流体通过二级过滤器和围闭流道进入至少一个出口开口。

一些实施方式中,二级过滤器包裹在二级框架周围,以围闭围闭流道。

一些实施方式中,二级过滤器限定围闭流道。

一些实施方式中,二级过滤器界定圆柱形过滤表面。

一些实施方式中,二级过滤器界定具有复数个多边形边的过滤表面。

一些实施方式中,二级框架围绕每边的边缘支撑第二过滤器的复数个多边形边。

一些实施方式中,二级过滤器焊接至二级框架。

一些实施方式中,过滤装置包含形成波纹的复数个二级框架,波纹具有复数个峰来支撑一级过滤器和二级过滤器,二级过滤器由每个二级框架支撑,每个二级过滤器界定与各自的出口开口连通的围闭流道。

一些实施方式中,二级框架相对于流经二级过滤器的流体倾斜,使得流体迫使邻近每个峰的二级框架向彼此移动,以使峰偏向二级框架。

一些实施方式中,二级过滤器的总表面积至少占一级过滤器的表面积的5%。

一些实施方式中,二级过滤器的总表面积至少占一级过滤器的表面积的10%。

一些实施方式中,二级过滤器的总表面积至少占一级过滤器的表面积的20%。

一些实施方式中,二级过滤器的总表面积至少占一级过滤器的表面积的40%。

一些实施方式中,一级过滤器的孔隙大小大于二级过滤器的孔隙大小。

一些实施方式中,流体管道与流体再循环泵连通。

一些实施方式中,流体管道包含集水池。

一些实施方式中,流体管道包含歧管。

根据本发明公开内容的实施方式可包括上述特征的组合。

附图说明

图示示例实施方式的附图中:

图1为流体再循环进口系统的等距视图;

图2为图1中流体再循环进口系统的俯视图;

图3为图1中流体再循环进口系统的沿着图2所示的线III-III的侧面横截面视图;

图4为图1中流体再循环进口系统的滤芯的等距局部剖视图;

图5为另一个滤芯的等距局部剖视图;

图6为另一个滤芯的等距局部剖视图;以及

图7为另一个流体再循环进口系统的等距视图,其中滤芯安装至进口歧管。

具体实施方式

图1图示了核发电设施的示例再循环进口系统100。在如冷却水的流体经过核发电设施的系统循环后,再循环进口系统100聚集如冷却水的流体,以供后续再循环。

流体循环过程中,流体中可能夹带微粒和纤维物质。例如,冷却流体可积累纤维、油漆碎片、灰尘、污泥和如绝缘层脱落材料的其他碎屑。再循环进口系统100设计为在流体再循环之前过滤这种碎屑。

设施设计规范或监管要求可定义再循环进口系统100的性能标准。例如,此类标准可定义最小流体通过率、微粒物质的最大可接受过筛率和能够通过再循环进口系统100的最大颗粒大小。此类标准可能与设计约束(包括集水池系统100的物理空间限制和最大流量限制,例如在特定流量或流量范围下穿过再循环进口系统100的最大允许压降)相冲突。

再循环进口系统100构成核发电设施的冷却子系统的部分,因此可能对安全至关重要。例如,假如再循环进口系统100被阻塞或以其他方式过度限制流体流动,那么再循环进口系统100的故障可能会导致冷却的缺失。

再循环进口系统100可进一步受制于结构性能标准。例如,再循环进口系统100可设计为具有足够的强度来承受物理冲击或地震事件。

再循环进口系统100可包括集水坑102。流体聚集在集水坑102中,并在抽吸作用下通过一个或多个吸入口114被吸入,供再循环。

在图示实施方式中,吸入口114放置在集水坑102内。吸入口114与泵设备连通,泵设备将流体从集水坑102吸入吸入口114,供再循环。这种连通可能例如通过导管完成。吸入口114被围闭,使得流体在进入吸入口114之前通过过滤器组件110。在图示实施方式中,吸入口114被集水坑102和过滤器组件110围闭。即,被吸入吸入口114的流体通过过滤器组件110,进入集水坑102,然后进入吸入口114。过滤器组件110包括复数个滤芯112,滤芯112通过入口板115与集水坑102连通。每个滤芯112与入口板115中的相应入口孔(未示出)配合。

过滤器组件110可被设计为,在受约束的封闭空间内提供大的过滤表面积。例如,图示实施方式中,过滤器组件110被配置为位于覆盖在集水坑102上的区域内。一些实施方式中,过滤器组件110可能受制于其他空间约束,如高度和体积限制。

图2图示了过滤器组件110的俯视图。如图所示,滤芯112排列成平行的排。邻近的滤芯112间隔紧密地放在一起,以获得高填装密度,同时允许有足够的空间供流体流动。如前所述,滤芯112位于限定集水坑102的区域A内。

图3图示了示例再循环进口系统100的横截面视图,示出了滤芯112、集水坑102和吸入口114。如图所示,设计可指定过滤器组件110的最大高度h。如图所示,最大高度h参照集水坑102的顶部定义。附加地或可供替代地,可相对其他部件定义最大高度h。可定义最大高度来例如避免干扰其他系统部件。

可在集水坑102内或集水坑102外侧界定一个或多个保留区R。保留区R可被指定为没有如滤芯112的部件。例如,保留区R可能以维护为目的提供工作空间,或者为系统部件提供间隙。

参考图2-3所示和所述的空间约束仅为示例。适用于任意给定发电设施的具体约束可能会有所不同。然而,可用于容纳过滤组件110的空间通常受到严格的约束,这就要求滤芯112的过滤面积与其外部尺寸的比率高。从而使得滤芯112的提供足够比率的过滤表面积。

图4图示了示例滤芯112。滤芯112具有框架120,框架120具有复数面壁122。框架120界定围闭体积V,即被框架120的构件限定的体积。在图示实施方式中,框架120包括上壁和下壁122以及端壁122。

框架120的端壁122之一被配置为与入口板115的入口孔配合,并具有一个或多个出口(未示出),围闭体积V通过该出口与集水坑102流体连通。

一级过滤器124支撑在框架120上。如图所示,一级过滤器124占据滤芯112的每个侧面。在图示实施方式中,一级过滤器124被折叠以界定复数个波纹或脊部。每个脊部大致沿滤芯112的横向延伸,并且具有相对的复数个侧表面以及端表面,每个侧表面和端表面可包括供流体通过的穿孔。因此,相对平过滤器,脊部提供了更大的流体过滤面积。脊部还可增加一级过滤器124的刚度。即,脊部可增加绕垂直于脊部定向的方向的抗弯度。

流体可通过一级过滤器124被吸入围闭体积V。一级过滤器124可由例如穿孔金属板或筛网形成。随着流体通过一级过滤器124,过滤器去除夹带在流体中的至少一些碎屑。一些碎屑(下文称分流碎屑)与流体一起通过过滤器124。分流碎屑的大小和数量取决于一级过滤器124的孔隙大小、一级过滤器124的面积以及孔隙之间的间距,即开口孔隙占据的过滤器面积的比例。如本发明所使用,术语“孔隙”包括薄板过滤器中的穿孔和筛网过滤器中的开口缝隙。

通常,具有较小孔隙大小和较小总孔隙面积(例如,较少孔隙)的过滤器124允许更少的碎屑通过。例如,孔隙大小界定了能够通过过滤器124的最大碎屑。换言之,较细的筛网只允许较小的碎屑通过。但较小的孔隙大小和较小的总孔隙面积通常也会施加较大的流量限制,导致过滤器各处的压力损失(即压头损失)更大。因此,过滤性能必须与流量限制相平衡。

在图4的实施方式中,一级过滤器124还由内部二级框架126支撑。如图所示,二级框架126包含一系列三角形支撑物,该三角形支撑物形成具有复数个峰129的波纹。支撑物沿滤芯112的纵向延伸,并向一级过滤器124提供物理增强。

滤芯112还包括由内部二级框架126支撑的二级过滤器128。如图4图示,二级过滤器128为放置在二级框架126上的平薄板。二级过滤器128可由例如穿孔金属薄板或筛网形成。二级框架126的复数个峰129支撑二级过滤器128,并可能还支持一级过滤器124。即,二级框架126相对于二级过滤器128倾斜,使得流经二级过滤器128的流体(图示为W)迫使邻近每个峰的框架向彼此移动,以使峰129偏向二级过滤器128,来支撑二级过滤器128,且在某个实施方式中支撑一级过滤器124。如图4所示,二级框架126的峰可能大致垂直于一级过滤器124的脊部延伸。

二级过滤器128和二级框架126协作,来界定围闭流体通道130。每个流体通道130与进入集水坑102的各自出口连通。因此,为了进入集水坑102,流体必须通过一级过滤器124,进入围闭体积V,然后通过二级过滤器128,进入流体通道130,最终进入集水坑102。具体而言,流体通过位于滤芯侧面的一级过滤器124进入滤芯112,然后通过二级过滤器128,并沿流道130以大致纵向流动,并通过出口进入集水坑102。

滤芯112允许很少的碎屑通过,但也施加相对较小的流量限制。例如,随着冷却流体通过一级过滤器124,部分夹带碎屑从冷却流体分离。通过一级过滤器124的碎屑,随着其通过二级过滤器128,从冷却流体至少部分分离。

在滤芯112的设计中,极细过滤器大小可用于获取高过滤性能,同时由于过滤流量限制而保持可接受的压头损失。

一些示例中,微粒分流限制是根据能够到达堆芯的分流材料的最大可接受数量来定义的。这种限制可通过规章、操作事项或其组合来定义。一些示例中,限制可能低至发电站每个燃料组件几克。其他示例中,目标分流要求为发电站每个燃料组件15克。

过滤性能可随着过滤孔隙大小的减小而显著提高。具体而言,相对于较粗过滤器(例如1/16”穿孔),细(例如80目)筛网的分流材料数量往往会减少。不幸的是,细过滤器容易堵塞。例如,过滤的材料可在过滤件上堆积,部分或完全阻塞其孔隙。由于碎屑薄层造成的堵塞可能会导致过滤器各处的压头损失急剧上升。

碎屑薄层堵塞与通过过滤器的流体的碎屑负荷(即流体流中夹带的碎屑量)有关。大量碎屑更可能堆积在过滤器上,并造成堵塞。过滤器孔隙大小也影响堵塞的可能性。具有更小孔隙大小的过滤器一般更可能会堵塞。

一些发电设施中的碎屑负载使得细过滤器(如80目筛网)很可能发生碎屑薄层堵塞。

一些实施方式中,滤芯112可具有孔隙大小不同的一级过滤器124和二级过滤器128。具体而言,一级过滤器124的孔隙大小可大于二级过滤器128的孔隙大小。这种配置可实现与细过滤器关联的低分流性能,同时降低压头损失和降低碎屑薄层堵塞的风险。通常,一级过滤器124可被设计为去除较大碎屑,以最大限度地减少二级过滤器128的堵塞,使得二级过滤器能够保持设计的分流要求。

在特定示例中,一级过滤器124可由例如1/16”穿孔的穿孔板形成。二级过滤器128可由80目金属筛网形成。随着流体通过滤芯112被朝向吸入口114吸入,流体依次通过一级过滤器124和二级过滤器128。流体相对容易地通过一级过滤器124,即流量限制相对较小。一级过滤器124从流体去除一些碎屑,特别是大碎屑,但允许了相对大量的碎屑通过。因此,通过二级过滤器128的流体携带碎屑数量小于通过一级过滤器124流体携带碎屑数量。此外,二级过滤器128去除的碎屑在大小上往往小于一级过滤器124去除的碎屑。换言之,碎屑的去除分两个阶段。相对于具有等效通过性能的单阶段滤器而言,这种两阶段过滤往往提供一些防止堵塞的保护,且往往施加较低的压头损失。

另一个示例中,通过一级过滤器124的流体将在一级过滤器124上沉积碎屑。例如纤维的碎屑可堆叠并且随着时间的推移减小一级过滤器124的有效孔隙大小,从而使较小尺寸的碎屑能够聚集在一级过滤器124上。

其他实施方式中,一级过滤器124和二级过滤器128可具有相同的孔隙大小。与相同孔隙大小的单阶段过滤器相比,两阶段过滤可提供减少碎屑的通过。通过第一过滤器的碎屑可以在第二过滤器处进一步减少。因此,可在不施加与更细的过滤器相关联的压头损失的情况下减小通过。

此外,过滤器112的配置特别节省空间。具体而言,两个过滤阶段适合放进一级框架120的***之内。因此,在不影响滤芯112的间隔密度的情况下,提供过滤的第二阶段。

如图4所示,滤芯112的二级过滤器128为平板或筛网。一些实施方式中,二级过滤器可具有三维结构。

图5-6图示了具有这种二级过滤器228、328的示例滤芯212、312。滤芯212、312与滤芯112大致相似。其类似部件用类似数字表示,并且为了简单起见,不再详细描述。一些实施方式中,滤芯212、312可与滤芯112互换。

如图5所示,滤芯212具有复数个二级框架226。每个二级框架226在滤芯212围闭的体积内纵向延伸,并界定出一个大致圆柱形。在图示实施方式中,每个框架226包括一个或多个纵梁226 a和一个或多个环226 b。如图所示,环226 b螺旋形地延伸。或者,环226 b可能是圆柱形圆环。梁226 a和环226 b可能例如使用合适的紧固件或通过焊接来附接到彼此。一些实施方式中,框架226可包括梁、环或其他支撑结构的各种组合。

二级过滤器228支撑在每个二级框架226上。具体而言,每个二级过滤器228均包裹在各自的二级框架226周围,界定了限定和围闭各自的流道130的圆柱形过滤表面。二级过滤器228可例如使用合适的紧固件或通过焊接来附接到二级框架226。

二级过滤器228可由穿孔金属薄板或筛网形成。一些实施方式中,二级过滤器228的孔隙大小小于一级过滤器124的孔隙大小。例如,一级过滤器124可能是1/16”穿孔的穿孔板,而二级过滤器228可能是细筛网,例如80目。或者,二级过滤器228可具有与一级过滤器224相同的孔隙大小。

一级过滤器124和二级过滤器228可执行如上文参考滤芯112所述的两阶段过滤,因此可提供过滤性能(例如低微粒通过)、流动阻力(例如低压头损失)和抗碎屑薄层堵塞之间的平衡。

在相同外部尺寸的滤芯内,二级过滤器228的总表面积可大于二级过滤器128的总表面积。

因此,滤芯212的配置可提供更高的空间效率。例如,可增加一级过滤器124和二级过滤器228的总过滤表面积,同时它们仍然适合放入相同大小的第一框架120的***之内。

增加的过滤面积可提供提高的过滤性能,例如,碎片通过更少;给定流体流量下的压头损失较低;以及抗碎屑薄层堵塞更强,这是因为滤过的微粒可能扩散到更大的面积上。

在一些应用中,至少占一级过滤器表面积的10%的二级过滤器可提供优选性能。其他应用中,至少占一级过滤器表面积的20%的二级过滤器可提供优选性能。其他应用中,占一级过滤器表面积的25%-30%的二级过滤器可提供优选性能。其他应用中,表面积至少占一级过滤器面积的5%的二级过滤器,或表面积大于一级过滤器面积的40%的二级过滤器可能是合适的。

如前所述,滤芯可能受制于严格的强度规范。例如,滤芯可能需要承受抽吸力、冲击和地震事件。因此,二级框架226增强二级过滤器228。梁226 a提供纵向强度。环226 b提供径向强度。此外,梁226 a和环226 b相互增强。

滤芯212还可包括一个或多个增强板232,用于进一步支撑二级框架226、二级过滤器228和一级过滤器124。增强板232可例如使用合适的紧固件或通过焊接来附接到一级框架120。增强板232具有复数个开口,通过开口接收二级框架226和二级过滤器228。可选择地,二级框架226和二级过滤器228可例如通过焊接来附接至增强板232。

二级框架和二级过滤器可能以其它三维形状配置,如具有多边形横截面的棱柱。例如,图6图示了滤芯312,其中内部二级框架326和二级过滤器328界定了菱形截面。

每个二级框架326均具有一个或多个纵梁326 a和一个或多个横梁326 b。纵梁326a和横梁326 b可能例如使用合适的紧固件或通过焊接来附接至彼此。

二级过滤器328包裹在每个二级框架326周围,限定和围闭了各自的流道130。二级过滤器328可由穿孔板或筛网形成。每个二级过滤器328可能是单个的一体件,将其弯曲以界定所需的横截面形状。或者,二级过滤器328可由多个件形成。

一些实施方式中,二级过滤器328的孔隙大小小于一级过滤器124的孔隙大小。例如,一级过滤器124可能是1/16”穿孔的穿孔板,而二级过滤器328可能是细筛网,例如80目。或者,二级过滤器328可具有与一级过滤器224相同的孔隙大小。

一级过滤器124和二级过滤器328可执行如上文参考滤芯112所述的两阶段过滤,因此可提供过滤性能(例如低碎屑通过)、流动阻力(例如低压头损失)和抗碎屑薄层堵塞之间的平衡。

在相同外部尺寸的滤芯内,二级过滤器328的总表面积可大于二级过滤器128的总表面积。一些实施方式中,二级过滤器328的总表面积可能至少是一级过滤器124的表面积的20%。

因此,滤芯312的配置可提供更高的空间效率。例如,可增加一级过滤器124和二级过滤器328的总过滤表面积,同时它们仍然适合放入相同大小的第一框架120的***之内。

二级框架326增强二级过滤器328。梁326 a提供纵向强度。环326 b提供径向强度。此外,梁326 a和环326 b相互增强。

滤芯312还可包括一个或多个增强板332,用于进一步支撑二级框架326和二级过滤器328。增强板332可例如使用合适的紧固件或通过点焊接来附接到一级框架120。增强板332具有复数个开口,通过开口接收二级框架326和二级过滤器328。可选择地,二级框架326和二级过滤器328可例如通过焊接来附接至增强板332。

与如图5所示的大小类似的圆柱形二级框架和过滤器相比,如图6所示的具有多边形横截面的二级框架和二级过滤器的制造成本可能稍低,重量也可能有所减轻。具有多边形横截面的二级过滤器也可能要求比圆形(即圆柱形)更少的支撑结构,这是因为多边形的边是平的,可围绕多边形每面的边缘支撑这些边。相反,具有圆柱形横截面的过滤器可能需要中间支撑,例如图6所示的支撑件226 a、226 b,以在使用过滤器时保持圆柱形。然而,使用圆柱形二级过滤器可能实现更大的二级过滤器面积,例如二级过滤器面积与一级过滤器面积的比更大。相应地,一些应用中,圆柱形二级过滤器可用于提供大的二级过滤器面积,尽管成本稍高。在其他应用中,可使用具有多边形横截面的二级过滤器来降低成本。在一些应用中,可组合使用不同形状的二级过滤器。

如上所述,滤芯112、212、312通过集水坑102与吸入口114连通。然而,在一些实施方式中,滤芯可安装到一个或多个流体管道(例如歧管)上,且流体可从滤芯通过流体管道到达吸入口114。图7图示了一个再循环进口系统100'的示例,其中滤芯112安装在歧管102'上。

上文所述和图中所示的集水坑102和过滤器组件110的物理布局仅为示例。其可能有所变化,这可取决于特定设施中其他部件的位置。

尽管已经详细描述了实施方式,但是应当理解,可对本发明进行各种改变、替换和变更。

此外,本申请的范围不旨在限于说明书中描述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施方式。正如本领域普通技术人员将从本发明公开内容中轻松理解,可利用目前存在或将在以后开发的、执行与本发明描述的相应实施方式基本相同功能或达成与其基本相同结果的过程、机器、制造、物质组成、手段、方法或步骤。因此,所附权利要求旨在落入过程、机器、制造、物质组成、手段、方法或步骤的范围内。

可理解,上文所述和图示的详细实施方式仅作示例。本发明由所附权利要求定义。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:布线及使用了该布线的太阳能电池单元和太阳能电池模块

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!