整体式橡胶囊密封的压气储能内衬洞室

文档序号:113701 发布日期:2021-10-19 浏览:143次 >En<

阅读说明:本技术 整体式橡胶囊密封的压气储能内衬洞室 (Air compression energy storage lining cavity sealed by integral rubber bag ) 是由 夏才初 秦世康 杜时贵 徐晨 徐英俊 王辰霖 于 2021-06-16 设计创作,主要内容包括:本发明公开了一种整体式橡胶囊密封的压气储能内衬洞室,包括压气储能内衬洞室、整体式橡胶囊和排水沟,压气储能内衬洞室开挖在完整性较好的围岩中,整体式橡胶囊设置在压气储能内衬洞室内,排水沟开挖在压气储能内衬洞室的底部,整体式橡胶囊用于压气储能内衬洞室的密封,其充气膨胀时密贴于压气储能内衬洞室的衬砌壁面;充气过程中,整体式橡胶囊紧贴压气储能内衬洞室的衬砌壁面,对压气储能内衬洞室进行密封;放气过程中,整体式橡胶囊与压气储能内衬洞室的衬砌壁面脱离,渗透进入压气储能内衬洞室的地下水则通过排水沟排出洞外。相比于现有的压气储能内衬洞室,本发明压气储能内衬洞室适用范围更广、可行性更好、泄漏率更小、风险和成本更低。(The invention discloses an integral rubber bag sealed air compression energy storage lining cavern, which comprises an air compression energy storage lining cavern, an integral rubber bag and a drainage ditch, wherein the air compression energy storage lining cavern is excavated in surrounding rock with better integrity; in the inflation process, the integral rubber bag is tightly attached to the lining wall surface of the compressed air energy storage lining cavern to seal the compressed air energy storage lining cavern; during the deflation process, the integral rubber bag is separated from the lining wall surface of the compressed air energy storage lining cavern, and the underground water permeating into the compressed air energy storage lining cavern is discharged out of the cavern through the drainage ditch. Compared with the existing air compression energy storage lining cavern, the air compression energy storage lining cavern has the advantages of wider application range, better feasibility, smaller leakage rate, lower risk and lower cost.)

整体式橡胶囊密封的压气储能内衬洞室

技术领域

本发明涉及实现“碳达峰、碳中和”双目标的地下能源存储技术领域,具体是一种整体式橡胶囊密封的压气储能内衬洞室。

背景技术

实现碳达峰目标的首要措施就是减少化石能源的使用,增加风电、光伏电等绿色可再生能源的利用。风电、光伏电这些绿色可再生能源和传统的化石能源相比虽然更加环保,但是由于其具有间歇性和波动性导致发电的稳定性和持续性相对不足。为解决上述问题,就需要利用到大规模储能技术,而压缩空气储能就是一种常用的大规模储能技术。压缩空气储能技术以高压空气为媒介来实现电网中能量的存储和释放,通过对能量存储和释放的合理调控就可以将风电、光伏电这些间歇性能源转化为稳定、可控的优质能源。其中,地下洞室作为高压空气的存储容器,在压气储能电站的运行过程中具有重要作用,而其建设的关键问题就是地下洞室的密封性问题。

2009年8月26日公开的申请号为200810033803.1、名称为《一种利用矿井进行压缩空气蓄能的方法》的发明,公开了一种利用废弃矿井进行压缩空气储能的方法,该方法将具有隔气性能材料制成的气袋放置于废弃矿井当中以实现高压气体的密封,气袋的形状与矿井内壁形状相同,大小略大于矿井内壁。该发明为废弃矿井的密封提供了一个思路,但是压气储能运行过程中地下洞室要承受5-10MPa的循环高压作用,而该方法仅依靠气袋不施加任何承载结构对废弃矿井进行密封,可行性不大。2014年9月3日公开的申请号为201410174203.2、名称为《一种压气储能洞室的施工方法》的发明,公开了一种利用钢纤维钢筋混凝土作衬砌,内部施加高分子材料做密封层的压气储能洞室的施工方法,该方法虽然施加了衬砌,但是高分子材料是通过相互拼接形成的密封结构,空气泄漏率较大,此外,该方法没有设置排水系统,而且密封层紧贴衬砌,对于地下水位线以下的洞室,地下水会在密封层和衬砌结构之间形成一个水头压力的积聚,当水头压力积聚到一定程度时,尤其在低气压或者检修工况时密封层就有被撕裂的风险,如果设置排水系统成本则会大大增加。

发明内容

为解决压气储能洞室密封的问题,克服现有压气储能洞室密封方法的不足,本发明提出一种适用范围更广、可行性更好、泄漏率更小、风险和成本更低的整体式橡胶囊密封的压气储能内衬洞室。

本发明解决上述技术问题所采用的技术方案为:一种整体式橡胶囊密封的压气储能内衬洞室,包括压气储能内衬洞室、整体式橡胶囊和排水沟,所述的压气储能内衬洞室开挖在完整性较好的围岩中,所述的整体式橡胶囊设置在所述的压气储能内衬洞室内,所述的排水沟开挖在所述的压气储能内衬洞室的底部,所述的整体式橡胶囊用于所述的压气储能内衬洞室的密封,所述的整体式橡胶囊充气膨胀时密贴于所述的压气储能内衬洞室的衬砌壁面;充气过程中,整体式橡胶囊紧贴压气储能内衬洞室的衬砌壁面,将内部压力传递至围岩,围岩体的反作用使整体式橡胶囊内外压力达到平衡对压气储能内衬洞室进行密封;放气过程中,整体式橡胶囊与压气储能内衬洞室的衬砌壁面脱离,给积聚在整体式橡胶囊和压气储能内衬洞室的衬砌壁面之间的水头压力一个释放的空间,渗透进入压气储能内衬洞室的地下水则通过排水沟排出洞外。

作为优选,所述的整体式橡胶囊由分段制作的橡胶囊在所述的压气储能内衬洞室的施工现场通过熔接机硫化连接而成。为了满足运输过程中限高、限重的要求,橡胶囊要尽可能的轻薄,并且要分段制作,直径可以根据工程现场的要求进行确定。将分段制作的橡胶囊在地下洞室施工现场通过熔接机硫化连接制作整体式橡胶囊,制作灵活、方便,能够更好地满足工程现场的要求,并保证整体式橡胶囊的整体性及其对压气储能内衬洞室的密封效果。

作为优选,所述的整体式橡胶囊充气膨胀时的形状与所述的压气储能内衬洞室的形状相同,所述的整体式橡胶囊充气膨胀时的外径与所述的压气储能内衬洞室的内径大小相等,即可保证整体式橡胶囊充气过程中不受到内外压差的作用。

作为优选,所述的压气储能内衬洞室的衬砌为浇筑的钢筋混凝土层,所述的压气储能内衬洞室的轴向的两端分别布置有头部基座和尾部基座,所述的头部基座和所述的尾部基座分别由钢筋混凝土浇筑而成,所述的压气储能内衬洞室、头部基座和尾部基座围成一容置腔,所述的整体式橡胶囊位于所述的容置腔内,所述的整体式橡胶囊的头部与一进气管道和一出气管道的一端相连通,所述的进气管道和所述的出气管道上分别设置有进气阀门和出气阀门,所述的进气管道的另一端与空气压缩机连接,所述的出气管道的另一端与发电机组连接,所述的空气压缩机和所述的发电机组分别与电网相连。头部基座和尾部基座分别由钢筋混凝土浇筑而成,头部基座和尾部基座嵌入围岩可以更好地限制压气储能内衬洞室的横向变形,为充气过程整体式橡胶囊的横向变形提供承载结构。

作为优选,所述的钢筋混凝土层上固定有多个吊扣,所述的多个吊扣分成两排沿所述的压气储能内衬洞室的轴向间隔布设,每个所述的吊扣设置在所述的压气储能内衬洞室的半高以上部位,所述的整体式橡胶囊的外壁固定有多根吊带,所述的多根吊带分成两排沿所述的压气储能内衬洞室的轴向间隔布设,每根所述的吊带设置在所述的整体式橡胶囊的半高以上部位,每根所述的吊带与一个所述的吊扣连接。采用上述连接结构后,整体式橡胶囊安装到位后一半以下吊挂在洞墙上,可以减少整体式橡胶囊的不规则运动和死折。

作为优选,每个所述的吊扣通过带有垫片的水泥钉固定于所述的钢筋混凝土层。施工过程中可以将吊带套在水泥钉上楔进钢筋混凝土层,实现对橡胶囊的固定。水泥钉钉头和垫片很薄,不会因为吊扣的凸起而刺破整体式橡胶囊。

作为优选,所述的钢筋混凝土层的内壁铺设有一层土工布层,所述的土工布层通过若干水泥钉固定于所述的钢筋混凝土层的内壁。相对柔软的土工布层可使容置腔的内表面更加平整,从而整体式橡胶囊充气之后受力更加均匀。

作为优选,每根所述的水泥钉与所述的土工布层之间压紧设置有垫片。垫片一方面可以保护土工布层,另一方面可以避免水泥钉穿透土工布层而失去作用。

与现有技术相比,本发明具有如下优点:

1)本发明压气储能内衬洞室采用的整体式橡胶囊是一个整体,密封效果好,可避免现有的压气储能内衬洞室中由于密封材料的热熔衔接以及围岩裂缝等产生的空气泄漏;

2)本发明压气储能内衬洞室中整体式橡胶囊在放气工况下会从压气储能内衬洞室的内壁脱离,给积聚在整体式橡胶囊和压气储能内衬洞室的内壁之间的水头压力一个释放的空间,避免整体式橡胶囊被水头压力撕裂的风险;

3)本发明压气储能内衬洞室结构简单,充气后整体式橡胶囊内部的空气压力会和外部的围岩压力达到一个平衡,仅仅起到一个密封的效果,并不承受力的作用,因此,制作过程中不需要刻意增加橡胶囊材料的厚度,制作成本低廉,容易实施和推广,经济效益高;

4)相比于现有的压气储能内衬洞室,本发明压气储能内衬洞室的适用范围更广、可行性更好、泄漏率更小、风险和成本更低。

附图说明

图1为实施例1中压气储能内衬洞室的结构示意图;

图2为实施例1中整体式橡胶囊完全充气膨胀时的横截面示意图;

图3为实施例1中整体式橡胶囊放气后塌落时的横截面示意图;

图4为实施例2中层土工布层与钢筋混凝土层的局部连接效果示意图;

图中:1-围岩、2-钢筋混凝土层、3-整体式橡胶囊、4-头部基座、5-尾部基座、6-进气管道、7-出气管道、8-压气储能内衬洞室、9-容置腔、10-空气压缩机、11-发电机组、12-电网、13-进气阀门、14-出气阀门、15-吊扣、16-带有垫片的水泥钉、17-吊带、18-土工布层、19-水泥钉、20-垫片、21-排水沟。

具体实施方式

以下结合附图实施例对本发明作进一步详细描述。

实施例1的整体式橡胶囊密封的压气储能内衬洞室,如图1~图3所示,包括压气储能内衬洞室8、整体式橡胶囊3和排水沟21,压气储能内衬洞室8开挖在完整性较好的围岩1中,整体式橡胶囊3设置在压气储能内衬洞室8内,排水沟21开挖在压气储能内衬洞室8的底部,整体式橡胶囊3用于压气储能内衬洞室8的密封,整体式橡胶囊3充气膨胀时密贴于压气储能内衬洞室8的衬砌壁面;充气过程中,整体式橡胶囊3紧贴压气储能内衬洞室8的衬砌壁面,将内部压力传递至围岩1,围岩1的反作用使整体式橡胶囊3内外压力达到平衡对压气储能内衬洞室8进行密封;放气过程中,整体式橡胶囊3与压气储能内衬洞室8的衬砌壁面脱离,给积聚在整体式橡胶囊3和压气储能内衬洞室8的衬砌壁面之间的水头压力一个释放的空间,渗透进入压气储能内衬洞室8的地下水则通过排水沟21排出洞外。

实施例1中,整体式橡胶囊3由分段制作的橡胶囊3在压气储能内衬洞室8的施工现场通过熔接机硫化连接而成;整体式橡胶囊3充气膨胀时的形状与压气储能内衬洞室8的形状相同,整体式橡胶囊3充气膨胀时的外径与压气储能内衬洞室8的内径大小相等。

实施例1中,压气储能内衬洞室8的衬砌为浇筑的钢筋混凝土层2,压气储能内衬洞室8的轴向的两端分别布置有头部基座4和尾部基座5,头部基座4和尾部基座5分别由钢筋混凝土浇筑而成,压气储能内衬洞室8、头部基座4和尾部基座5围成一容置腔9,整体式橡胶囊3位于容置腔9内,整体式橡胶囊3的头部与一进气管道6和一出气管道7的一端相连通,进气管道6和出气管道7上分别设置有进气阀门13和出气阀门14,进气管道6的另一端与空气压缩机10连接,出气管道7的另一端与发电机组11连接,空气压缩机10和发电机组11分别与电网12相连。

实施例1中,钢筋混凝土层2上固定有多个吊扣15,多个吊扣15分成两排沿压气储能内衬洞室8的轴向间隔布设,每个吊扣15设置在压气储能内衬洞室8的半高以上部位,每个吊扣15通过带有垫片的水泥钉16固定于钢筋混凝土层2,整体式橡胶囊3的外壁固定有多根吊带17,多根吊带17分成两排沿压气储能内衬洞室8的轴向间隔布设,每根吊带17设置在整体式橡胶囊3的半高以上部位,每根吊带17与一个吊扣15连接。

实施例1中,由于头部基座4外围没有围岩1的支撑,因此头部基座4的厚度比尾部基座5要厚一些。

实施例2的整体式橡胶囊密封的压气储能内衬洞室,与实施例1的区别在于,实施例2中,如图4所示,钢筋混凝土层2的内壁铺设有一层土工布层18,土工布层18通过若干水泥钉19固定于钢筋混凝土层2的内壁,每根水泥钉19与土工布层18之间压紧设置有垫片20。

上述压气储能内衬洞室施工后,充气过程中,空气压缩机10利用电网12中富余的电能将大气中的空气压缩,压缩之后的气体沿进气管道6进入整体式橡胶囊3,整体式橡胶囊3在气体压力作用下膨胀,当充气至整体式橡胶囊3完全充气膨胀时,整体式橡胶囊3紧贴钢筋混凝土层2的内壁,整体式橡胶囊3的两端分别嵌入头部基座4和尾部基座5,将内部压力通过钢筋混凝土层2传递至围岩1中,整体式橡胶囊3仅仅是起到密封的作用,因此不需要承受力的作用。放气过程中,整体式橡胶囊3内的气体放出,整体式橡胶囊3与钢筋混凝土层2的内壁脱离,这时就可以给积聚在整体式橡胶囊3和钢筋混凝土层2之间的水头压力一个释放的空间,避免整体式橡胶囊3被水头压力撕裂的风险,放出的高压气体通过发电机组11将内能转化为稳定的电能并入电网12。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于氢储存氨中便于灌装的高压氢气储罐

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!