一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法

文档序号:1152248 发布日期:2020-09-15 浏览:7次 >En<

阅读说明:本技术 一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法 (Bismuth ferrite/polyvinylidene fluoride-trifluoroethylene multilayer composite film and preparation method thereof ) 是由 徐玲芳 桂迟 张雨 肖海波 王瑞龙 杨昌平 于 2020-04-23 设计创作,主要内容包括:本发明属于多铁性薄膜技术领域,具体涉及一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜,包括包括PVDF-TrFE薄膜和至少一层BFO/PVDF-TrFE复合薄膜,最上面的BFO/PVDF-TrFE复合薄膜上贴附有PVDF-TrFE薄膜;其制备方法为:将PVDF-TrFE粉末溶解得到溶液A,再向溶液A中加入BFO纳米级粉末得到混合溶液B;然后以FTO导电玻璃为衬底,将混合溶液B在FTO导电玻璃上进行旋转涂膜,制备BFO/PVDF-TrFE复合薄膜,烘干后,再将溶液A在BFO/PVDF-TrFE复合薄膜上进行旋转涂膜,制备PVDF-TrFE薄膜;之后将湿膜置进行退火处理,得到铁酸钴/聚偏二氟乙烯-三氟乙烯多层复合薄膜,最后在其上镀铂点电极。本发明的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜不仅漏电流低,且有较高的剩余极化强度,其工艺设备成本低、过程简单且可控性强。(The invention belongs to the technical field of multiferroic films, and particularly relates to a bismuth ferrite/polyvinylidene fluoride-trifluoroethylene multilayer composite film which comprises a PVDF-TrFE film and at least one layer of BFO/PVDF-TrFE composite film, wherein the PVDF-TrFE film is attached to the uppermost BFO/PVDF-TrFE composite film; the preparation method comprises the following steps: dissolving PVDF-TrFE powder to obtain a solution A, and adding BFO nano-scale powder into the solution A to obtain a mixed solution B; then, using FTO conductive glass as a substrate, carrying out rotary coating on the mixed solution B on the FTO conductive glass to prepare a BFO/PVDF-TrFE composite film, drying, and carrying out rotary coating on the solution A on the BFO/PVDF-TrFE composite film to prepare the PVDF-TrFE film; and then annealing the wet film to obtain the cobalt ferrite/polyvinylidene fluoride-trifluoroethylene multilayer composite film, and finally plating a platinum point electrode on the cobalt ferrite/polyvinylidene fluoride-trifluoroethylene multilayer composite film. The bismuth ferrite/polyvinylidene fluoride-trifluoroethylene multilayer composite film disclosed by the invention is low in leakage current, higher in residual polarization strength, low in cost of process equipment, simple in process and strong in controllability.)

一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备 方法

技术领域

本发明涉及多铁性复合薄膜及其制备方法,具体涉及一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法,属于多铁性薄膜技术领域。

背景技术

近年来,陶瓷和聚合物形成的多铁复合材料由于在多铁器件,如传感器、驱动器和能量收集器等方面的巨大应用潜力而受到广泛关注和研究。聚合物与陶瓷颗粒复合可以采用传统工艺制备体材和薄膜,其工艺稳定性好且易于实现。比如传统的锆钛酸铅、钛酸铅或铁磁材料如铁酸钴等与共聚物PVDF-TrFE的复合,很易实现陶瓷粉体分散于共聚物中形成各种复合结构。

铁酸铋(BiFeO3,BFO)为钙钛矿结构且具有高的尼尔温度(T N~643 K)和居里温度(T C~1103 K),是典型的室温单相铁电和铁磁共存的材料,在非易失性存储器、自旋电子器件和磁电传感器等方面有很好的应用前景。然而,BFO陶瓷由于杂质、非化学计量比和氧空位等因素导致的缺陷而使其漏电流较大,这限制了它获得良好的铁电特性及饱和的磁滞回线。

为了获得高的磁电耦合性能,一种有效的途径是将BFO与聚合物复合改善其特性。聚偏二氟乙烯-三氟乙烯(PVDF-TrFE)由于具有高灵敏度、高能量密度和高绝缘性能而成为与BFO复合的最佳选择。PVDF-TrFE具有高弹性和优良的压电铁电性能,在弹性有机电子器件,如有机太阳能电池、锂离子电池、非易失性存储器和压电传感器等领域有广泛的应用前景;但有机铁电材料的缺点是矫顽场较高,一般约为陶瓷材料的10倍,这将阻碍其在低场下获得较高的剩余极化强度。实验发现,单纯的BFO与PVDF-TrFE的复合膜仍存在漏电流大的缺点。

发明内容

为了克服上述现有技术存在的不足,本发明的目的是提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法,不仅可以制备出漏电流小且铁电性能优良的多层复合薄膜,而且其工艺设备成本低,工艺过程简单且可控性强。

为实现上述目的,本发明的技术方案为一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜,包括PVDF-TrFE薄膜和BFO/PVDF-TrFE复合薄膜;当BFO/PVDF-TrFE复合薄膜为一层时,所述BFO/PVDF-TrFE复合薄膜上贴附有所述PVDF-TrFE薄膜;当BFO/PVDF-TrFE复合薄膜为两层及两层以上时,多层BFO/PVDF-TrFE复合薄膜依次叠合,位于最上面的BFO/PVDF-TrFE复合薄膜上贴附有所述PVDF-TrFE薄膜。

本发明还提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的制备方法,包括如下步骤:

S1、制备BFO纳米级粉末;

S2、制备铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜:

S2.1、将PVDF-TrFE粉末溶解于碳酸二乙酯溶剂中,充分搅拌,得到溶液A;

S2.2、在持续搅拌的溶液A中加入BFO纳米级粉末,充分搅拌,得到混合溶液B;

S2.3、以FTO导电玻璃为衬底,利用匀胶机将所制备的混合溶液B在FTO导电玻璃上进行旋转涂膜,制备BFO/PVDF-TrFE复合薄膜;

S2.4、将旋涂好的湿膜置于干燥箱中烘干;

S2.5、利用匀胶机将所制备的溶液A在烘干后的BFO/PVDF-TrFE复合薄膜上进行旋转涂膜,制备PVDF-TrFE薄膜;

S2.6、将旋涂好的湿膜置于热处理炉中进行退火处理,得到铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜;

S2.7、制作电极,在步骤S2.6所制得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜上镀铂点电极。

进一步地,步骤S2.4和步骤S2.5之间还包括如下步骤:利用匀胶机将所制备的混合溶液B在烘干后的BFO/PVDF-TrFE复合薄膜上进行旋转涂膜,再制备一层BFO/PVDF-TrFE复合薄膜,再将旋涂好的湿膜置于干燥箱中烘干。

进一步地,所述溶液A中PVDF-TrFE的质量分数为3~5%。

进一步地,所述混合溶液B中BFO和PVDF-TrFE质量比为1:1~3。

进一步地,步骤S2.4中,将湿膜置于80~100 ℃的干燥箱中干燥3~5 min。

进一步地,步骤S2.6中,退火处理的处理温度为135~145 ℃,处理时间为1.5~2 h。

进一步地,步骤S1中制备BFO纳米级粉末包括如下步骤:

S1.1、将五水硝酸铋和九水硝酸铁按照摩尔比为1.05:1的比例溶解于乙二醇甲醚溶剂中,得到溶液C,溶液C的浓度为0.5 mol/L;将一水柠檬酸和聚乙二醇溶解于持续搅拌的溶液C中,一水柠檬酸与溶液中金属阳离子的摩尔比为1:1,聚乙二醇与一水柠檬酸质量比为1:8,得到铁酸铋前驱体溶液;

S1.2、将所得的铁酸铋前驱体溶液在50 ℃水浴持续搅拌30 min得到稳定的铁酸铋溶胶,之后置于80 ℃的干燥箱中干燥48 h得到铁酸铋干凝胶;

S1.3、将所得的铁酸铋干凝胶置于热处理炉中分两步退火,第一步退火温度为350 ℃,保温时间为2 h;第二步退火温度为500 ℃,保温时间为2 h,得到铁酸铋粉末;

S1.4、将所得的铁酸铋粉末置于研钵中研磨1~2 h,得到BFO纳米级粉末。

进一步地,步骤S1中制备的BFO纳米级粉末的粒径为100~300 nm。

进一步地,步骤S2.2中,向溶液A中加入BFO纳米级粉末后,先磁子搅拌,再超声分散,重复2~3次,使BFO纳米级粉末分散均匀。

与现有技术相比,本发明具有以下有益效果:

本发明通过将铁酸铋均匀混合于PVDF-TrFE溶液中复合旋涂制备BFO/PVDF-TrFE复合薄膜,再在BFO/PVDF-TrFE复合薄膜上旋涂一层PVDF-TrFE薄膜,获得结构致密的多层复合薄膜,有效地解决了铁电聚合物复合膜漏电流大的缺点;且本发明的制备方法简单,易操作,制备条件温和可控且效率高。

附图说明

图1为本发明实施例1和实施例3制得的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜(a)与实施例2和实施例4制得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜(b)的结构示意图;

图2为铁酸铋(BFO)、聚偏二氟乙烯-三氟乙烯薄膜(PVDF-TrFE)、实施例1制备的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜(0.25BFO(0.75PVDF-TrFE)/0.25BFO(0.75PVDF-TrFE))与实施例2制得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜(0.25BFO(0.75PVDF-TrFE)/0.25BFO(0.75PVDF-TrFE)/PVDF-TrFE)的XRD图谱;

图3为本发明实施例1制得的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的漏电流特性曲线;

图4为本发明实施例1制得的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的电滞回线;

图5为本发明实施例2制得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的漏电流特性曲线;

图6为本发明实施例2制得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的电滞回线;

图7为本发明实施例3制得的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的漏电流特性曲线;

图8为本发明实施例4制得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的漏电流特性曲线。

具体实施方式

下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

实施例1

本实施例提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的制备方法,包括如下步骤:

S1、制备纳米级BFO纳米级粉末;

S1.1、将五水硝酸铋和九水硝酸铁按照摩尔比为1.05:1的比例溶解于乙二醇甲醚溶剂中,得到溶液C,溶液C的浓度为0.5 mol/L;将一水柠檬酸和聚乙二醇溶解于持续搅拌的溶液C中,一水柠檬酸与溶液中金属阳离子的摩尔比为1:1,聚乙二醇与一水柠檬酸质量比为1:8,得到铁酸铋前驱体溶液;

S1.2、将所得的铁酸铋前驱体溶液在50 ℃水浴持续搅拌30 min得到稳定的铁酸铋溶胶,之后置于80 ℃的干燥箱中干燥48 h得到铁酸铋干凝胶;

S1.3、将所得的铁酸铋干凝胶置于热处理炉中分两步退火,第一步退火温度为350 ℃,保温时间为2 h,第二步退火温度为500 ℃,保温时间为2 h,得到铁酸铋粉末;

S1.4、将所得的铁酸铋粉末置于研钵中研磨1~2 h,得到粒径范围为100~300 nm的BFO纳米级粉末;

S2、制备铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜:

S2.1、将PVDF-TrFE粉末溶解于碳酸二乙酯溶剂中,充分搅拌,得到溶液A,保证溶液A中PVDF-TrFE的质量分数为5%;

S2.2、在持续搅拌的溶液A中加入BFO纳米级粉末,先磁子搅拌1 h,再超声分散20 min,重复2~3次,得到均匀的混合溶液B,保证混合溶液B中BFO和PVDF-TrFE质量比为1:3;

S2.3、选择FTO导电玻璃为衬底,利用匀胶机将所制备的混合溶液B在FTO导电玻璃上进行旋转涂膜,通过控制旋涂转速和时间制备BFO/PVDF-TrFE复合薄膜,旋涂的转速3000rad/s,时间为60 s;

S2.4、将旋涂好的湿膜置于烘箱中100 ℃烘干3 min;

S2.5、重复步骤S2.3中的旋转涂抹和S2.4,在BFO/PVDF-TrFE复合薄膜上再制备一层BFO/PVDF-TrFE复合薄膜;

S2.6、将旋涂好的湿膜置于热处理炉中140 ℃退火处理2 h;

S2.7、制作复合薄膜上的电极,在步骤S2.6所得的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜上镀铂点电极。

本实施所制备的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的结构如图1中(a)所示,薄膜厚度约为400 nm,其XRD图谱如图2所示;由图2可见:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜中既出现了铁酸铋晶体的钙钛矿单相结构峰又有PVDF-TrFE的β相峰。本实施所制备的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的漏电流特性曲线和电滞回线分别如图3和图4所示;由图3可见:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的漏流最大值为1.96×10-7 A;由图4可见:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的剩余极化和矫顽场分别为5.65 µC/cm2和38.7 MV/m。

实施例2

本实施例提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜包括两层BFO/PVDF-TrFE复合薄膜和PVDF-TrFE薄膜,两层BFO/PVDF-TrFE复合薄膜依次叠合且位于最上面BFO/PVDF-TrFE复合薄膜上贴附有PVDF-TrFE薄膜。

上述铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的制备方法,包括以下步骤:

S1、制备纳米级BFO纳米级粉末;

S1.1、将五水硝酸铋和九水硝酸铁按照摩尔比为1.05:1的比例溶解于乙二醇甲醚溶剂中,得到溶液C,溶液C的浓度为0.5 mol/L;将一水柠檬酸和聚乙二醇溶解于持续搅拌的溶液C中,一水柠檬酸与溶液中金属阳离子的摩尔比为1:1,聚乙二醇与一水柠檬酸质量比为1:8,得到铁酸铋前驱体溶液;

S1.2、将所得的铁酸铋前驱体溶液在50 ℃水浴持续搅拌30 min得到稳定的铁酸铋溶胶,之后置于80 ℃的干燥箱中干燥48 h得到铁酸铋干凝胶;

S1.3、将所得的铁酸铋干凝胶置于热处理炉中分两步退火,第一步退火温度为350 ℃,保温时间为2 h,第二步退火温度为500 ℃,保温时间为2 h,得到铁酸铋粉末;

S1.4、将所得的铁酸铋粉末置于研钵中研磨1~2 h,得到粒径范围为100~300 nm的BFO纳米级粉末;

S2、制备铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜:

S2.1、将PVDF-TrFE粉末溶解于碳酸二乙酯溶剂中,充分搅拌,得到溶液A,保证溶液A中PVDF-TrFE的质量分数为5%;

S2.2、在持续搅拌的溶液A中加入BFO纳米级粉末,先磁子搅拌1 h,再超声分散20 min,重复2~3次,得到均匀的混合溶液B,保证混合溶液B中BFO和PVDF-TrFE质量比为1:3;

S2.3、选择FTO导电玻璃为衬底,利用匀胶机将所制备的混合溶液B在FTO导电玻璃上进行旋转涂膜,通过控制旋涂转速和时间制备BFO/PVDF-TrFE复合薄膜,旋涂的转速3000rad/s,时间为60 s;

S2.4、将旋涂好的湿膜置于烘箱中100 ℃烘干3 min;

S2.5、重复步骤S2.3中的旋转涂抹和S2.4,在BFO/PVDF-TrFE复合薄膜上再制备一层BFO/PVDF-TrFE复合薄膜;

S2.6、利用匀胶机将所制备的溶液A在烘干后的BFO/PVDF-TrFE复合薄膜上进行旋转涂膜,通过控制旋涂转速和时间在最上面的一层BFO/PVDF-TrFE复合薄膜上制备PVDF-TrFE薄膜,旋涂的转速3000 rad/s,时间60 s;

S2.7、将旋涂好的湿膜置于热处理炉中140 ℃退火处理2 h;

S2.8、制作多层复合薄膜上的电极,在步骤S2.7所得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜上镀铂点电极。

本实施所制备的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的结构如图1中(b)所示,薄膜厚度约为800 nm,其XRD图谱如图2所示;由图2可见:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜中既出现了铁酸铋晶体的钙钛矿单相结构峰又有PVDF-TrFE的β相峰。本实施所制备的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的漏电流特性曲线和电滞回线分别如图5和图6所示;由图5可见:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的漏流最大值为1.77×10-8 A,比实施例1制备的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜低一个数量级,这是因为PVDF-TrFE薄膜的添加使得整个薄膜表面更加平整,缺陷更少,同时由于其强绝缘性作为阻挡层而减小了由于BiFeO3缺陷或其与电极直接接触而造成的大漏电流;由图6可见:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的,剩余极化和矫顽场分别为:14.8 µC/cm2和39.1 MV/m,由于PVDF-TrFE含量比复合薄膜高,其矫顽场略微高于复合膜、但较纯PVDF-TrFE的矫顽场低,剩余极化值大于复合薄膜高。

实施例3

本实施例提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的制备方法,包括以下步骤:

S1、制备纳米级BFO纳米级粉末;

S1.1、将五水硝酸铋和九水硝酸铁按照摩尔比为1.05:1的比例溶解于乙二醇甲醚溶剂中,得到溶液C,溶液C的浓度为0.5 mol/L;将一水柠檬酸和聚乙二醇溶解于持续搅拌的溶液C中,一水柠檬酸与溶液中金属阳离子的摩尔比为1:1,聚乙二醇与一水柠檬酸质量比为1:8,得到铁酸铋前驱体溶液;

S1.2、将所得的铁酸铋前驱体溶液在50 ℃水浴持续搅拌30 min得到稳定的铁酸铋溶胶,之后置于80 ℃的干燥箱中干燥48 h得到铁酸铋干凝胶;

S1.3、将所得的铁酸铋干凝胶置于热处理炉中分两步退火,第一步退火温度为350 ℃,保温时间为2 h,第二步退火温度为500 ℃,保温时间为2 h,得到铁酸铋粉末;

S1.4、将所得的铁酸铋粉末置于研钵中研磨1~2 h,得到粒径范围为100~300 nm的BFO纳米级粉末;

S2、制备铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜:

S2.1、将PVDF-TrFE粉末溶解于碳酸二乙酯溶剂中,充分搅拌,得到溶液A,保证溶液A中PVDF-TrFE的质量分数为5%;

S2.2、在持续搅拌的溶液A中加入BFO纳米级粉末,先磁子搅拌1 h,再超声分散20 min,重复2~3次,得到均匀的混合溶液B,保证混合溶液B中BFO和PVDF-TrFE质量比为1:1;

S2.3、选择FTO导电玻璃为衬底,利用匀胶机将所制备的混合溶液B在FTO导电玻璃上进行旋转涂膜,通过控制旋涂转速和时间制备BFO/PVDF-TrFE复合薄膜,旋涂的转速3000rad/s,时间为60 s;

S2.4、将旋涂好的湿膜置于烘箱中100 ℃烘干3 min;

S2.5、重复步骤S2.3中的旋转涂抹和S2.4,在BFO/PVDF-TrFE复合薄膜上再制备一层BFO/PVDF-TrFE复合薄膜;

S2.6、将旋涂好的湿膜置于热处理炉中140 ℃退火处理2 h;

S2.7、制作复合薄膜上的电极,在步骤S2.6所得的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜上镀铂点电极。

本实施所制备的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的结构如图1中(a)所示,薄膜厚度约为400 nm,其漏电流特性曲线如图7所示,可以看出:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的漏流最大值为2.48×10-6 A。

实施例4

本实施例提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜包括BFO/PVDF-TrFE复合薄膜和PVDF-TrFE薄膜,两层BFO/PVDF-TrFE复合薄膜依次叠合且位于最上面BFO/PVDF-TrFE复合薄膜上贴附有PVDF-TrFE薄膜。

上述铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的制备方法,包括以下步骤:

S1、制备纳米级BFO纳米级粉末;

S1.1、将五水硝酸铋和九水硝酸铁按照摩尔比为1.05:1的比例溶解于乙二醇甲醚溶剂中,得到溶液C,溶液C的浓度为0.5 mol/L;将一水柠檬酸和聚乙二醇溶解于持续搅拌的溶液C中,一水柠檬酸与溶液中金属阳离子的摩尔比为1:1,聚乙二醇与一水柠檬酸质量比为1:8,得到铁酸铋前驱体溶液;

S1.2、将所得的铁酸铋前驱体溶液在50 ℃水浴持续搅拌30 min得到稳定的铁酸铋溶胶,之后置于80 ℃的干燥箱中干燥48 h得到铁酸铋干凝胶;

S1.3、将所得的铁酸铋干凝胶置于热处理炉中分两步退火,第一步退火温度为350 ℃,保温时间为2 h,第二步退火温度为500 ℃,保温时间为2 h,得到铁酸铋粉末;

S1.4、将所得的铁酸铋粉末置于研钵中研磨1~2 h,得到粒径范围为100~300 nm的BFO纳米级粉末;

S2、制备铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜:

S2.1、将PVDF-TrFE粉末溶解于碳酸二乙酯溶剂中,充分搅拌,得到溶液A,保证溶液A中PVDF-TrFE的质量分数为5%;

S2.2、在持续搅拌的溶液A中加入BFO纳米级粉末,先磁子搅拌1 h,再超声分散20 min,重复2~3次,得到均匀的混合溶液B,保证混合溶液B中BFO和PVDF-TrFE质量比为1:1;

S2.3、选择FTO导电玻璃为衬底,利用匀胶机将所制备的混合溶液B在FTO导电玻璃上进行旋转涂膜,通过控制旋涂转速和时间制备BFO/PVDF-TrFE复合薄膜,旋涂的转速3000rad/s,时间为60 s;

S2.4、将旋涂好的湿膜置于烘箱中100 ℃烘干3 min;

S2.5、重复步骤S2.3中的旋转涂抹和S2.4,在BFO/PVDF-TrFE复合薄膜上再制备一层BFO/PVDF-TrFE复合薄膜;

S2.6、利用匀胶机将所制备的溶液A在烘干后的BFO/PVDF-TrFE复合薄膜上进行旋转涂膜,通过控制旋涂转速和时间在最上面的一层BFO/PVDF-TrFE复合薄膜上制备PVDF-TrFE薄膜,旋涂的转速3000 rad/s,时间60 s;

S2.7、将旋涂好的湿膜置于热处理炉中140 ℃退火处理2 h;

S2.8、制作多层复合薄膜上的电极,在步骤S2.7所得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜上镀铂点电极。

本实施所制备的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的结构如图1中(b)所示,薄膜厚度约为800 nm,其漏电流特性曲线如图8所示,可以看出:本实施例的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜的漏流最大值为1.92×10-8 A,比实施例3制备的铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜低两个数量级。

实施例5

本实施例提供一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜包括BFO/PVDF-TrFE复合薄膜和PVDF-TrFE薄膜,BFO/PVDF-TrFE复合薄膜上贴附有PVDF-TrFE薄膜。

上述铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜的制备方法,包括以下步骤:

S1、制备纳米级BFO纳米级粉末;

S1.1、将五水硝酸铋和九水硝酸铁按照摩尔比为1.05:1的比例溶解于乙二醇甲醚溶剂中,得到溶液C,溶液C的浓度为0.5 mol/L;将一水柠檬酸和聚乙二醇溶解于持续搅拌的溶液C中,一水柠檬酸与溶液中金属阳离子的摩尔比为1:1,聚乙二醇与一水柠檬酸质量比为1:8,得到铁酸铋前驱体溶液;

S1.2、将所得的铁酸铋前驱体溶液在50 ℃水浴持续搅拌30 min得到稳定的铁酸铋溶胶,之后置于80 ℃的干燥箱中干燥48 h得到铁酸铋干凝胶;

S1.3、将所得的铁酸铋干凝胶置于热处理炉中分两步退火,第一步退火温度为350 ℃,保温时间为2 h,第二步退火温度为500 ℃,保温时间为2 h,得到铁酸铋粉末;

S1.4、将所得的铁酸铋粉末置于研钵中研磨1~2 h,得到粒径范围为100~300 nm的BFO纳米级粉末;

S2、制备铁酸铋/聚偏二氟乙烯-三氟乙烯复合薄膜:

S2.1、将PVDF-TrFE粉末溶解于碳酸二乙酯溶剂中,充分搅拌,得到溶液A,保证溶液A中PVDF-TrFE的质量分数为3%;

S2.2、在持续搅拌的溶液A中加入BFO纳米级粉末,先磁子搅拌1 h,再超声分散20 min,重复2-3次,得到均匀的混合溶液B,保证混合溶液B中BFO和PVDF-TrFE质量比为1:3;

S2.3、选择FTO导电玻璃为衬底,利用匀胶机将所制备的混合溶液B在FTO导电玻璃上进行旋转涂膜,通过控制旋涂转速和时间制备BFO/PVDF-TrFE复合薄膜,旋涂的转速3000rad/s,时间为60 s;

S2.4、将旋涂好的湿膜置于烘箱中80 ℃烘干5 min;

S2.5、利用匀胶机将所制备的溶液A在烘干后的BFO/PVDF-TrFE复合薄膜上进行旋转涂膜,通过控制旋涂转速和时间制备PVDF-TrFE薄膜,旋涂的转速3000 rad/s,时间60 s;

S2.6、将旋涂好的湿膜置于热处理炉中145 ℃退火处理1.5 h;

S2.7、制作多层复合薄膜上的电极,在步骤S2.7所得的铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜上镀铂点电极。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

19页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种耐疲劳铁酸钴/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!