用于形成喷墨喷嘴腔室的方法

文档序号:1145274 发布日期:2020-09-11 浏览:13次 >En<

阅读说明:本技术 用于形成喷墨喷嘴腔室的方法 (Method for forming ink jet nozzle chamber ) 是由 安格斯·诺斯 马修·沃克 于 2018-11-14 设计创作,主要内容包括:提供一种用于在晶圆衬底的前侧表面上限定的孔上方形成喷墨腔室的方法。所述方法包括以下步骤:(i)将干膜光致抗蚀剂层叠层到所述前侧表面上;(ii)在所述干膜光致抗蚀剂中限定与腔室壁对应的壁开口;(iii)将腔室材料沉积到所述壁开口中和所述干膜光致抗蚀剂上方,以便形成腔室壁和腔室顶部;(iv)在所述腔室顶部中限定喷嘴开口;以及(v)移除所述干膜光致抗蚀剂,以在所述孔上方形成所述喷墨腔室。(A method is provided for forming an ink ejection chamber over an aperture defined on a frontside surface of a wafer substrate. The method comprises the following steps: (i) laminating a dry film photoresist layer onto the frontside surface; (ii) defining a wall opening in the dry film photoresist corresponding to a chamber wall; (iii) depositing a chamber material into the wall opening and over the dry film photoresist to form a chamber wall and a chamber top; (iv) defining a nozzle opening in the chamber top; and (v) removing the dry film photoresist to form the inkjet chamber over the aperture.)

用于形成喷墨喷嘴腔室的方法

技术领域

本发明涉及一种用于形成喷墨喷嘴腔室的方法。所述方法主要被开发用于降低形成高密度喷墨喷嘴装置的MEMS方法的成本和复杂性。

背景技术

本申请人已开发了一系列如在例如WO 2011/143700、WO 2011/143699和WO 2009/089567中所描述的

Figure BDA0002485758710000011

喷墨打印机,其内容通过引用结合在此。打印机采用与单次进给打印介质经过打印头的进给机构相结合的固定页宽打印头。因此,

Figure BDA0002485758710000013

打印机提供了比传统扫描喷墨打印机高得多的打印速度。

为了使硅的量最小化,并因此使页宽打印头的成本最小化,每个打印头IC都经由集成CMOS/MEMS方法进行制造,以提供高的喷嘴封装密度。典型的打印头IC包含有6,400个喷嘴装置,这就是说在包含有11个打印头IC的A4打印头中有70,400个喷嘴装置。

如在US 7,246,886中描述的(其内容通过引用结合在此),用于

Figure BDA0002485758710000017

打印头IC的典型打印头制造方法需要:经由DRIE(深反应离子蚀刻)在CMOS晶圆的前侧表面上蚀刻孔、用牺牲材料(例如光致抗蚀剂)填充这些孔以提供平坦的前侧表面、随后在晶圆的前侧上构建MEMS喷嘴装置。喷嘴腔室的构造可以是经由例如增材MEMS方法,其中,将腔室材料沉积在牺牲支架中限定的开口中(例如,参见在US 7,857,428中描述的增材MEMS制造方法,其内容通过引用结合在此)。替代性地,可以经由减材MEMS方法限定喷嘴腔室的构造,其中,将腔室材料沉积为覆盖层,并随后被蚀刻以限定周边腔室壁(例如,参见在US 7,819,503中描述的减材MEMS制造方法,其内容通过引用结合在此)。在完成所有前侧MEMS制造步骤之后,从后侧将晶圆减薄,并从后侧蚀刻沟槽以与经填充的前侧孔相会。最后,通过氧化灰化从前侧孔和MEMS喷嘴腔室中移除所有牺牲材料,以在晶圆后侧与前侧之间提供流体连接。在得到的打印头IC中,前侧孔限定了用于喷嘴腔室的单独入口通道。

上述制造方法的关键阶段是用牺牲材料填塞前侧孔并使晶圆的前侧表面平坦。如果前侧表面不完全平坦,那么缺乏平坦性来进行随后的MEMS制造步骤,最终可能会导致装置有缺陷或者MEMS结构弱化而具有较短的安装寿命。典型地,将填充孔作为分步步骤来执行,以便实现所需的平坦性。在US 7,923,379中描述了一种用于填塞由DRIE形成的孔的方法。在US 2016/0236930中描述了一种用于填塞由DRIE形成的孔的替代性方法,其内容通过引用结合在此。

然而,前侧孔的填塞增加了MEMS方法流程的成本和复杂性,在填充和平坦化步骤以及移除用于填充孔的牺牲材料方面都是如此。

期望提供一种替代性MEMS方法,所述替代性方法用于在前侧孔上方形成喷墨喷嘴腔室,这降低了现有技术方法的成本和复杂性。

发明内容

在第一方面,提供一种用于在晶圆衬底的前侧表面上限定的孔的上方形成喷墨腔室的MEMS方法,所述方法包括以下步骤:

(i)将干膜光致抗蚀剂层叠层到所述前侧表面上;

(ii)在所述干膜光致抗蚀剂中限定与腔室壁对应的壁开口;

(iii)将腔室材料沉积到所述壁开口中和所述干膜光致抗蚀剂上方,以便形成腔室壁和腔室顶部;

(iv)在所述腔室顶部中限定喷嘴开口;以及

(v)移除所述干膜光致抗蚀剂,以在所述孔上方形成所述喷墨腔室。

根据第一方面的所述方法有利地免除了前侧孔填充和平坦化步骤,从而得到与上述现有技术方法相比更短且更便宜的MEMS方法流程。此外,与已知的干膜叠层方法(例如在转让给Canon Kabushika Kaisha的US 4,558,333中描述的那些方法)相比,根据第一方面的方法是有利的,因为沉积到干膜光致抗蚀剂层上的腔室材料可以是经由CVD方法可沉积的陶瓷材料(例如氧化硅)。因此,得到的打印头(或打印头芯片)的喷嘴板非常坚固,具有极佳的硬度并且耐化学或机械降解。

优选地,所述腔室材料选自由以下各项组成的组:氧化硅、氮化硅和氮氧化硅。例如,如本领域中已知的,可以经由正硅酸乙酯(TEOS)的CVD沉积形成氧化硅腔室材料。

在某些实施例中,所述前侧表面包括结合的加热器装置,所述结合的加热器装置在叠层步骤之前形成。

优选地,所述方法包括附加的MEMS制造步骤。例如,在形成腔室之后,可以将晶圆后侧减薄和/或将供墨通道的后侧进行蚀刻以与所述孔相会。

取决于喷墨腔室的具体设计,所述喷嘴开口可以与所述孔对准或偏置。在一个实施例中,所述喷墨腔室包括具有所述喷嘴开口的发射腔室和具有所述孔的前室,所述发射腔室侧向地连接至所述前室。典型地,所述腔室壁限定所述喷墨腔室的周边壁。

优选地,干膜光致抗蚀剂层的厚度在5微米至30微米或5微米至15微米的范围内。

优选地,使用干膜光致抗蚀剂的光成像(photoimaging)来限定所述壁开口。

优选地,干膜光致抗蚀剂是包括环氧树脂的负性抗蚀剂。这种干膜光致抗蚀剂的示例在本领域中是公知的,并且可以从例如DJ微叠层公司(DJ MicroLaminates,Inc.)和工程材料系统公司(Engineered Materials Systems.Inc.)商购。

优选地,沉积步骤(iii)使用至少一种沉积方法执行,所述至少一种沉积方法选自由以下各项组成的组:TEOS CVD;高密度等离子体CVD(HDPCVD);和等离子体增强CVD(PECVD)。

TEOS(正硅酸乙酯)CVD在本领域中已知为适于(尤其是在低压下)填充沟槽[例如,参见《真空科学与技术B期刊,纳米技术和微电子学:材料、加工、测量和现象(Journal ofVacuum Science&Technology B,Nanotechnology and Microelectronics:Materials,Processing,Measurement,and Phenomena)》13,1888(1995),谢里夫(Shareef)等人的用于SiO2沟槽填充的低于大气压的化学气相沉积臭氧/TEOS方法(Subatmospheric chemicalvapor deposition ozone/TEOS process for SiO2 trench filling)]。同样,如在US 5,872,058中所描述的,HDPCVD适于使用硅烷、氧气和氩气的混合物填充沟槽。

在某些实施例中,腔室材料的沉积是单步骤方法,其中,腔室壁和腔室顶部同时形成。在使用CMP进行沉积之后,可以将腔室顶部平坦化。

在其他实施例中,沉积步骤(iii)包括以下子步骤:

(a)使用第一沉积方法将第一腔室材料进行沉积,以填充所述壁开口并形成所述腔室壁;

(b)使所述第一腔室材料的上表面平坦化;以及

(c)使用第二沉积方法将第二腔室材料沉积在所述第一腔室材料的平坦化上表面上方。

所述第一腔室材料和所述第二腔室材料可以是彼此相同或不同。典型地,所述第一腔室材料和所述第二腔室材料均为氧化硅。

所述第一沉积方法和所述第二沉积方法可以是彼此相同或不同。例如,所述第一沉积方法可以使用TEOS CVD或HDPCVD,而所述第二沉积方法例如可以使用PECVD。

优选地,使用化学-机械平坦化(CMP)执行平坦化。

附图说明

现在将参照附图仅通过举例的方式来描述本发明的实施例,在附图中:

图1是硅衬底的示意性侧视图,所述硅衬底在前侧表面上蚀刻有孔;

图2示出了在干膜层叠层之后的图1所示的衬底;

图3示出了在光蚀刻所述干膜层之后的图2所示的衬底;

图4示出了在沉积腔室材料之后的图3所示的衬底;

图5示出了在蚀刻所述腔室材料之后的图4所示的衬底;

图6示出了在氧化去除所述干膜层之后的图5所示的衬底;

图7是适于经由图1至图6所示的MEMS方法流程形成的喷墨喷嘴装置的透视图;

图8是图7中所示的喷墨喷嘴装置的截面侧视图。

具体实施方式

用于形成喷墨腔室的MEMS方法流程

图1至图6示意性地示出了一种用于根据第一方面形成喷墨腔室70的示例性MEMS方法流程。尽管参照晶圆衬底的一个晶胞示出了所述方法,但应当理解的是,所述方法可以用于在单个晶圆衬底上形成多个(典型地为数千个)相同的晶胞。如本领域中已知的,典型地在完成MEMS方法之后将晶圆切成小块以提供单独的打印头芯片。

在图1中,示出了硅衬底50,所述硅衬底具有形成于衬底的前侧表面54上的前侧孔52。前侧孔52通常具有至少10微米(例如,10微米至50微米)的深度和大于1:1的纵横比。参照图2,在第一步骤,将可光成像的干膜光致抗蚀剂56薄层叠层到衬底50的前侧面54上。如本领域中已知的,可以优化叠层方法以使干膜光致抗蚀剂56下陷到前侧孔52中最小。干膜光致抗蚀剂56层的厚度可以在5微米至15微米的范围内。

在第二步骤,并且现在参照图3,使用光成像(“光蚀刻”)方法在干膜光致抗蚀剂56中限定壁开口58。典型地,干膜光致抗蚀剂是负性抗蚀剂干膜,由此,膜的未曝光区域被光致抗蚀剂显影剂溶解以限定壁开口58。

在第三步骤,并且现在参照图4,使用CVD方法沉积腔室材料,以便填充壁开口58,从而形成腔室壁62和腔室顶部60。例如,TEOS沉积可以用于将壁开口58填充以氧化硅腔室材料。替代性地,高密度等离子体氧化物沉积可以用于将壁开口58填充以氧化硅腔室材料。

干膜光致抗蚀剂56可以在相对高温沉积步骤之前被热固化和/或UV固化。当然,其他适当的可沉积腔室材料(例如氮化硅)可以用于形成腔室壁62和腔室顶部60。

腔室壁62和腔室顶部60可以在单个沉积步骤中共同形成。替代性地,腔室壁62可以经由对壁开口58初始沉积填充而形成,之后使用化学-机械平坦化(CMP)实现平坦步骤。在CMP之后,随后的沉积步骤可以用于将腔室顶部60加厚到期望厚度。使用CMP的两阶段沉积方法有利地提供了更平坦的顶部结构,所述更平坦的顶部结构有助于在随后的步骤中提供更受控的喷嘴蚀刻,并且因此使任何不期望的喷嘴尺寸的变化最小。平坦喷嘴板也有利于打印头的擦拭。

显而易见的是,腔室壁62和腔室顶部60可以使用两阶段沉积方法由相同或不同材料形成,以便为喷墨腔室提供最佳特性。同样,可以使用相同或不同沉积方法执行第一沉积步骤和第二沉积步骤,以便优化喷墨腔室特性。

如图5所示,通过形成腔室顶部60和腔室壁62,在第四步骤期间在腔室顶部上限定喷嘴开口66。如本领域中已知的,喷嘴开口66使用传统的光刻掩模和蚀刻步骤形成。

最后,在图6所示的第五步骤中,经由例如氧化灰化移除干膜光致抗蚀剂56,以形成定位在前侧孔52上方的喷墨腔室70。因此,在本文所述的新颖的MEMS方法流程中,干膜光致抗蚀剂56用作牺牲支架,所述牺牲支架用于经由沉积陶瓷材料形成腔室顶部60和腔室壁62。以此方式,可以使用陶瓷材料在前侧孔52上方形成非常坚固的喷墨腔室70,而无需填充前侧孔和将前侧孔平坦化。此外,被俘获在空腔中的任何未灰化的干膜光致抗蚀剂56为跨越在腔室顶部60之间的喷嘴板68提供附加的刚度和支撑。

在图6中,喷嘴开口66与前侧孔52对准,然而当然应理解的是,取决于喷墨喷嘴装置的具体构型,喷嘴开口可以与前侧孔偏置。

在完成前侧MEMS制造步骤之后,典型地从后侧将晶圆衬底50减薄并且从后侧蚀刻供墨通道(未示出)以与前侧孔52相会,从而在晶圆衬底的后侧与前侧之间提供流体连接。

MEMS喷墨喷嘴装置

为了完整起见,现在将描述可以使用上述MEMS方法制造的喷墨喷嘴装置10。

参照图7和图8,示出了喷墨喷嘴装置10,所述喷墨喷嘴装置包括:具有底部14的主腔室12、顶部16和在底部与顶部之间延伸的周边壁18。图7示出了CMOS层20,所述层可以包括散布有层间电介质(ILD)层的多个金属层。

在图7中,顶部16被示出为透明层,以便揭示每个喷嘴装置10的细节。典型地,顶部16和周边壁18包括陶瓷材料,例如二氧化硅或氮化硅。

喷嘴装置10的主腔室12包括发射腔室22和前室24。发射腔室22包括限定在顶部16中的喷嘴孔口26、以及结合到底部14的电阻加热器元件28形式的致动器。前室24包括限定在底部14中的主腔室入口30(或“底部入口30”)。主腔室入口30与前室24的端壁18B相会并且部分重叠。这种布置优化了前室24的毛细作用,从而促进了加注并优化了腔室的再填充速率。

挡板32分隔主腔室12,以便限定发射腔室22和前室24。挡板32在底部14与顶部16之间延伸。

前室24经由一对发射腔室入口34与发射腔室22流体地连通,所述一对发射腔室入口在挡板32的两侧与所述挡板相接。每个发射腔室入口34都由在挡板32的相应侧边缘与周边壁18之间延伸的间隙限定。

喷嘴孔口26是细长的并且呈椭圆的形式,所述椭圆的长轴与加热器元件的中心纵向轴线对准。

如在图8中最佳示出,加热器元件28在其每一端都通过一个或多个过孔37连接到通过主腔室12的底部14露出的相应电极36。典型地,电极36由CMOS层20的上部金属层限定。加热器元件28可以包括例如钛铝合金、氮化钛铝等。在一个实施例中,如本领域中已知的,加热器28可涂覆有一个或多个保护层。

过孔37可以填充有任何适当的导电材料(例如铜、钨等),以在加热器元件28与电极36之间提供电连接。在US 8,453,329中描述了一种用于形成从加热器元件28到电极36的电极连接的适当方法,其内容通过引用结合在此。

每个电极36的一部分可以相应地定位在端壁18A和挡板32的正下方。这种布置有利地改进了装置10的整体对称性,并且使加热器元件28与底部14分层的风险最小化。

尽管为清楚起见,图7中的打印头芯片100的局部剖视图仅示出了两个喷墨喷嘴装置10,但是打印头芯片100可以包括多个喷墨喷嘴装置10。打印头芯片100由打印头衬底102限定,所述打印头衬底具有钝化的CMOS层20和包含有喷墨喷嘴装置10的MEMS层。如图7所示,每个主腔室入口30都与限定在打印头芯片100后侧上的供墨通道104相会。供墨通道104通常比主腔室入口30宽得多,并且提供大量的墨以用于使与供墨通道流体连通的每个主腔室12保湿。每个供墨通道104都与布置在打印头芯片100前侧处的一排或多排喷嘴装置10平行地延伸。典型地,根据US7,441,865(其内容通过引用结合在此)的图21B中示出的布置,每个供墨通道104将墨供应给一对喷嘴排(为了清楚起见,在图7中仅示出一排喷嘴)。

如上所述,可以基于结合图1至图6描述的方法,使用修改的MEMS方法流程、通过在晶圆衬底上构建包含有喷墨喷嘴装置10的MEMS层来制造打印头芯片100。在修改的MEMS方法流程中,通过对限定在干膜光致抗蚀剂56中的适当挡板开口(未示出)进行填充,挡板32与腔室壁62和腔室顶部60同时形成。相应地,本文描述的方法提供了用于在前侧孔上方形成陶瓷喷墨腔室的现有技术方法的替代性方法,所述替代性方法免除了填充和平坦化步骤,从而降低了打印头芯片制造的总成本。

当然,应当理解,仅以举例方式描述了本发明,并且在所附权利要求中限定的本发明的范围内可以进行细节的修改。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:管给送式壳体中的打印液供给器互连件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类