基板的接合方法、透明基板层叠体和具备基板层叠体的器件

文档序号:1145270 发布日期:2020-09-11 浏览:8次 >En<

阅读说明:本技术 基板的接合方法、透明基板层叠体和具备基板层叠体的器件 (Substrate bonding method, transparent substrate laminate, and device provided with substrate laminate ) 是由 须贺唯知 松本好家 于 2018-12-21 设计创作,主要内容包括:基板的接合方法具备:在至少一个为透明基板的一对基板中的两个或任意一个的接合表面上形成金属氧化物的薄膜的步骤;和经由金属氧化物的薄膜使一对基板的接合面相互接触的步骤。(The method for bonding substrates includes: a step of forming a thin film of a metal oxide on a bonding surface of either or both of a pair of substrates at least one of which is a transparent substrate; and a step of bringing the bonding surfaces of the pair of substrates into contact with each other via a thin film of a metal oxide.)

基板的接合方法、透明基板层叠体和具备基板层叠体的器件

技术领域

本发明涉及将基板接合的方法。更详细而言,涉及以实质上能够享有该层叠基板自身所具有的透光性的方式形成透明基板的层叠体的方法。

背景技术

作为基板的接合方法,已知将基板表面利用能量粒子照射而使其表面活化并贴合的方法。被称为常温接合的方法也是其中之一。使用这样的表面活化处理的基板接合技术目前被用在多种多样的应用用途中。作为非限定性的一例,有时被用在接合过程的整体或一部分中不适合高温下的工艺或想要避免高温下的工艺的层叠体形成中。例如,有时被用在不同材料的基板的接合、在除高温下以外不易引起原子扩散的材料的基板的接合等中。

发明内容

发明所要解决的问题

本发明包括将基板接合的方法,其具备:在至少一个为透明基板的一对基板中的两个或任意一个的接合表面上形成金属氧化物的薄膜的步骤;和经由金属氧化物的薄膜使基板的接合面相互接触并贴合的步骤。

附图说明

图1是将一个实施方式的层叠体的形成方法的各工序与装置构成一起示出的图。

图2是将透光率和接合强度作为实施例中的实验结果示出的图。

图3是示出另一个实施方式的层叠体的形成方法的各工序的概略截面图。

具体实施方式

作为使用透明基板的器件的一例,以显示器(显示元件)为代表的光电子器件大多具有将发光元件粘贴在作为其光的提取部件的玻璃上的构成。在此,一般而言,经由粘接性的膜将两者粘贴。若列举不限定本发明的一例,有机电致发光(以下也称为“有机EL”)器件通过将被高分子覆盖的有机EL元件粘贴在保护玻璃上而构成。柔性有机EL中,有机EL元件也被高分子覆盖,另外,偏振板等也由高分子形成。

但是,还没有将高分子基板或高分子膜直接粘贴在具有保护有机EL元件等器件的作用的保护玻璃上的技术。因此,经由光学透过性粘合片(以下也称为“OCA”)将该器件与保护玻璃间接地粘贴在一起。在此,OCA这样的部件成为成本因素。另外,使用OCA的制品不适合于放射线下等不能使用有机物的状况下的应用。

不仅仅是显示器(显示元件)领域,想要不损害光的透过性地将玻璃彼此贴合的需求大量存在。通常,使用由有机材料形成的粘接剂来形成玻璃彼此。但是,粘接剂被认为是使透光性降低的一个原因。此外,粘接剂通过涂布有机材料来形成,因此,容易在接合界面产生气泡,从而对接合界面的品质产生影响。

因此,想到了应用常温接合等直接接合方法在透明性高的玻璃上接合被高分子覆盖的发光元件。但是,认为作为玻璃的主要成分的SiO2难以通过接受能量粒子的照射而接合。

本发明中包含的将基板接合的方法具备:在至少一个为透明基板的一对基板中的两个或任意一个的接合表面上形成金属氧化物的薄膜的步骤;和经由金属氧化物的薄膜使一对基板的接合面相互接触的步骤。金属氧化物对可见光透明,并且通过例如溅射法等形成的金属氧化物的接合力较强。因此,兼具透过性和接合性这两者。

<进行接合的基板>

“透明基板”是指包含可见光在内的光的透过率高的基板。例如,可见光透过率可以为90%以上。“透明基板”可以为以含有SiO2的玻璃、强化玻璃、高分子等作为基材或者包含含有SiO2的玻璃、强化玻璃、高分子等的基板。本发明中包含的基板的接合方法具有多个优点,作为优点之一,到目前为止无法在不损害透过性或者不使透过性大幅降低的情况下进行接合的包含SiO2的基板也能够在维持高透光率的同时进行接合。

被贴合于透明基板上的基板中的一个或两个可以为透明基板。进行贴合的基板可以是一对基板,也可以是一对透明基板,还可以是一个为透明基板且另一个为半透明或不透明基板。

进行接合的一对基板中的两个可以为玻璃基板,也可以为高分子基板。也可以是进行接合的一对基板中的一个为玻璃基板且另一个为高分子基板。高分子基板可以为实质上由高分子材料构成的基板。也可以是进行接合的基板中的至少一个的接合面实质上由高分子材料构成。

将基板接合的方法可以包括提供贴合中使用的基板或透明基板和其他基板,还可以包括提供至少一个为透明基板的一对基板。

进行接合的基板中的一个或两个可以为主要由高分子材料构成的基板或高分子基板。高分子材料基板可以为塑料基板,也可以为柔性基板。高分子材料可以为PEN(聚萘二甲酸乙二醇酯)、PET(聚对苯二甲酸乙二醇酯)、其他聚酯材料、PI(聚酰亚胺)、COP(环烯烃聚合物)、PC(聚碳酸酯),但不限于这些,也可以为其他聚合物、塑料材料。基板可以包含POL(偏振膜)。基板可以实质上由高分子材料构成,也可以包含高分子材料,也可以由高分子材料和其他材料或构件构成。高分子基板可以为透明基板。

进行接合的基板可以为圆形也可以为长方形,或者也可以为带(tape)状。

进行接合的基板中的一个可以包含光学元件。光学元件可以为发光元件也可以为受光元件,也可以包含这两者,也可以包含其他的光、光电子或电子元件、电路、材料。进行接合的基板可以包含光学元件的层,也可以包含光学元件的层和高分子的层而形成。例如,基板可以含有包含光学元件的层或光学元件层、和包含高分子材料的层或高分子层而构成。

进行接合的基板中的一个可以含有包含光学元件的光学元件层和覆盖光学元件层的包含高分子材料的高分子层而构成。高分子层的表面可以为接合表面。

最终制品中,例如在光学元件为发光元件的情况下,优选从发光元件放出到制品外部的光所通过的所有基板和层都是透明的,例如在光学元件为受光元件的情况下,优选从制品外部入射的光到达受光元件为止所通过的所有基板和层都是透明的。就包含光学元件的最终制品而言,透明是指透明到从发光元件放出的光中足以实用的量的光被提取到外部的程度、或者从外部入射的光中足以实用的量的光被受光元件检测到的程度。

另一方面,关于接合后形成的透明基板层叠体的光的透过率(以下称为“接合后透光率”),优选在最终制品的用途中具有足够的透光率。例如,接合后透光率优选为相对于将接合前的状态的基板直接叠合而成的两个以上的全部基板的透光率(以下称为“接合前透光率”)的90%以上。接合后透光率可以为接合前透光率的95%以上。接合后透光率可以为接合前透光率的97%以上、98%以上或99%以上。

<金属氧化物>

金属氧化物的金属可以选自作为典型金属的碱金属:Li、Na、K、Rb、Cs或碱土金属:Ca、Sr、Ba、Ra、镁族元素:Be、Mg、Zn、Cd、Hg、铝族元素:Al、Ga、In、稀土元素:Y、La、Ce、Pr、Nd、Sm、Eu、锡族元素:Ti、Zr、Sn、Hf、Pb、Th、铁族元素:Fe、Co、Ni、土酸元素(earth-acidelement):V、Nb、Ta、铬族元素:Cr、Mo、W、U、锰族元素:Mn、Re、贵金属:Cu、Ag、Au、铂族元素:Ru、Rh、Pd、Os、Ir、Pt。该金属可以由一种金属构成,也可以包含两种以上的金属,也可以为合金。金属可以为Si,也可以为所谓的金属硅。金属可以为硅以外的金属。

关于金属氧化物,在一个实施方式中可以为化学计量比组成的金属氧化物,在另一个实施方式中可以为非化学计量比组成,例如,金属的量与氧的量相比可以多也可以少。金属氧化物可以为金属与氧的混合物,金属与氧的结合可以与化学计量比组成的金属氧化物的不同,也可以包含不同的金属与氧的结合。

<金属氧化膜的形成>

在基板的接合表面上形成金属氧化物的薄膜的步骤可以通过等离子CVD法、溅射法、蒸镀法、ALD(原子层沉积)法、(反应性离子蚀刻)RIE法进行。但是,形成金属氧化物的薄膜的步骤不限于这些方法,也可以使用其他方法来进行。

在基板的接合表面上形成金属氧化物的薄膜的步骤可以通过溅射法进行,也可以通过包含溅射法的方法或工序进行。溅射法可以为离子束溅射法,也可以为离子束辅助溅射法。认为通过离子束溅射法形成的金属氧化物的结晶性比较低,结晶缺陷也比较多,并且以原子Bell露出的表面比较多,具有大量所谓的悬挂键。因此认为,处于活性比较高、其表面被活化的状态,变得容易接合。但是,该物理考察是推论,本发明不限于该机制。

在一个实施方式中,在基板的接合表面上形成金属氧化物的薄膜的步骤可以通过离子束辅助溅射法进行。该方法可以包括:通过以金属作为靶并在实质上由不活泼气体和氧气构成的混合气体中进行的溅射法,在对象基板上形成金属氧化物。在另一个实施方式中,溅射法可以以金属作为靶并在实质上由氮气和氧气构成的混合气体中进行。利用混合气体对金属靶进行照射,将金属溅射,由此,可以在接合面上形成金属与氧的混合物或金属的氧化物、金属氧化物。

在另一个实施方式中,在基板的接合表面上形成金属氧化物的薄膜的步骤可以包括:以金属作为靶,实质上利用不活泼气体沿接合表面方向进行溅射,从其他方向对接合表面送入氧气。

不活泼气体可以为稀有气体。稀有气体可以为氦气(He)、氖气(Ne)、氩气(Ar)、氪气(Kr)、氙气(Xe)、氡气(Rn)中的任意一种,也可以为它们中两种以上的混合气体。不活泼气体特别是可以为氩气(Ar)。

溅射的靶中使用的金属可以为铝(Al)。对于铝靶,使用氩气等稀有气体与氧气的混合气体进行溅射成膜,由此,可以形成Al2O3等氧化铝的薄膜。

薄膜内的铝的氧化物可以为化学计量比组成Al2O3,也可以为非化学计量比组成,或者可以为它们的混合物。所形成的金属氧化物中,铝与氧的结合形态可以与化学计量比组成Al2O3的铝与氧的结合形态不同,也可以包含不同的铝与氧的结合形态。

在基板的接合表面上形成金属氧化物的薄膜的步骤可以包括:以金属氧化物作为靶,对该靶进行溅射,由此,在对象基板上形成金属氧化物。若列举非限定性的一例,作为靶的金属氧化物可以为氧化铝(Al2O3)。溅射中使用的气体可以为稀有气体或氮气,也可以为它们的混合物,还可以为包含稀有气体或氮气和其他气体的气体。

溅射中使用的混合气体可以实质上由氩气和氧气构成。混合气体中包含的氧气的流量相对于混合气体的流量或总流量可以实质上为3%、4%、5%、6%、7%、8%、9%或10%、或者任一值以上或比其大的值。

混合气体可以包含其他的氩气,也可以包含氩气以外的稀有气体。在混合气体包含与氩气不同的气体的情况、或者由于装置、环境的影响等而实质上溅射特性不同的情况或显著不同的情况下,可以选择适当的氧气的流量。例如,该稀有气体的溅射率与仅使用氩气的情况相比较小时,氧气的流量比率可以小于5%,例如可以为4%、3%以下。相反,例如该稀有气体的溅射率与仅使用氩气的情况相比较大时,氧气的流量比率可以大于5%,例如可以为6%、7%以上。

进行接合的基板可以为玻璃基板与玻璃基板、玻璃基板与高分子材料(聚合物)基板、聚合物基板与聚合物基板。在将玻璃与玻璃的接合面接合的情况或将聚合物与聚合物的接合面接合的情况下,可以在任意一个或两个上形成金属氧化膜。在将玻璃与聚合物的接合面接合的情况下,在任意一个上形成金属氧化膜时,可以在聚合物上形成金属氧化膜,由此,大多能够提高接合强度。

所形成的金属氧化膜的厚度可以为约0.1nm~约10nm,可以为0.1nm、0.2nm、0.3nm、0.4nm、0.5nm、1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm的值以上或比上述大的值。所形成的金属氧化膜的厚度可以为10nm以下,可以为9nm、8nm、7nm、6nm、5nm、4nm、3nm、2nm或1nm的值以下或小于上述值。通过接合形成的基板层叠体中的金属氧化物的层的厚度可以为约0.1nm~约20nm。

<表面活化处理>

表面活化处理可以包括对金属的氧化物的表面照射能量粒子的步骤。

能量粒子可以通过使用离子束源或快原子束(FAB)源等粒子束源对所使用的气体粒子或原子的离子或中性原子或它们的混合气体进行加速来生成。能量粒子的照射可以使用等离子源来进行。

可以使用粒子束源对粒子赋予预定的动能。粒子束源例如在压力为1×10-5Pa(帕斯卡)以下等的真空中工作。为了抽成较高的真空,利用真空泵的工作,将从金属区域的表面除去的物质高效地排出到气氛外。由此,能够抑制不期望的物质向露出的新生表面上的附着。此外,粒子束源能够施加较高的加速电压,因此,能够对粒子赋予高的动能。因此认为,能够高效地进行表面层的除去和新生表面的活化。

作为中性原子束源,可以使用快原子束源(FAB,Fast Atom Beam)。典型而言,快原子束源(FAB)具有如下构成:使气体的等离子体产生,对该等离子体施加电场,取出从等离子体电离出的粒子的阳离子,使其从电子云中穿过而中性化。这种情况下,例如,在作为稀有气体的氩气(Ar)的情况下,可以将向快原子束源(FAB)供给的供给功率设定为1.5kV(千伏)、15mA(毫安),或者可以设定为0.1~500W(瓦特)之间的值。例如,使快原子束源(FAB)在100W(瓦特)~200W(瓦特)下工作而照射约2分钟氩气(Ar)的快原子束时,进行接合的表面的上述氧化物、污染物等(表面层)被除去,能够使新生表面露出。

作为离子束源,可以使用冷阴极型离子源。

离子束源可以为线型的冷阴极型离子束源。线型粒子束源是具有线型(线状)的或细长的粒子束放射口的粒子束源,可以从该放射口以线型(线状)射出粒子束。放射口的长度优选大于被照射粒子束的基板的直径。在基板不为圆形的情况下,放射口的长度优选大于使相对于粒子束源相对移动的基板的放射口延伸的方向的最大尺寸。

从线型粒子束源射出的粒子束在表面活化处理中的某一时刻照射基板上的线状的区域或细长的区域。然后,从线型粒子束源朝向基板射出粒子束,并且沿着与放射口延伸的方向垂直的方向扫描基板支撑体。其结果是,线状的粒子束的照射区域从基板的全部接合部上通过。线型的粒子束源完成从基板上通过时,基板整体实质上被粒子束均匀地照射从而发生表面活化。

线型的粒子束源在利用粒子束对面积较大的基板的表面比较均匀地进行照射时是适合的。另外,线型的粒子束源能够与基板的各种形状相对应地、比较均匀地照射粒子束。

能量粒子可以为实质上由稀有气体和氧气构成的混合气体,可以为该混合气体,也可以包含其他气体。照射不含氧气而仅使用稀有气体的能量粒子束时,有时在金属氧化物的表面附近氧相对于金属缺乏。此时,由于金属的量相对增加,有时可见光等光的透过率降低。推测这可能是由于在含有比较多的该金属的区域中被吸收。因此认为,通过使对接合面照射的能量粒子束含有氧,该氧与金属氧化物表面结合,能够避免或减少氧的缺乏。认为由此能够得到充分的所接合的透明基板的层叠体的透光率。

能量粒子可以为稀有气体,也可以包含稀有气体。该稀有气体可以为氩气,也可以为其他稀有气体。能量粒子可以为中性原子或离子,此外,可以为自由基种,另外还可以为它们混合而成的粒子群。

“表面活化”是在没有接触的情况下对未进行实质性的结合或接合的表面进行的处理或工序,是指使该处理等后的表面相互接触时得到期望或实质上有效的结合的处理等。通过使基板在表面活化处理后进行接合而形成的层叠体可以直接进行加热、光处理等,也可以不进行。

表面层的除去速度可以根据各等离子体或束源的工作条件或者粒子的动能而发生变化。因此,需要对包括表面活化处理的处理时间在内的各条件进行调节。例如,可以使用俄歇电子能谱法(AES,Auger Electron Spectroscopy)、X射线光电子能谱法(XPS,X-rayPhoto Electron Spectroscopy)等表面分析法,采用变成无法确认表面层中含有的氧、碳的存在的时间或比该时间更长的时间作为表面活化处理的处理时间。

<贴合>

贴合可以包括经由表面活化后的金属氧化物的薄膜使基板的接合面相互接触。可以在使其接触时从基板的与接合面相反的一侧或除接合面以外的面对基板施加力。例如,可以从基板的外侧对接合面施加垂直方向的力。在一个实施方式中,加压可以以在接触后的接合面整体达到实质上均等的方式施加力。在另一个实施方式,加压可以在各个时刻对接触后的接合面的不同的面进行。加压时的力的强度在时间上可以恒定,也可以为可变的。加压可以在不同的时刻对接合面的各部位进行。也可以通过使加压装置相对于接触的基板滑动而移动而对接合面依次加压。该加压装置可以具有辊状的加压部。

本发明中包含的基板的接合方法中,从在基板上在接合表面上形成金属的氧化物层的步骤起至使一对基板接触或贴合的步骤为止,可以始终在真空中或低压力下的气氛中进行,也可以在不破坏真空或低压力气氛的情况下进行。真空中或低压力下的气氛可以是气压为10-16Pa或10-16Pa以下的气氛。或者,可以在此期间将基板在金属氧化物层形成后暂时从真空中取出,此时,可以在接合表面暂时接合虚设基板等,避免接合表面暴露于大气中,再次返回到真空中之后,将虚设基板取下,使接合表面彼此在真空中接触。真空中或低压力下的气氛可以包括这种情况。通过在真空中进行这些工序,可以避免不需要的物质向接合表面上的附着、吸附或接合表面的氧化和氢氧化,高效地进行表面的活化,可以维持活化后的表面的活化度或者尽量抑制其的降低,从而避免或减少产生不接合的部分的情况。

<加热处理>

本发明中包含的基板的接合方法可以进一步包括在贴合后对层叠体进行加热的步骤。加热的温度可以为100℃、200℃,也可以为100℃以上的值,也可以为210℃、220℃以下或低于上述值的值。加热的温度可以为100℃或150℃的温度以上或高于上述值。加热的温度可以为400℃、300℃、250℃、225℃、220℃、210℃、200℃或150℃的温度以下或低于上述值。加热的温度可以实质上为100℃、150℃、200℃。加热可以对基板整体同时进行,也可以对基板的各部分进行。

在接合表面上形成金属的氧化物层的步骤、进行活化处理的步骤、将一对基板贴合的步骤可以实质上在接合界面温度100℃或200℃以下进行、或者有意地避开加热处理来进行。

<成膜前的基板表面活化处理>

本发明中包含的基板的接合方法可以进一步包括在成膜前对基板的接合表面照射能量粒子的步骤。通过利用能量粒子的照射使基板的接合表面活化,能够提高该接合表面与形成在其上的薄膜的接合强度。

<实施例1>

使用本发明的方法将玻璃基板接合,对其透光率和接合强度进行评价。

图1(a)所示的接合装置100具有真空容器101、配置在真空容器101的内部并可移动地支撑第一基板102和第二基板103的基板支撑体104、作为表面活化处理装置的粒子束源105、用于形成金属氧化物的薄膜的金属靶106、作为接合装置的基板支撑体104的旋转轴104A和加压装置(未图示)而构成。根据该构成,可以在真空中在基板102、103上形成良质的金属氧化物,进而在不破坏真空的情况下进行表面活化处理和基板接合(贴合),因此,能够形成强度高且缺陷少的接合界面。

如图1(a)所示,真空容器101上连接有真空泵(未图示),能够将真空容器101内部的真空度维持于1×10-5Pa以下的压力。另外,粒子束源105可以绕着旋转轴105A旋转,可以朝向溅射靶106使氩气与氧气的混合气体的粒子群(107)加速而使金属材料溅射。另外,粒子束源105以能够根据基板支撑体104的位置朝向第一基板102或第二基板103的表面射出具有预定动能的粒子所产生的粒子束105B来进行基板表面的表面活化处理的方式构成。在仅在这些基板上的预定区域或接合区域形成金属氧化物膜的情况下,在基板上配置对该预定区域进行规定的掩模(未图示)。

另外,在薄膜107沉积的期间内扫描基板支撑体104,能够使第一基板102或第二基板103上的沉积条件变得均匀。金属氧化物层的厚度可以相对于预定的粒子束源105的工作条件、粒子束源105、靶106和基板102、103在真空容器101内的预定的配置位置利用扫描次数阶段性地进行控制。

在本实施例中,第一基板102和第二基板103均使用玻璃基板,更详细而言,使用80mm见方的无碱玻璃(日本电气硝子公司制造的OA10-G)。将玻璃基板112、113导入到真空容器101内,使该容器内的气氛为10-5Pa以下的真空气氛,以同样的排气能力持续排气直至接合完成为止。设置金属铝作为靶106,使用线状冷阴极型离子束源作为粒子束源105,将氩气与氧气的混合气体以80sccm的供给量在1.2kV、400mA的条件下进行驱动。由此,对靶106照射混合气体的粒子束105B,朝向两个玻璃基板的接合面溅射包含铝与氧的混合物的粒子群107。其结果是,在玻璃基板102、103的接合面上形成了铝的氧化物107、108的薄膜(图1(b))。厚度为约20nm。但是,本发明中,关于溅射的机制、从靶106至基板102、103的溅射粒子107的状态,不限于上述记载。

如图1(b)所示,然后,作为表面活化处理,使粒子束源105绕着旋转轴105A旋转,在朝向第一基板102或第二基板103的位置固定,对于形成在基板102、103上的氧化铝膜107、108的表面,使用相同的粒子束源105,以氩气70sccm的供给量在1.3kV400mV下驱动,照射能量粒子射线105C。在仅对基板上的预定区域进行表面活化处理的情况下,在基板上配置对该预定区域进行规定的掩模(未图示)。

如图1(c)所示,基板支撑体104具有作为接合装置的、设置在支撑第一基板102和第二基板103的部位之间的旋转轴104A而构成。基板支撑体104以可折叠成第一基板102与第二基板103绕着该旋转轴104A相对合的方式构成。由此,如图1(c)所示,可以使用简略的构成使第一基板102与第二基板103抵接并且彼此在大致全部面积上均等地施加相同的压力。可以配置接合时以使第一基板102与第二基板103相互挤压的方式从折叠后的基板支撑体104的外侧施加预定的力的加压装置(未图示)。在本实施例中,经由形成在两基板上并进行表面活化处理后的铝的氧化物的薄膜彼此进行接触。接触后,对接合面垂直地施加5分钟5kN的力。另外,可以配置接合时将第一基板102和第二基板103在不使基板的材料和电子元件的功能降低的范围内在预定温度下进行加热的加热装置(未图示)。

可以配置接合时以使第一基板102与第二基板103相互挤压的方式从折叠后的基板支撑体104的外侧施加预定的力的加压装置(未图示)。另外,可以配置接合时在不使基板102、103、金属氧化物107、108中包含的材料和电子元件的功能降低的范围内在预定温度下进行加热的加热装置(未图示)。

对金属铝的靶进行照射作为溅射成膜时,使供给至离子束装置的混合气体中的氩气与氧气的流量比发生变化。图1示出该流量比为Ar∶O2=80∶0(0%)、77∶3(3.75%)、76∶4(5%)、75∶5(6.25%)、74∶6(7.5%)、73∶7(8.75%)时的透光率比和界面强度的值。

透光率是利用市售的可见光透过率测定器测定的可见光透过率。一般而言,是指使可见光区域或约360nm~约760nm波长区域的光束透过前后的比率。在本发明中,将对以实施层叠体形成方法之前的状态叠合的基板测定的透光率称为接合前透光率,将在实施基板接合方法之后对层叠体测定的透光率称为接合后透光率。另外,在本发明中,将接合后透光率除以接合前透光率而得到的值称为透光率比。本实施例中,接合前透光率为91.59%。

接合界面的强度通过刀片***法进行测定。刀片***法为如下方法:向接合后的两张基板之间***刀片(刀刃)而使基板剥离,根据从刀片齿尖至&#21085;剥离部位的长度对界面能进行评价,将其作为接合强度,该方法用于晶片接合的接合强度的评价。

将金属氧化膜形成时的用于Al靶溅射的各Ar∶O2流量比下的、透光率比(黑圆点)和接合强度(白圆圈)的测定值示于图2中。

伴随着用于Al靶溅射的各Ar∶O2流量比从0%增加至5%,透光率升高,该流量比超过5%时,得到了99.5%~99.9%的测定值。即,Ar∶O2流量比为5%以上时,得到了大致100%这样极高的透光率比。

Ar∶O2流量比为0%表示实质上形成Al为100%的薄膜。这种情况下,存在于基板接合界面的金属薄膜吸收可见光,因此认为透光率相对较低。相反,使Ar∶O2流量比增加时,靶的铝与氧一起被溅射,因此认为,形成在基板接合面上的薄膜形成了铝与氧的混合物或铝金属的氧化物的薄膜。氧化铝是像蓝宝石或矾土这样对可见光透明的物质。因此认为,所形成的铝与氧的混合物包含一部分矾土(氧化铝)。该氧化铝的薄膜可以以原子水平包含非化学计量比组成的部分。因此认为,伴随着使Ar∶O2流量比增加,所形成的薄膜内的对光的透明性高的氧化铝的比例增加,由此,薄膜的透过性提高。另外认为,Ar∶O2流量比为5%时,薄膜大致由氧化铝或矾土构成,氧化度接近饱和状态。或者,从以下的接合强度的倾向来看,认为即使薄膜自身的组成未达到化学计量比组成,透光率也大致达到饱和状态。这样,认为对于可见光大致达到了100%。伴随着Ar∶O2流量比增加而产生的透光率的升高和饱和的机制并不限于上述机制,也可以为其他机制。

另一方面,观察到接合强度伴随着用于Al靶溅射的各Ar∶O2流量比的增加而下降的倾向。作为金属的铝与作为氧化物的氧化铝相比,更容易进行电子的授受并且容易在原子水平下发生变形,因此认为容易相互结合。因此认为,随着在薄膜表面的金属的比例的下降、或者随着在薄膜表面的氧化物的比例的升高,接合强度下降。在本实验中,接合强度为7.5%以上时,达到大致恒定的值。认为这是因为,薄膜表面的氧化物的比例大致饱和,或者对接合强度产生的影响到达了一定比例。在透光率与接合强度之间,达到大致恒定值的Ar∶O2流量比不同,认为这是因为,在对薄膜内的氧化物的比例变得不灵敏这方面是不同的。例如,在本实验中,在Ar∶O2流量比为5%的时刻,薄膜的氧化物的比例未达到极限,存在一定程度的金属铝成分,但认为是该成分不影响光学特性、或者其影响至少在本测定技术中可以忽略的程度。在本发明中,与上述机制有关的考察是一个推论,并不限定于上述机制,也可以为其他机制。

接合强度还影响金属氧化膜的表面粗糙度。一般而言,金属氧化膜的表面粗糙度大时,接合强度也降低。因此,本实验结果的绝对值是一个实测值,倾向可以理解为是相对的。

<实施例2>

使用本发明的方法将高分子基板接合。

作为基板,使用PEN(聚萘二甲酸乙二醇酯)膜(帝人公司制造的テオネツクス&reg;)、PI(聚酰亚胺)膜(杜邦公司制造的カプトン&reg;)。对于各种膜,在金属氧化膜形成前,作为脱水处理,在70℃~150℃的温度下加热1小时~4小时。分别将PEN彼此、PI彼此、PEN与玻璃基板、PI与玻璃基板进行接合。在任一PEN或PI上,与实施例1同样地形成氧化铝膜。其中,对于供给至离子束装置的混合气体中的氩气与氧气的流量比,在该流量比为Ar∶O2=76∶4下进行。在玻璃基板上,没有形成氧化铝膜。对进行贴合的表面进行与实施例1同样的表面活化处理,然后使基板彼此接触,施加5分钟5kN或10kN的力。

将接合后透光率除以接合前透光率而得到的透光率比为97%以上,极高。

由本发明中的实验结果也可知,通过本发明的基板接合方法,能够形成基板层叠体。本基板层叠体可以为透明基板层叠体。

本发明的基板层叠体可以是具备第一基板、第二基板和第一基板与第二基板之间的实质上由金属氧化物构成的层、并且该基板层叠体的透光率为将第一基板与第二基板叠合时的透光率的97%以上的透明基板层叠体。在另一个实施方式中,基板层叠体的透光率可以为将第一基板与第二基板叠合时的透光率的98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上或99.5%以上。

本发明的基板层叠体可以是具备第一基板、第二基板和第一基板与第二基板之间的实质上由金属氧化物构成的层、并且该基板层叠体的透光率比为97%以上的透明基板层叠体。在另一个实施方式中,透光率可以为98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上或99.5%以上。

在将玻璃基板等透明基板与包含有机EL元件等发光元件的基板叠合的情况下,可以是:与从发光元件提取出的光的从玻璃基板透过的透光率相比,在层叠体中从发光元件提取出的光的从玻璃基板透过的透光率为97%以上、98以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上或99.5%以上。

本发明中包含的基板层叠体的接合强度或界面能可以为0.3J/m2以上、0.4J/m2以上、0.5J/m2以上、1J/m2以上、1.5J/m2以上或2J/m2以上。

如前所述,接合强度可以换算成接合界面的能量。接合强度可以以接合界面的破坏强度来测定,也可以作为接合界面的破坏强度。刀片***法容易适用于接合基板为半导体晶片、玻璃基板等由一定程度上较坚固且不易塑性变形的材料形成的基板的情况。另一方面,在由高分子材料形成的基板的情况下,接合强度可以通过剥离试验进行测定。可以通过剥离试验测定破坏强度,对接合强度进行评价。剥离法中,接合强度可以为0.5N/cm以上。

本发明中包含的透明基板层叠体不包含OCA等有机材料,仅由无机材料构成,因此,能够适用于以不优选有机材料的状况的使用为前提的应用范围或器件。本发明中包含的透明基板层叠体例如可以用于在需要对α射线等放射线的耐性的宇宙空间中使用的透明面板。本发明包括具有透明基板层叠体的光电子器件、太阳能电池、宇宙用太阳能电池、耐放射线太阳能电池、耐放射线光电子器件。另外,本发明包括具有这种透明基板层叠体的、飞机、人造卫星、火箭、空间站等宇宙航空装置或机体、建筑中使用的窗原材或窗、耐压玻璃。

<加热处理>

如上所述,进一步在100℃、150℃或200℃下对贴合基板而形成的基板层叠体进行加热。确认了:加热后的接合强度与未进行加热的接合强度相比通常升高。加热处理中的气氛可以为大气,也可以为氮气、氩气等不活泼气体。

作为透明基板的接合方法,已知如下技术:在透明基板的接合面上形成金属的薄膜,经由该金属薄膜将基板贴合,对被基板夹持的金属薄膜照射激光,由此使基板吸收金属,结果得到透明度比较高的基板层叠体。但是,该方法中,有时金属不会被基板完全吸收,透光率可能产生问题。另外,在以智能手机为代表的电子显示器件中,在透明基板上贴合具备有机EL元件等的高分子膜的情况较多。但是,对于高分子膜这样的耐性较低的材料和构件,激光加热并不合适。另一方面,本发明的形成层叠体的方法不需要向接合界面注入高的能量,因此也适合于高分子膜的接合。此外,也不需要夹设OCA,透明性高、并且粘接力高,能够形成透明性高的层叠体。

进行接合的基板可以为平坦或平板状,也可以为非平坦形状。进行接合的基板可以为曲面状的强化玻璃基板,也可以包含具有曲面的强化玻璃。进行接合的基板和层叠体可以为截面L字形、截面コ字形或截面圆弧状。这些基板和层叠体可以用于在曲面或侧面具有显示器或光学元件的、三维形状的智能手机、平板电脑等电子显示器件。

进行接合的另一个基板或第二基板可以为柔性基板,也可以包含柔性基板。柔性基板可以包含光学元件。

OCA难以用于弯曲弱或曲率大的基板。本发明的将基板接合的方法能够避免OCA的使用,直接将保护玻璃与偏向膜等功能膜经由金属氧化膜进行贴合,因此,能够解决上述缺点并且形成透明性高的层叠体。

另外,在另一个实施方式中,进行接合的一对基板中的两个为玻璃基板,其中一个基板或第一基板可以为玻璃基板,第二基板可以为具有比第一基板小的接合面积的玻璃基板。在另一个实施方式中,第二基板可以为具有沿着第一基板的边缘的框形状或框架形状的玻璃基板。另外,第二基板可以被接合于第一基板的边缘的一部分。例如,第一基板为大致长方形的平面玻璃基板,第二基板可以沿着第一基板的相对的一对边进行贴合。这种情况下,第二基板可以包含两个以上的基板。本发明中的全部玻璃基板可以由强化玻璃构成,也可以是包含强化玻璃的基板。

本发明中包含的基板的接合方法可以进一步包括:第一基板为玻璃基板或包含玻璃基板的基板,第二基板为具有被接合于第一基板的边缘的一部分或整体的接合面的基板,在将第一基板与第二基板贴合后,对贴合后的第一基板和第二基板进行机械加工,形成曲面玻璃基板。

或者,本发明中包含的基板的接合方法可以包括:对贴合后的第一基板和第二基板实施机械加工,至少在其一部分形成曲面。该机械加工可以包含磨削加工和研磨加工中的至少一种。机械加工可以通过避免弯曲加工的方法来进行。通常的强化玻璃对弯曲加工较弱,难以进行该弯曲加工,因此,存在弯曲加工后的强化玻璃变得昂贵的问题。与此相对,通过上述方法来解决该问题,即使不进行弯曲加工、或者不进行高温下的变形加工,也能够形成具有期望的曲面形状的曲面玻璃基板或曲面强化玻璃基板。

在又一个实施方式中,基板的接合方法包括:在第一基板202的接合面和第二基板203的第一接合面上形成第一金属氧化物的薄膜207、208;对第一基板202的接合面和第二基板的第一接合面203的第一金属氧化物的薄膜207、208的表面进行第一活化处理;经由金属氧化物的薄膜207、208使第一基板202的接合面与第二基板203的第一接合面相互接触,将第一基板202与第二基板203贴合;在第二基板203的第二接合面和第三基板209的接合面上形成第二金属氧化物的薄膜210、211;对第二基板203的第二接合面和第三基板209的接合面的第二金属氧化物的薄膜210、211的表面进行第二活化处理;以及经由第二金属氧化物的薄膜210、211使第二基板202的第二接合面与第三基板209的接合面相互接触,将第二基板203与第三基板209贴合。(图3)

基板的接合方法中,可以将第三基板209接合到第一基板202上。另外,可以将第三基板209接合到第一基板202和第二基板203上。即,可以包括:使第三基板209的接合面与3第一基板202的第二接合面和第二基板202的第二接合面接触,将第一基板201和第二基板203与第三基板209贴合。

第一基板202和第二基板203可以为透明的基板,也可以为强化玻璃的基板,也可以为包含强化玻璃的基板。在又一个实施方式中,第三基板可以为柔性基板。如上所述,难以进行使平面的强化玻璃弯曲的加工,或者弯曲加工后的强化玻璃价格昂贵。因此,能够更廉价地制作光的提取效率高的电子显示器件。

另外,本发明包括通过包含本申请公开的任意一种基板接合方法的方法制造的电子或光电子或光器件,通常包括器件。在一个实施方式中,器件可以包括通过包含本发明中任意一种基板接合方法的方法制造的层叠体。在另一个实施方式中,器件可以包含有机EL元件。另外,在又一个实施方式中,器件可以为智能手机、显示器件、太阳能电池、SAW滤波器器件,也可以为窗、耐压玻璃等建筑材料。

以上,对本申请发明的若干实施方式和实施例进行了说明,但这些实施方式和实施例是对本申请发明例示性地进行说明的。权利要求书的范围在不脱离本申请发明的技术构思的范围内包括针对实施方式的多个变形方式。因此,本说明书中公开的实施方式和实施例是用于例示而公开的,不应认为是对本申请发明的范围进行限定。

权利要求书(按照条约第19条的修改)

1.一种基板的接合方法,其具备:

在至少一个为透明基板的一对基板中的两个或任意一个的接合表面上形成金属氧化物的薄膜的步骤;和

经由所述金属氧化物的薄膜使所述一对基板的接合面相互接触的步骤,

在基板的接合表面上形成金属氧化物的薄膜的步骤包括:通过以金属作为靶、在实质上由不活泼气体和氧气构成的混合气体中进行的溅射法进行成膜。

2.如权利要求1所述的基板的接合方法,其中,在所述接合表面上形成金属氧化物的薄膜的步骤通过离子束溅射法进行是指:

在基板的接合表面上形成金属氧化物的薄膜的步骤包括:通过以金属作为靶、在实质上由不活泼气体和氧气构成的混合气体中进行的溅射法进行成膜。

3.如权利要求1或2所述的基板的接合方法,其中,在所述接合表面上形成金属氧化物的薄膜的步骤通过ALD法进行。

4.如权利要求1~3中任一项所述的基板的接合方法,其中,还具备在接合表面上形成金属氧化物的薄膜的步骤之前对所述基板的接合表面照射能量粒子的步骤。

5.如权利要求1~4中任一项所述的基板的接合方法,其中,还具备对所述金属氧化物的薄膜的表面照射能量粒子的步骤。

6.如权利要求4所述的基板的接合方法,其中,对所述金属氧化物的薄膜的表面照射能量粒子的步骤包括:照射实质上由不活泼气体和氧气构成的混合气体的能量粒子。

7.如权利要求1~6中任一项所述的基板的接合方法,其中,至少从形成所述金属氧化物的薄膜的步骤起至使接合面接触的步骤为止,在真空中进行。

8.如权利要求1~7中任一项所述的基板的接合方法,其中,还具备在将所述基板贴合的步骤之后进行加热处理的步骤。

9.如权利要求8所述的基板的接合方法,其中,加热处理在200℃以下进行。

10.如权利要求1~9中任一项所述的基板的接合方法,其中,进行贴合的基板中的两个或任意一个为透明的玻璃基板。

11.如权利要求1~9中任一项所述的基板的接合方法,其中,进行贴合的基板中的一个基板为透明的玻璃基板,另一个基板为包含光学元件的基板。

12.如权利要求1~9中任一项所述的基板的接合方法,其中,所述进行接合的基板中的至少一个的接合面实质上由高分子材料构成。

13.一种器件,其具备通过权利要求1~12中任一项所述的基板的接合方法形成的基板层叠体。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于模板印刷机的材料温度传感器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!