超细气泡生成装置

文档序号:1207427 发布日期:2020-09-04 浏览:15次 >En<

阅读说明:本技术 超细气泡生成装置 (Superfine bubble generating device ) 是由 今仲良行 久保田雅彦 山田显季 柳内由美 有水博 石永博之 尾崎照夫 于 2020-02-27 设计创作,主要内容包括:本发明涉及超细气泡生成装置。通过使加热元件在液体中产生膜沸腾从而产生超细气泡的超细气泡的产生装置,包括:元件基板,其包括设置有多个加热元件的加热部分,其中,用于通过多个加热元件中的每一个产生膜沸腾的能量被设为第一值时,元件基板构成为使得输入到加热部件中驱动的加热元件的能量为将第一值乘以第二值而获得的值以上,并且落入从该值到将第一值乘以(第二值加0.3)而获得的值的范围内,第二个值是1以上。(The present invention relates to an ultrafine bubble generating apparatus. An ultrafine bubble generating apparatus for generating ultrafine bubbles by causing a heating element to generate film boiling in a liquid, comprising: an element substrate including a heating portion provided with a plurality of heating elements, wherein, when energy for generating film boiling by each of the plurality of heating elements is set to a first value, the element substrate is configured such that energy input to the heating element driven in the heating portion is equal to or more than a value obtained by multiplying the first value by a second value, and falls within a range from the value to a value obtained by multiplying the first value by (adding 0.3 to the second value), the second value being equal to or more than 1.)

超细气泡生成装置

技术领域

本发明涉及用于生成直径小于1.0μm的超细气泡的超细气泡生成装置。

发明背景

近来,已经开发出用于应用微细气泡(例如直径为微米尺寸的微气泡和直径为纳米尺寸的纳米气泡)的特征的技术。尤其是,在各个领域中,已经确认了直径小于1.0μm的超细气泡(以下也称为“UFB”)的实用性。

日本专利第6118544号公开了一种微细气泡生成装置,该细微气泡生成装置通过从减压喷嘴喷射将气体加压并溶解的加压液体来生成微细气泡。日本专利第4456176号公开了一种通过利用混合单元重复进行气体混合液流的分离和会聚而生成细微气泡的装置。

发明内容

根据本发明的一个方面的超细气泡生成装置是通过使加热元件在液体中产生膜沸腾从而生成超细气泡的超细气泡生成装置,包括:元件基板,其包括设置有多个加热元件的加热部分,其中,将用于通过所述多个加热元件中的每一个来生成膜沸腾的能量设为第一值时,元件基板构成为输入到在加热部件中被驱动的加热元件中的能量为将第一值乘以第二值而获得的值以上,并且落入从该值到通过将第一值乘以(第二值加0.3)而获得的值的范围内,其中第二值是1以上。

通过以下参考附图对示例性实施方案的描述,本发明的其他特征将变得明显。

附图说明

图1是表示UFB生成装置的实例的图。

图2是预处理单元的示意性构成图。

图3A和图3B是溶解单元的示意性构成图和用于说明液体中溶解状态的图。

图4是T-UFB生成单元的示意性构成图。

图5A和图5B是用于说明加热元件的细节的图。

图6A和图6B是用于说明加热元件上的膜沸腾的状态的图。

图7A至图7D是表示由膜沸腾气泡的膨胀引起的UFB的生成状态的图。

图8A至图8C是表示由膜沸腾气泡的收缩引起的UFB的生成状态的图。

图9A至图9C是表示由液体的再加热引起的UFB的生成状态的图。

图10A和图10B是表示由膜沸腾生成的气泡消失而生成的冲击波引起的UFB的生成状态的图。和

图11A至图11C是表示后处理单元的构成例的图。

图12A和图12B是说明元件基板的布局的图。

图13A和图13B是示出等效电路的图。

图14A至图14C是说明减小布线电阻损失之差的实例的图。

图15A至图15F是说明元件基板的布局等的图。

图16A至图16E是说明延长加热元件寿命的实例的图。

图17A至图17G是说明延长加热元件寿命的实例的图。

图18A至图18C是说明延长加热元件寿命的实例的图。

图19A至图19C是说明延长加热元件寿命的实例的图。

图20A至图20C是说明延长加热元件寿命的实例的图。

图21A至图21D是说明延长加热元件寿命的实例的图。

图22A至图22D是说明延长加热元件寿命的实例的图。

图23A至图23D是说明延长加热元件寿命的实例的图。

图24A至图24D是说明延长加热元件寿命的实例的图。

具体实施方式

日本专利第6118544号和第4456176号中说明的装置两者不仅生成直径为纳米尺寸的UFB,而且生成相对大量的直径为毫米尺寸的毫气泡(milli-bubble)和直径为微米尺寸的微气泡。但是,由于毫气泡和微气泡受到浮力的影响,因此在长时间储存期间,气泡易于逐渐上升到液面并消失。

另一方面,直径为纳米尺寸的UFB适合长期储存,因为它们不易受到浮力的影响,并且以布朗运动漂浮在液体中。然而,当UFB与毫气泡和微气泡一起生成,或者UFB的气-液界面能小时,UFB受到毫气泡和微气泡的消失的影响并且随着时间减小。即,为了获得即使在长时间储存期间也能够抑制UFB的浓度降低的UFB含有液,在生成UFB含有液时,需要生成具有大的气-液界面能的高纯度且高浓度的UFB。

<<UFB生成装置的构成>>

图1是表示可应用于本发明的超细气泡生成装置(UFB生成装置)的实例的图。本实施方案的UFB生成装置1包括预处理单元100、溶解单元200、T-UFB生成单元300、后处理单元400和收集单元500。每个单元以上述顺序对供给到预处理单元100的诸如自来水的液体W进行独特的处理,并且如此处理的液体W被收集单元500收集为T-UFB含有液。下面说明这些单元的功能和构成。尽管稍后说明细节,但是在本说明书中,通过利用由快速加热引起的膜沸腾而生成的UFB被称为热超细气泡(T-UFB)。

图2是预处理单元100的示意性构成图。本实施方案的预处理单元100对所供给的液体W进行脱气处理。预处理单元100主要包括脱气容器101、喷淋头102、减压泵103、液体导入路104、液体循环路105和液体排出路106。例如,诸如自来水的液体W从液体导入路104通过阀109被供给到脱气容器101。在该过程中,设置在脱气容器101中的喷淋头102在脱气容器101中喷出液体W的雾。喷淋头102用于促进液体W的气化;但是,可以代替地使用离心机等作为产生气化促进效果的机构。

当一定量的液体W贮留在脱气容器101中,然后在所有阀关闭的情况下启动减压泵103时,已经气化的气体成分被排出,溶解在液体W中的气体成分的气化和排出也被促进。在该过程中,可以在检查压力计108的同时将脱气容器101的内部压力减压至大约几百至几千Pa(1.0托至10.0托)。要被预处理单元100去除的气体包括例如氮、氧、氩、二氧化碳等。

通过利用液体循环路105,可以对同一液体W重复进行上述脱气处理。具体而言,在液体导入路104的阀109和液体排出路106的阀110关闭、且液体循环路105的阀107打开的情况下来操作喷淋头102。这允许贮留在脱气容器101中并且脱气一次的液体W从喷淋头102再次喷入脱气容器101中。另外,在操作减压泵103的情况下,喷淋头102进行的气化处理和减压泵103进行的脱气处理对同一液体W重复进行。每次重复进行利用液体循环路105的上述处理,就可以阶段性地减少液体W中所含的气体成分。一旦获得脱气至期望纯度的液体W,就在阀110打开的情况下通过液体排出路106将液体W转移至溶解单元200。

图2表示将气体部减压以使溶质气化的预处理单元100;然而,使溶液脱气的方法不限于此。例如,可以采用使液体W沸腾以使溶质气化的加热沸腾法,或者使用中空纤维来增加液体和气体之间的界面的膜脱气法。作为使用中空纤维的脱气组件,商业地提供了SEPAREL系列(由DIC corporation生产)。SEPAREL系列使用聚(4-甲基戊烯-1)(PMP)作为中空纤维的原料,并且用于从主要供给于压电头(piezo head)的油墨等去除气泡。另外,可以并用抽真空法、加热沸腾法和膜脱气法中的两种以上。

图3A和3B是溶解单元200的示意性构成图和用于说明液体中的溶解状态的图。溶解单元200是用于将期望的气体溶解到从预处理单元100供给的液体W中的单元。本实施方案的溶解单元200主要包括溶解容器201、设置有旋转板202的旋转轴203、液体导入路204、气体导入路205、液体排出路206和加压泵207。

从预处理单元100供给的液体W通过液体导入路204被供给并贮留在溶解容器201中。同时,气体G通过气体导入路205被供给到溶解容器201中。

一旦将预定量的液体W和气体G贮留在溶解容器201中,则启动加压泵207以将溶解容器201的内部压力增加到大约0.5MPa。在加压泵207与溶解容器201之间配置有安全阀208。随着液体内的旋转板202通过旋转轴203旋转,供给至溶解容器201的气体G转化为气泡,气体G和液体W之间的接触面积增加,以促进到液体W中的溶解。继续进行此操作,直到气体G的溶解度几乎达到最大饱和溶解度。在这种情况下,可以设置用于降低液体温度的单元以尽可能地溶解气体。当气体的溶解度低时,也可以将溶解容器201的内部压力增加到0.5MPa以上。在这种情况下,为了安全起见,容器的材料等需要是最佳的。

一旦获得了溶解有所需浓度的气体G成分的液体W,就将液体W通过液体排放路206排放并供给到T-UFB生成单元300。在该过程中,背压阀209调节液体W的流动压力,以防止在供给期间压力的过度增加。

图3B是示意性地表示放入溶解容器201中的气体G的溶解状态的图。从与液体W接触的部分溶解放入液体W中的包含气体G的成分的气泡2。气泡2因此逐渐收缩,然后在气泡2周围出现气体溶解液3。由于气泡2受到浮力的影响,所以气泡2可以移动到远离气体溶解液3的中心的位置,或从气体溶解液3分离出来而成为残留气泡4。具体而言,在通过液体排出路206供给到T-UFB生成单元300的液体W中,存在被气体溶解液3包围的气泡2和彼此分离的气泡2与气体溶解液3的混合物。

图中的气体溶解液3是指“液体W的其中混合的气体G的溶解浓度较高的区域”。在实际溶解在液体W中的气体成分中,气体溶解液3中的气体成分的浓度在气泡2周围的部分最高。在气体溶解液3与气泡2分离的情况下,气体溶解液3的气体成分的浓度在该区域的中心最高,并且该浓度随着远离该中心而连续降低。即,尽管为了说明,在图3中用虚线包围了气体溶解液3的区域,但实际上并不存在这样的明确的边界。另外,在本公开中,可以接受不能完全溶解的气体以气泡的形式存在于液体中。

图4是T-UFB生成单元300的示意性构成图。T-UFB生成单元300主要包括腔室301、液体导入路302和液体排出路303。来自液体导入路302经由腔室301到液体排出路303的的流动由未示出的流动泵形成。可以将包括隔膜泵、齿轮泵和螺杆泵的各种泵用作流动泵。在从液体导入路302导入的液体W中,混合有由溶解单元200放入的气体G的气体溶解液3。

设置有加热元件10的元件基板12配置在腔室301的底部。随着对加热元件10施加预定电压脉冲,在与加热元件10接触的区域中生成由膜沸腾生成的气泡13(在下文中也称为膜沸腾气泡13)。然后,通过膜沸腾气泡13的膨胀和收缩而生成了包含气体G的超细气泡(UFB)11。结果,从液体排出路303排出包含许多UFB 11的UFB含有液W。

图5A和图5B是用于表示加热元件10的详细构成的图。图5A表示加热元件10的近视图,图5B表示包括加热元件10的元件基板12的较宽区域的截面图。

如图5A所示,在本实施方案的元件基板12中,在硅基板304的表面上层叠有作为蓄热层的热氧化膜305和也作为蓄热层的层间膜306。可以将SiO2膜或SiN膜用作层间膜306。在层间膜306的表面上形成电阻层307,并且在电阻层307的表面上部分地形成布线308。可以使用Al、Al-Si、Al-Cu等Al合金布线作为布线308。由SiO2膜或Si3N4膜制成的保护层309形成在布线308、电阻层307和层间膜306的表面上。

在保护层309的表面上的一部分和该部分周围,形成用于保护保护层309免受电阻层307的发热引起的化学和物理冲击的抗气蚀膜(cavitation-resistant film)310,所述部分对应于最终成为加热元件10的热作用部311。电阻层307的表面上未形成布线308的区域是电阻层307发热的热作用部311。电阻层307的其上未形成布线308的加热部用作加热元件(加热器)10。如上所述,通过半导体生产技术在硅基板304的表面上依次形成元件基板12中的各层,并因此在硅基板304上设置热作用部311。

图中表示的构成是实例,并且各种其他构成是适用的。例如,可适用以下构成:电阻层307和布线308的层叠顺序相反的构成,以及电极连接到电阻层307的下表面的构成(所谓的塞电极构成)。换句话说,如后所述,可以采用任何构成,只要该构成允许热作用部311加热液体以在液体中生成膜沸腾。

图5B是元件基板12中包括与布线308连接的电路的区域的截面图的示例。N型阱区322和P型阱区323部分地设置在硅基板304(其为P型导体)的顶层中。在通常的MOS工艺中,通过离子注入等导入和扩散杂质,从而在N型阱区322中形成P-MOS 320,在P型阱区323中形成N-MOS 321。

P-MOS 320包括通过在N型阱区322的顶层中部分导入N型或P型杂质而形成的源极区325和漏极区326,栅极布线335等。栅极布线335沉积在N型阱区322的除了源极区325和漏极区326之外的一部分的顶表面上,并且厚度为数百

Figure BDA0002393303800000074

的栅极绝缘膜328介于栅极布线335和N型阱区322的顶表面之间。

N-MOS 321包括通过在P型阱区323的顶层部分导入N型或P型杂质而形成的源极区325和漏极区326,栅布线335等。栅极布线335沉积在P型阱区323的除了源极区325和漏极区326之外的一部分的顶表面上,并且厚度为数百

Figure BDA0002393303800000071

的栅极绝缘膜328介于栅极布线335和P型阱区323的顶表面之间。栅极布线335由通过CVD法沉积的厚度为

Figure BDA0002393303800000073

的多晶硅制成。C-MOS逻辑由P-MOS 320和N-MOS 321构成。

在P型阱区323中,用于驱动电热转换元件(热阻元件)的N-MOS 晶体管330形成在与包括N-MOS 321的部分不同的部分上。N-MOS晶体管330包括:通过杂质的导入和扩散工序部分地设置在P型阱区323的顶层中的源极区332和漏极区331,栅极布线333等。栅极布线333沉积在P型阱区323的除了源极区332和漏极区331之外的一部分顶表面上,并且栅极绝缘膜328介于在栅极布线333和P型阱区323的顶表面之间。

在该示例中,N-MOS晶体管330用作用于驱动电热转换元件的晶体管。然而,用于驱动的晶体管不限于N-MOS晶体管330,并且可以使用任何晶体管,只要该晶体管具有单独驱动多个电热转换元件的能力并且能够实现上述精细构成。尽管在该示例中,电热转换元件和用于驱动电热转换元件的晶体管形成在同一基板上,但是它们可以分别形成在不同的基板上。

在元件之间(例如在P-MOS 320与N-MOS 321之间以及在N-MOS 321与N-MOS晶体管330之间)通过进行厚度为的场氧化来形成氧化膜分离区324。氧化膜分离区324分离元件。氧化膜分离区324的对应于热作用部311的部分用作蓄热层334,其是硅基板304上的第一层。

通过CVD法在诸如P-MOS 320、N-MOS 321和N-MOS晶体管330的元件的每个表面上形成厚度约为的包括PSG膜、BPSG膜等的层间绝缘膜336。在通过热处理将层间绝缘膜336平坦化之后,在穿过层间绝缘膜336和栅极绝缘膜328的接触孔中形成作为第一布线层的Al电极337。在层间绝缘膜336和Al电极337的表面上,通过等离子CVD法形成厚度为

Figure BDA0002393303800000085

的包括S iO2膜的层间绝缘膜338。在层间绝缘膜338的表面上,通过共溅射法在对应于热作用部311和N-MOS晶体管330的部分上形成厚度为约

Figure BDA0002393303800000086

的包括TaSiN膜的电阻层307。电阻层307经由形成在层间绝缘膜338中的通孔与漏极区331附近的Al电极337电连接。在电阻层307的表面上,形成作为第二布线层的Al的布线308,作为每个电热转换元件的布线。布线308、电阻层307和层间绝缘膜338的表面上的保护层309包括通过等离子体CVD法形成的厚度为

Figure BDA0002393303800000091

的SiN膜。沉积在保护层309的表面上的抗气蚀膜310包括厚度约为

Figure BDA0002393303800000092

的薄膜,其是选自Ta、Fe、Ni、Cr、Ge、Ru、Zr、Ir等的至少一种金属。可以适用除上述TaSiN以外的各种材料,例如TaN、CrSiN、TaAl、WSiN等,只要该材料可以在液体中生成膜沸腾。

图6A和6B是表示当将预定电压脉冲施加到加热元件10时膜沸腾的状态的图。在这种情况下,说明在大气压下生成膜沸腾的情况。在图6A中,水平轴表示时间。下部曲线图中的纵轴表示施加到加热元件10的电压,上部曲线图中的纵轴表示由膜沸腾生成的膜沸腾气泡13的体积和内部压力。另一方面,图6B表示与图6A所示的时机1至3相关的膜沸腾气泡13的状态。下面按时间顺序说明每种状态。如后所述通过膜沸腾生成的UFB 11主要在膜沸腾气泡13的表面附近生成。图6B所示的状态是如图1所示,将由生成单元300生成的UFB 11通过循环路径再供给到溶解单元200,将包含UFB 11的液体再供给到生成单元300的液体通路的状态。

在将电压施加到加热元件10之前,在腔室301中基本上保持大气压。一旦将电压施加到加热元件10,在与加热元件10接触的液体中生成膜沸腾,并且这样生成的气泡(以下称为膜沸腾气泡13)通过从内部作用的高压而膨胀(时机1)。在该过程中的起泡压力预计为约8至10MPa,其为接近水的饱和蒸气压的值。

施加电压的时间(脉冲宽度)在约0.5μsec至10.0μsec,并且即使在施加电压之后,膜沸腾气泡13也由于在时机1获得的压力的惯性而膨胀。然而,随着膨胀生成的负压在膜沸腾气泡13的内部逐渐增加,并且负压在使膜沸腾气泡13收缩的方向上起作用。不久,在惯性力和负压平衡的时机2,膜沸腾气泡13的体积变为最大,此后膜沸腾气泡13在负压的作用下迅速收缩。

在膜沸腾气泡13的消失中,膜沸腾气泡13不是在加热元件10的整个表面消失,而是在一个或多个极小的区域内消失。因此,在加热元件10上,在膜沸腾气泡13消失(时机3)的极小区域中,生成比时机1起泡中更大的力。

每次向加热元件10施加电压脉冲时,如上所述的膜沸腾气泡13的生成、膨胀、收缩和消失都被重复,并且每次生成新的UFB 11。

参照图7A至10B更详细地说明在膜沸腾气泡13的生成、膨胀、收缩和消失的每个过程中的UFB 11的生成的状态。

图7A至图7D是示意性地表示由于膜沸腾气泡13的生成和膨胀而引起的UFB 11生成的状态的图。图7A表示在将电压脉冲施加至加热元件10之前的状态。混合有气体溶解液3的溶液W在腔室301内流动。

图7B表示向加热元件10施加电压并且在与液体W接触的加热元件10的几乎整个区域上均匀地生成膜沸腾气泡13的状态。当施加电压时,加热元件10的表面温度以10℃/μsec的速度急剧上升。在温度达到几乎300℃的时间点发生膜沸腾,从而生成膜沸腾气泡13。

此后,在施加脉冲期间,加热元件10的表面温度保持升高到大约600至800℃,并且膜沸腾气泡13周围的液体也被迅速加热。在图7B中,将在膜沸腾气泡13周围并且将被迅速加热的液体的区域表示为尚未起泡的高温区域14。尚未起泡的高温区域14中的气体溶解液3超过了热溶解极限,并且被汽化而成为UFB。这样汽化的气泡具有约10nm至100nm的直径和大的气-液界面能。因此,气泡独立地漂浮在液体W中而不会在短时间内消失。在本实施方案中,将从膜沸腾气泡13的生成到膨胀的由热作用而生成的气泡称为第一UFB 11A。

图7C表示膜沸腾气泡13膨胀的状态。即使在对加热元件10施加电压脉冲之后,膜沸腾气泡13也由于从其生成获得的力的惯性而继续膨胀,并且尚未起泡的高温区域14也由于惯性而移动和扩展。具体地,在膜沸腾气泡13的膨胀过程中,尚未起泡的高温区域14内的气体溶解液3作为新的气泡汽化并成为第一UFB 11A。

图7D表示膜沸腾气泡13具有最大体积的状态。随着膜沸腾气泡13由于惯性而膨胀,膜沸腾气泡13内部的负压随着该膨胀而逐渐增加,并且负压起到使膜沸腾气泡13收缩的作用。当负压和惯性力平衡的时间点,膜沸腾气泡13的体积最大,然后开始收缩。

在膜沸腾气泡13的收缩阶段,存在通过图8A至图8C所示的过程生成的UFB(第二UFB 11B)和通过图9A至9C所示的过程生成的UFB(第三UFB 11C)。认为这两个过程是同时的。

图8A至图8C是表示由膜沸腾气泡13的收缩引起的UFB 11的生成状态的图。图8A表示膜沸腾气泡13开始收缩的状态。尽管膜沸腾气泡13开始收缩,但是周围的液体W在膨胀方向上仍然具有惯性力。因此,在远离加热元件10的方向上作用的惯性力和由膜沸腾气泡13的收缩引起的朝向加热元件10的力作用在极其靠近膜沸腾气泡13的周围区域中,该区域被减压。该区域在图中表示为尚未起泡的负压区域15。

尚未起泡的负压区域15内的气体溶解液3超过压力溶解极限并且被汽化而成为气泡。如此汽化的气泡具有约100nm的直径,并且此后独立地漂浮在液体W中而不会在短时间内消失。在本实施方案中,在膜沸腾气泡13的收缩期间通过压力作用而汽化的气泡被称为第二UFB 11B。

图8B表示膜沸腾气泡13的收缩过程。膜沸腾气泡13的收缩速度通过负压而加速,并且尚未起泡的负压区域15也随着膜沸腾气泡13的收缩而移动。具体而言,在膜沸腾气泡13的收缩过程中,尚未起泡的负压区域15上的一部分内的气体溶解液3依次析出而成为第二UFB 11B。

图8C表示膜沸腾气泡13消失前即刻的状态。尽管通过膜沸腾气泡13的加速收缩,周围液体W的移动速度也增加了,但是由于腔室301中的流路阻力而产生压力损失。结果,尚未起泡的负压区域15所占据的区域进一步增大,并且生成许多第二UFB 11B。

图9A至图9C是表示在膜沸腾气泡13的收缩期间通过液体W的再加热而生成UFB的状态的图。图9A表示加热元件10的表面被收缩的膜沸腾气泡13覆盖的状态。

图9B表示膜沸腾气泡13的收缩已经进行,并且加热元件10的一部分表面与液体W接触的状态。在这种状态下,在加热元件10的表面上残留有热量,但是即使液体W与表面接触,该热量也不足够高以引起膜沸腾。通过与加热元件10的表面接触而被加热的液体的区域在图中表示为尚未起泡的再加热区域16。尽管未进行膜沸腾,但是尚未起泡的再加热区域16内的气体溶解液3超过热溶解极限并汽化。在本实施方案中,将在膜沸腾泡13的收缩期间通过液体W的再加热而生成的气泡称为第三UFB 11C。

图9C表示膜沸腾气泡13的收缩进一步进行的状态。膜沸腾气泡13越小,加热元件10与液体W接触的区域越大,并且生成第三UFB 11C直至膜沸腾气泡13消失。

图10A和图10B是表示由膜沸腾生成的膜沸腾气泡13的消失的冲击(即,气蚀的一种)引起的生成UFB的状态的图。图10A表示膜沸腾气泡13消失之前即刻的状态。在该状态下,膜沸腾气泡13由于内部负压而迅速收缩,尚未起泡的负压区域15包围膜沸腾气泡13。

图10B表示膜沸腾气泡13在点P处消失之后即刻的状态。当膜沸腾气泡13消失时,由于消失的冲击,声波从点P作为起点同心地波动。声波是弹性波的总称,其通过任何物体传播,无论是气体、液体和固体。在本实施方案中,作为液体W的高压面17A和低压面17B的液体W的压缩波交替地传播。

在这种情况下,尚未起泡的负压区域15内的气体溶解液3通过因膜沸腾气泡13消失而产生的冲击波而发生共振,气体溶解液3超过压力溶解极限,并且在低压面17B通过其的时机进行相变。具体地,在膜沸腾气泡13消失的同时,许多气泡在尚未起泡的负压区域15中汽化。在本实施方案中,由膜沸腾气泡13的消失产生的冲击波而生成的气泡被称为第四UFB 11D。

由膜沸腾气泡13的消失所产生的冲击波所生成的第四UFB 11D在极窄的薄膜状区域中以极短的时间(1μS以下)突然出现。直径足够小于第一至第三UFB的直径,并且气-液界面能高于第一至第三UFB的气-液界面能。因此,认为第四UFB 11D具有与第一至第三UFB11A至11C不同的特性并且生成不同的效果。

另外,第四UFB 11D在其中传播冲击波的同心球的区域的许多部分均匀地生成,并且第四UFB 11D从其生成开始均匀地存在于腔室301中。尽管在生成第四UFB 11D的时机已经存在许多第一至第三UFB,但是第一至第三UFB的存在不会极大地影响第四UFB 11D的生成。还认为第一至第三UFB不会由于第四UFB 11D的生成而消失。

如上所述,期望通过加热元件10的生成热从膜沸腾气泡13的生成到消失在多个阶段中生成UFB 11。第一UFB 11A、第二UFB 11B和第三UFB 11C在膜沸腾生成的膜沸腾气泡的表面附近生成。在这种情况下,“附近”是指距膜沸腾气泡的表面约20μm以内的区域。当气泡消失时,在冲击波传播的区域中生成第四UFB 11D。尽管以上示例表示了至膜沸腾气泡13消失的阶段,但是生成UFB的方式不限于此。例如,在气泡消失之前,通过所生成的膜沸腾气泡13与大气连通,如果膜沸腾气泡13尚未达到消失,也能够生成UFB。

接下来,说明UFB的保存特性。液体的温度越高,气体成分的溶解特性越低,温度越低,气体成分的溶解特性越高。换句话说,随着液体温度升高,促进溶解的气体成分的相变并且UFB的生成变得更容易。液体的温度与气体的溶解度成相反关系,随着液体温度升高,超过饱和溶解度的气体转变为气泡并出现在液体中。

因此,当液体的温度从常温迅速升高时,溶解特性不停地降低,并且开始生成UFB。随着温度升高,热溶解特性降低,并且生成许多UFB。

相反,当液体的温度从常温下降时,气体的溶解特性增加,并且生成的UFB更容易液化。然而,这样的温度远低于常温。另外,由于即使当液体的温度降低时,一旦生成的UFB也具有高的内部压力和大的气-液界面能,所以施加足够高的压力以破坏这种气-液界面的可能性很小。换句话说,只要将液体储存在常温常压下,一旦生成的UFB就不会轻易消失。

在本实施方案中,用图7A至图7C说明的第一UFB 11A和用图9A至9C说明的第三UFB11C可以描述为通过利用气体的这种热溶解特性而生成的UFB。

另一方面,在压力与液体的溶解特性之间的关系中,液体的压力越高,气体的溶解特性越高,并且压力越低,溶解特性越低。换句话说,随着液体的压力降低,促进液体中溶解的气体溶解液向气体的相变,并且UFB的生成变得更容易。一旦液体的压力变得低于常压,溶解特性就会立即降低,开始UFB的生成。随着压力降低,压力溶解特性降低,并且生成许多UFB。

相反,当液体的压力增加到高于常压时,气体的溶解特性增加,并且生成的UFB更容易被液化。但是,这样的压力原高于大气压。另外,由于即使当液体的压力增加时,一旦生成的UFB也具有高的内部压力和大的气-液界面能,所以施加足够高的压力以破坏这种气-液界面的可能性很小。换句话说,只要将液体储存在常温常压下,一旦生成的UFB就不会轻易消失。

在本实施方案中,用图8A至8C说明的第二UFB11B和用图10A至10B说明的第四UFB11D可以描述为通过利用气体的这种压力溶解特性而生成的UFB。

上面分别说明了由不同原因生成的那些第一至第四UFB;但是,上述生成原因与膜沸腾事件同时发生。因此,可以同时生成至少两种类型的第一至第四UFB,并且这些生成原因可以协作以生成UFB。应当注意,由膜沸腾现象生成的膜沸腾气泡的体积变化引发所有生成原因是常见的。在本说明书中,通过利用如上所述由快速加热引起的膜沸腾来生成UFB的方法被称为热超细气泡(T-UFB)生成方法。另外,将通过T-UFB生成方法生成的UFB称为T-UFB,将通过T-UFB生成方法生成的包含T-UFB的液体称为T-UFB含有液。

通过T-UFB生成方法生成的气泡几乎全部为1.0μm以下,并且难以生成毫气泡和微气泡。即,T-UFB生成方法允许显着且有效地生成UFB。另外,通过T-UFB生成方法生成的T-UFB具有比通过常规方法生成的UFB大的气-液界面能,并且只要在常温和常压下储存T-UFB就不会轻易消失。此外,即使通过新的膜沸腾生成了新的T-UFB,也可以防止由于新生成的冲击而使已经生成的T-UFB消失。即,可以说,T-UFB含有液中所含的T-UFB的数量和浓度具有滞后特性(hysteresis properties),这取决于在T-UFB含有液中进行膜沸腾的次数。换句话说,可以通过控制设置在T-UFB生成单元300中的加热元件的数量和施加电压脉冲至加热元件的数量来调节包含在T-UFB含有液中的T-UFB的浓度。

再次参考图1。一旦在T-UFB生成单元300中生成具有期望的UFB浓度的T-UFB含有液W,则将UFB含有液W供给至后处理单元400。

图11A至11C是表示本实施方案的后处理单元400的构成示例的图。本实施方案的后处理单元400以从无机离子、有机物和不溶性固体物质的顺序阶段地去除UFB含有液W中的杂质。

图11A表示去除无机离子的第一后处理机构410。第一后处理机构410包括交换容器411、阳离子交换树脂412、液体导入路413、收集管414和液体排出路415。交换容器411储存阳离子交换树脂412。将由T-UFB生成单元300生成的UFB含有液W通过液体导入路413注入交换容器411中,并吸收到阳离子交换树脂412中,使得去除作为杂质的阳离子。这些杂质包括从T-UFB生成单元300的元件基板12剥离的金属材料,例如SiO2、SiN、SiC、Ta、Al2O3、Ta2O5和Ir。

阳离子交换树脂412是将官能团(离子交换基团)导入具有三维网络的高聚物基体中的合成树脂,并且合成树脂的外观是约0.4至0.7mm的球形颗粒。一般的高聚物基体是苯乙烯-二乙烯基苯共聚物,官能团可以是例如甲基丙烯酸系列和丙烯酸系列的官能团。然而,以上材料是示例。只要该材料可以有效地去除期望的无机离子,上述材料就可以改变为各种材料。吸收在阳离子交换树脂412中以去除无机离子的UFB含有液W由收集管414收集,并通过液体排出路415转移至下一工序。在本实施方案中的该过程中,并非所有的从液体导入路413供给的UFB含有液W中包含的无机离子需要被去除,只要至少一部分无机离子被去除即可。

图11B表示去除有机物的第二后处理机构420。第二后处理机构420包括储存容器421、过滤器(filtration filter)422、真空泵423、阀424、液体导入路425、液体排出路426和空气吸引路427。储存容器421的内部被过滤器422分成上下方两个区域。液体导入路425连接到上下方两个区域的上方区域,空气吸引路427和液体排出路426连接到上下方两个区域的下方区域。一旦在阀424关闭的状态下驱动真空泵423,则储存容器421中的空气通过空气吸引路427排出以使储存容器421内部的压力为负压,然后从液体导入路425导入UFB含有液W。然后,将由过滤器422去除了杂质的UFB含有液W贮留在储存容器421中。

由过滤器422去除的杂质包括可以在管或各单元处混合的有机材料,例如包括例如硅、硅氧烷和环氧树脂的有机化合物。可用于过滤器422的滤膜包括可去除细菌的亚μm网眼的过滤器(网眼直径为1μm以下的过滤器)和可去除病毒的nm网眼的过滤器。具有如此小的开口直径的过滤器可以去除大于过滤器的开口直径的气泡。特别地,可能存在以下情况:过滤器被吸附到过滤器的开口(网眼)上的微细气泡堵塞,这会减慢过滤速度。然而,如上所述,通过本发明的本实施方案中说明的T-UFB生成方法生成的大多数气泡的直径为1μm以下的尺寸,并且难以生成毫气泡和微气泡。即,由于生成毫气泡和微气泡的可能性极低,因此能够抑制由于气泡向过滤器的吸附而导致的过滤速度的降低。因此,将设置有网眼直径为1μm以下的过滤器的过滤器422应用于具有T-UFB生成方法的系统是有利的。

适用于本实施方案的过滤的示例可以是所谓的死端过滤(dead-end filtration)和错流过滤。在死端过滤中,所供给的液体的流动方向与通过过滤器开口的过滤液体的流动方向相同,具体而言,使流动的方向彼此一致。相反,在错流过滤中,所供给的液体沿过滤器表面的方向流动,具体而言,所供给的液体的流动方向和通过过滤器开口的过滤液体的流动方向彼此交叉。为了抑制气泡向过滤器开口的吸附,优选适用错流过滤。

在储存容器421中贮留了一定量的UFB含有液W之后,停止真空泵423并且打开阀424以将储存容器421中的T-UFB含有液通过液体排出路426转移到下一工序。此处虽然采用了真空过滤法作为去除有机杂质的方法,但是例如,也可以采用重力过滤法和加压过滤作为使用过滤器的过滤方法。

图11C表示去除不溶性固体物质的第三后处理机构430。第三后处理机构430包括沉淀容器431、液体导入路432、阀433和液体排出路434。

首先,在阀433关闭的状态下,通过液体导入路432将预定量的UFB含有液W贮留在沉淀容器431中,并且将其放置一会儿。同时,UFB含有液W中的固体物质由于重力而沉淀到沉淀容器431的底部上。在UFB含有液中的气泡中,较大的气泡如微气泡通过浮力上升到液体表面,并且也从UFB含有液中去除。经过足够的时间后,打开阀433,去除了固体物质和大气泡的UFB含有液W通过液体排出路434转移到收集单元500。在本实施方案中示出了依次适用三个后处理机构的示例;然而,并不限于此,并且可以改变三个后处理机构的顺序,或者可以采用至少一种所需的后处理机构。

再次参考图1。通过后处理单元400去除了杂质的T-UFB含有液W可以直接转移到收集单元500,或者可以再次放回溶解单元200。在后一种情况下,由于T-UFB的生成而降低的T-UFB含有液W的气体溶解浓度可以由溶解单元200再次补偿到饱和状态。如果在补偿之后由T-UFB生成单元300生成新的T-UFB,则可以进一步增加具有上述特性的T-UFB含有液中包含的UFB的浓度。即,可以通过在溶解单元200、T-UFB生成单元300和后处理单元400的循环次数来增加所包含的UFB的浓度,并且可以在获得所含的UFB的预定浓度之后,将UFB含有液W转移到收集单元500。本实施方案示出将由后处理单元400处理的UFB含有液送回至溶解单元200并循环的形式;然而,并不限于此,通过T-UFB生成单元之后的UFB含有液可以在供给至后处理单元400之前再次放回到溶解单元200,使得在例如通过多次循环来增加T-UFB浓度之后,由后处理单元400进行后处理。

收集单元500收集并保存从后处理单元400转移的UFB含有液W。由收集单元500收集的T-UFB含有液是具有高纯度的UFB含有液,各种杂质从其中去除。

在收集单元500中,通过进行某些阶段的过滤处理,可以通过T-UFB的尺寸对UFB含有液W进行分类。由于预想通过T-UFB方法获得的T-UFB含有液W的温度高于常温,因此收集单元500可以设置有冷却单元。冷却单元可以被设置到后处理单元400的一部分。

上面给出了UFB生成装置1的示意说明;然而,不用说可以改变表示的多个单元,并且不需要全部准备。取决于所使用的液体W和气体G的类型以及所生成的T-UFB含有液的预期用途,可以省略上述单元的一部分,或者可以添加除上述单元之外的其他单元。

例如,当要被UFB包含的气体是大气时,可以省略作为预处理单元100的脱气单元和溶解单元200。另一方面,当期望UFB包含多种气体时,可以添加其他溶解单元200。

可以将图11A至11C中说明的用于去除杂质的单元设置在T-UFB生成单元300的上游,或者可以设置在其上游和下游两者。当要供给给UFB生成装置的液体是自来水、雨水、污水等时,液体中可能包含有机和无机杂质。如果将这样的包含杂质的液体W供给至T-UFB生成单元300,则存在使加热元件10劣化并引起盐析现象的危险。通过将如图11A至11C所示的机构设置在T-UFB生成单元300的上游,可以预先去除上述杂质。

<<可用于T-UFB含有液的液体和气体>>

现在说明可用于生成T-UFB含有液的液体W。可用于本实施方案中的液体W是例如纯水、离子交换水、蒸馏水、生物活性水、磁性活性水、化妆水、自来水、海水、河水、清洁水和污水、湖水、地下水、雨水等。也可以使用包含上述液体等的混合液体。也可以使用包含水和可溶性有机溶剂的混合溶剂。通过与水混合而使用的可溶性有机溶剂没有特别限制;但是,以下可以是其具体示例。碳数为1至4的烷基醇类,包括甲醇,乙醇,正丙醇,异丙醇,正丁醇,仲丁醇和叔丁醇。酰胺类,包括N-甲基-2-吡咯烷酮,2-吡咯烷酮,1,3-二甲基-2-咪唑啉酮,N,N-二甲基甲酰胺和N,N-二甲基乙酰胺。酮类或酮醇类,包括丙酮和双丙酮醇。环状醚类,包括四氢呋喃和二噁烷。二醇类,包括乙二醇,1,2-丙二醇,1,3-丙二醇,1,2-丁二醇,1,3-丁二醇,1,4-丁二醇,1,5-戊二醇,1,2-己二醇,1,6-己二醇,3-甲基-1,5-戊二醇,二甘醇,三甘醇和硫代二甘醇。多元醇的低级烷基醚类,包括乙二醇单甲醚,乙二醇单***,乙二醇单丁醚,二甘醇单甲醚,二甘醇单***,二甘醇单丁醚,三甘醇单甲醚,三甘醇单***,和三乙二醇单丁醚。聚亚烷基二醇类,包括聚乙二醇和聚丙二醇。三醇类,包括甘油,1,2,6-己三醇和三羟甲基丙烷。这些可溶性有机溶剂可以单独使用,也可以并用它们中的2种以上。

可以导入到溶解单元200中的气体成分是例如氢、氦、氧、氮、甲烷、氟、氖、二氧化碳、臭氧、氩、氯、乙烷、丙烷、空气等。气体成分可以是包含上述成分中的一些的混合气体。另外,溶解单元200无需以气态溶解物质,并且溶解单元200可以将包含期望成分的液体或的固体融合到液体W中。在这种情况下,溶解可以是自发溶解,施加压力引起的溶解,或由于电解离解而引起的水合、离子化和化学反应导致的溶解。

《T-UFB生成方法的效果》

接下来,通过与常规UFB生成方法进行比较来说明上述T-UFB生成方法的特征和效果。例如,在以文丘里法为代表的常规的气泡生成装置中,在流路的一部分中设置有诸如减压喷嘴的机械减压结构。液体以预定压力流动以通过减压结构,并且在减压结构的下游区域中生成各种尺寸的气泡。

在这种情况下,在生成的气泡中,由于诸如毫气泡和微气泡的相对较大的气泡受到浮力的影响,因此这些气泡上升至液面并消失。即使不受浮力影响的UFB也可能随毫气泡和微气泡消失,因为UFB的气-液界面能不是很大。另外,即使上述减压结构串联配置,并且同一液体重复地流过减压结构,也不能长时间储存与重复次数相对应的数量的UFB。换句话说,通过常规的UFB生成方法生成的UFB含有液一直难以长时间地将所含有的UFB的浓度维持在预定值。

相反,在利用膜沸腾的本实施方案的T-UFB生成方法中,在极其靠近加热元件的部分中局部地发生从常温到约300℃的快速温度变化和从常压到约几兆帕的快速压力变化。加热元件是矩形,其一侧大约数十至数百μm。它大约是常规UFB生成单元尺寸的1/10至1/1000。另外,随着在膜沸腾气泡表面的极薄膜区域内的气体溶解液瞬时(以微秒计的极短时间内)超过热溶解极限或压力溶解极限,发生相变并且气体溶解液析出为UFB。在这种情况下,几乎不生成较大的气泡,例如毫气泡和微气泡,并且液体以极高的纯度包含直径为约100nm的UFB。此外,由于以这种方式生成的T-UFB具有足够大的气-液界面能,因此在正常环境下T-UFB不容易破裂并且可以长时间储存。

特别地,使用能够在液体中局部形成气体界面的膜沸腾现象的本公开可以在靠近加热元件的液体的一部分中形成界面,而不会影响整个液体区域,并且热和压力作用进行于其上的区域可以非常局部。结果,可以稳定地生成期望的UFB。随着用于生成UFB的进一步更多的条件应用于通过液体循环的生成液,可以另外生成新的UFB而对已经制成的UFB的影响很小。结果,可以相对容易地生产期望尺寸和浓度的UFB液。

此外,由于T-UFB生成方法具有上述滞后特性,可以在保持高纯度的同时将浓度增加到所需浓度。换句话说,根据T-UFB生成方法,可以有效地生成高纯度和高浓度的可长期储存的UFB含有液。

<<T-UFB含有液的具体用途>>

通常,包含超细气泡的液体的应用通过包含气体的类型来区分。只要可以将大约PPM至BPM的气体量溶解在液体中,任何类型的气体都可以构成UFB。例如,含超细气泡的液体可用于以下应用。

-含空气的UFB含有液可以优选用于工业、农业和渔业以及医疗现场等的清洁,以及植物和农业和渔业产品的养殖。

-含臭氧的UFB含有液不仅可以优选用于工业、农业和渔业以及医疗现场等中的清洁应用,而且还可以应用于旨在消毒、灭菌和除菌的应用以及例如排水和受污染的土壤的环境净化。

-含氮的UFB含有液不仅可以优选用于工业、农业和渔业以及医疗现场等中的清洁应用,还可以用于旨在进行消毒、灭菌和除菌的应用以及例如排水和受污染的土壤的环境净化。

-含氧的UFB含有液可以优选用于工业、农业和渔业、以及医疗现场等中的清洁应用,以及植物和农业和渔业产品的养殖。

-含二氧化碳的UFB含有液不仅可以优选用于工业、农业和渔业以及医疗现场等中的清洁应用,还可以用于例如旨在进行消毒、灭菌和除菌的应用。

-含有全氟化碳作为医用气体的UFB含有液可优选用于超声诊断和治疗。如上所述,UFB含有液可以在医疗、化学、牙科、食品、工业、农业和渔业等的各个领域中发挥作用。

在每种应用中,包含在UFB含有液中的UFB的纯度和浓度对于快速可靠地发挥UFB含有液的作用很重要。换句话说,通过利用本实施方案的T-UFB生成方法,可以在各个领域中期待空前的效果,其中该方法能够生成具有高纯度和期望浓度的UFB含有液。以下是期望可优选应用T-UFB生成方法和T-UFB含有液的应用列表。

(A)液体纯化应用

-在将T-UFB生成单元设置于水净化单元的情况下,期望提高水净化效果和PH调节液的纯化效果。T-UFB生成单元还可以设置于碳酸水站。

-在将T-UFB生成单元设置于加湿器、香气扩散器、咖啡机等的情况下,期望增强室内的加湿效果、除臭效果和气味扩散效果。

-如果生成了由溶解单元将臭氧气体溶解在其中的UFB含有液,并且将其用于牙科治疗、烧伤治疗和使用内窥镜的伤口治疗,则期望增强医疗清洁效果和抗菌效果。

-在将T-UFB生成单元设置于公寓的储水箱的情况下,期望增强将长时间储存的饮用水的水净化效果和除氯效果。

-如果将含有臭氧或二氧化碳的T-UFB含有液用于不能进行高温灭菌处理的日本清酒、烧酒、葡萄酒等的酿造过程,期望比使用常规液体更有效地进行巴氏灭菌处理(pasteurization processing)。

-如果在用于特定保健用途的食品和具有功能要求的食品的生产过程中将UFB含有液混入成分中,则可以进行巴氏灭菌处理,因此可以提供安全且功能性的食品,而没有味道的损失。

-在将T-UFB生成单元设置于用于在渔业产品(例如鱼和珍珠)的养殖场中的养殖的海水和淡水的供给路径的情况下,期望促进渔业产品的产卵和生长。

-在将T-UFB生成单元设置于用于食品保藏的水的纯化工序的情况下,期望增强食品的保藏状态。

-在将T-UFB生成单元设置于用于将池水或地下水漂白的漂白单元中的情况下,期望更高的漂白效果。

-在将T-UFB含有液用于修复混凝土构件的裂缝的情况下,期望增强裂缝修复的效果。

-在将T-UFB包含于用于使用液体燃料的机器(例如汽车、船舶和飞机)的液体燃料的情况下,期望增强燃料的能效。

(B)清洁应用

近来,UFB含有液作为用于去除附着在衣物上的污垢等的清洁水已受到关注。如果将上述实施方案中说明的T-UFB生成单元设置于洗衣机,并且将比常规液体具有更高纯度和更好渗透性的UFB含有液供给于洗涤桶,则期望进一步增强去污力。

-在将T-UFB生成单元设置于淋浴器和便器洗涤器的情况下,不仅期望对包括人体在内的各种动物的清洁效果,而且还期望促进浴室和便器上的水渍和霉菌的污染去除的效果。

-在将T-UFB生成单元设置于汽车的窗户清洗器、用于清洁墙壁构件等的高压清洗器、汽车清洗器、洗碗机、食物清洗器等的情况下,期望进一步增强其清洁效果。

-在将T-UFB含有液用于清洁和维护工厂中生产的零件、包括压制后的去毛刺工序的情况下,期望增强清洁效果。

-在半导体元件的生产中,如果将T-UFB含有液用作晶片的抛光水,则期望增强抛光效果。另外,如果在抗蚀剂去除工序中使用T-UFB含有液,则增强促进不容易剥离的抗蚀剂的剥离。

-在将T-UFB生成单元设置于用于对医疗机器(例如医疗机器人、牙科治疗单元、器官保藏容器等)进行清洁和除菌的机器的情况下,期望增强清洁效果和机器的除菌效果。T-UFB生成单元也可用于动物的治疗。

(C)药物应用

-如果在化妆品等中包含T-UFB含有液,则促进渗透到皮下细胞,并且可以大大减少对皮肤生成不良影响的添加剂例如防腐剂和表面活性剂。结果,可以提供更安全和更实用的化妆品。

-如果将包含T-UFB的高浓度纳米气泡制剂用于例如CT和MRI等医学检查装置的造影剂,则可以有效地使用X射线和超声波的反射光。这使得可以捕获可用于癌症等的初步诊断的更详细的图像。

-如果将包含T-UFB的高浓度纳米气泡水用于称为高强度聚焦超声(HIFU)的超声波治疗机,则可以降低超声波的照射功率,从而可以使治疗更加非侵入。特别地,可以减少对正常组织的损伤。

-通过使用含有T-UFBs的高浓度纳米气泡作为源、修饰在气泡周围的负电荷区域中形成脂质体的磷脂、并通过磷脂适用各种医疗物质(例如DNA和RNA),可以形成纳米气泡制剂。

-如果将含有通过生成T-UFB制成的高浓度纳米气泡水的药物转移到牙根管中以进行牙髓和牙本质的再生处理,则该药物会由于纳米气泡水的渗透效果而深深地进入牙本质小管,并且促进除菌效果。这使得可以在短时间内安全地治疗牙髓的感染根管。

《加热元件的寿命延长》

如上所述,可以通过驱动加热元件10在液体中产生膜沸腾从而生成UFB。如参考图6A和6B所述,由于生成的膜沸腾气泡13的消失,加热元件10受到极大的冲击。除了冲击,在膜沸腾气泡13消失时加热元件的温度等也会导致加热元件10和加热元件10周边的缓慢破坏,最终使加热元件10断开。

在本发明人进行的实验中确认了:如果产生膜沸腾的次数为约100,000次,则加热元件10没有断开并且能够通过稳定地产生膜沸腾从而生成UFB。为了在短时间内生成UFB,有时需要通过使用大量的(例如10,000件以上的)加热元件10来连续地产生膜沸腾。需要延长加热元件的寿命以低成本地制造UFB生成装置1。

图24A至图24D是说明用于生成UFB的输入能量的实际范围的图。图24A是假设将用于在加热元件10上生成膜沸腾气泡的每预定单位面积的起泡阈值能量设为“1”(第一值)的图。在布线从电极垫连接到多个加热元件10的情况下,或者加热元件10排列为多级的情况下,实际输入到加热元件10的能量因布线电阻等的变化而变化。图24A是示出在气泡阈值能量设为“1”时,因布线电阻等的变化而实际输入的能量的范围与能够生成用于生成UFB的膜沸腾气泡的脉冲数之间的关系的图。在图24A中,虚线表示由于断开等原因寿命终止因而不能生成UFB的边界。虚线上方的区域表示不能生成UFB的范围,虚线下方的区域表示能够生成UFB的范围。从图24A可以清楚地看到,随着输入能量变得大于设为“1”(第一值)的起泡阈值能量,能够生成用于生成UFB的膜沸腾气泡的脉冲数减少。

图24B是示出图24A所示的状态下生成UFB的实际范围的图。如上所述,例如有时在元件基板12上排列10,000个以上的加热元件10以在短时间内生成UFB。在这种情况下,由于布线电阻等的变化,输入到加热元件10的能量发生变化。将用于在加热元件10上生成膜沸腾气泡的起泡阈值能量设为“1”(第一值)的情况下,需要对每个加热元件10施加“1”(第一值)以上的能量以生成UFB。在该过程中,输入的能量发生变化。如果输入到输入了最大能量的第一加热元件的第一能量小于第一值的三倍以下,则如图24B所示可以生成膜沸腾气泡约100,000次。即,如点2401所示,即使以第一能量向第一加热元件施加约100,000(=1.00E+05)次膜沸腾气泡的脉冲,也可以在没有第一加热元件的断开等的情况下生成UFB。另一方面,输入到输入了最小能量的第二加热元件的能量为“1”(第一值)。能够在第二加热元件上生成膜沸腾气泡的脉冲数比第一加热元件的脉冲数大100万倍,后者可以制造100,000个膜沸腾气泡。即,如点2402和点2401所示,能够生成膜沸腾气泡的第一加热元件的脉冲数和第二加热元件的脉冲数相差100万倍(1.00E+11-1.00E+05=1.00E+06)。在输入能量如上所述发生变化的状态下重复进行膜沸腾的生成时,输入了最大能量的第一加热元件断开等,电流不再流动。断开等触发输入能量的不稳定状态,该不稳定状态包括输入到排列为多级的其他加热元件的能量的增加。因此,加热元件(例如与第一加热元件产生的100,000个膜沸腾气泡相比,能够生成100万倍的膜沸腾气泡的第二加热元件)的寿命也被缩短。因此,需要考虑输入的能量随着用于元件基板12的多个加热元件10的整体寿命而变化来形成元件基板12。

图24C和24D是说明输入能量的变化的优选范围的图。通过使第一加热元件的脉冲数和第二加热元件的脉冲数相差不到10倍来抑制加热元件10的寿命的变化,上述脉冲数可以使得在加热元件10上生成膜沸腾气泡(即,加热元件10的寿命)。因此,可以抑制由于第一加热元件的寿命与第二加热元件的寿命相比极短而导致的输入能量的不稳定状态。因此,延长用于元件基板12的多个加热元件10的整体寿命。

图24C是示出使第一加热元件和第二加热元件的能够在加热元件10上生成膜沸腾气泡的脉冲数(即,加热元件10的寿命)相差不到十倍的实例的图。图24C示出在高输入能量(接近起泡阈值能量“1”的三倍的值)一侧,输入到第一加热元件和第二加热元件的能量之差为约0.3以下的实例。即,在图24C的实例中,在通过加热元件10生成膜沸腾气泡的能量被设为第一值的情况下,输入到第一加热元件的能量为将第一值乘以第二值而获得的值以下,所述第二值是1以上。在该构成中,输入到第二加热元件的能量落入从该值到通过将第一值乘以第二值与0.3之和而获得的值的范围内。如图24C所示,在这种情况下,可以使第一加热元件和第二加热元件的能够在加热元件10上生成膜沸腾气泡(即,加热元件10的寿命)脉冲数相差不到十倍。

图24D示出在低输入能量(接近起泡阈值能量“1”的一倍的值)一侧,输入到第一加热元件和第二加热元件的能量之差为约0.3以下的示例。即,将通过加热元件10生成膜沸腾气泡的能量设为第一值时,输入到第一加热元件的能量为第一值的1倍以上,输入到第二加热元件的能量是第一值的1.3倍以下。如图24D所示,在这种情况下,也可以使第一加热元件和第二加热元件的能够使其在加热元件10上生成膜沸腾气泡的脉冲数(即,加热元件10的寿命)相差不到十倍。

在本实施方式中,在图24C和24D的情况下都可以防止由于第一加热元件的寿命与第二加热元件的寿命相比极短而导致的输入能量的不稳定状态。图24D中的加热元件的寿命(UFB生成脉冲数)比图24C中的寿命更长(更大)。在将用于在加热元件10上生成膜沸腾气泡的起泡阈值能量设为“1”(第一值)的情况下,通常,能量设为“1”时也生成膜沸腾气泡。为此,如图24D所示,输入到第二加热元件的能量被设为用于在加热元件10上生成膜沸腾气泡的起泡阈值能量“1”(第一值)的约1倍。同时,然后输入到第一加热元件的能量被限制为用于在加热元件10上生成膜沸腾气泡的起泡阈值能量“1”(第一值)的约1.3倍以下。这种结构能够通过抑制输入能量的变化来延长用于元件基板12的多个加热元件10的整体寿命,也能够延长各个加热元件10的寿命。因此,可以显著地延长生成UFB的加热元件10的寿命。在下文中,首先说明输入到加热元件10的能量发生变化的情形。

<<元件基板的布局>>

如上所述,UFB 11由通过将预定的电压脉冲施加到一个加热元件(在下文中,也称为加热器)10而产生的膜沸腾来生成。因此,可以通过增加加热元件10的数量来增加在预定单位时间内生成的UFB 11的数量。为了在短时间内稳定地生成期望数量的UFB 11,需要密集地排列许多待驱动的加热元件。作为示例,可以考虑布置有多个元件基板12的UFB生成装置1的实施方式,其中每个元件基板12包括排列于其上的多个加热元件10,从而UFB生成装置1排列有10,000个加热元件10。在尝试在更短的时间内生成UFB 11的情况下,需要进一步增加加热元件10的数量。

然而,在某些情况下,仅通过简单地增加加热元件10的数量不能稳定地生成UFB11。例如,在加热元件10的数量大于10,000个的情况下,流过那些加热元件10的总电流是巨大的值。另外,例如,用于连接到加热元件10的布线中的寄生电阻损耗(parasiticresistance losses)根据加热元件10而变化。因此,输入到加热元件10的能量变化很大。在输入到加热元件10的能量变化很大的情况下,存在出现向加热元件10输入超过允许范围的能量的风险。在将多个加热元件10密集地排列在元件基板12上以稳定地生成大量的UFB的情况下,需要将输入到加热元件10的能量的变化保持在预定范围内。在下文中,首先说明输入到加热元件10的能量发生变化的情形。

图12A和图12B是示出抽出一个元件区域1250(也称为加热部分)的平面布局的示例的图,其是元件基板12的一部分,并且示出了在每个元件区域1250中设置有多个加热元件的实例。图12A是在一个元件区域1250上设置有八个加热元件1011至1018的实例,图12B是在一个元件区域1250上设置有四个加热元件1061至1064的实例。在下文中,为了便于说明,以更少数量的加热元件的实例进行说明。

在图12A中,电极垫1201和1202设置在元件区域1250中,用于向八个加热元件1011至1018的每一个施加电能。换句话说,元件区域1250可以理解为通过一对电极垫输入能量的两个以上的加热元件的集合体。区域1221a至1228a和1221b至1228b是分别连接至加热元件1011至1018的单独布线区域。区域1211和1212是将多个单独的布线区域与电极垫1201和1202连接起来的公共布线区域。在本实施方式中使用的加热元件1011至1018通过半导体光刻步骤制造为具有基本上相同的形状和膜厚度。即,加热元件1011至1018具有基本相同的电阻值。

除非另有说明,在以下描述中,生成UFB的加热元件10在初始状态下具有基本相同的形状并且具有基本相同的电阻值。加热元件10的形状不必一定是相同的形状,并且构成不受限制,只要如下所述构成为抑制能量的变化即可。例如,每个元件区域1250的加热元件10的形状可以不同。根据需要可以通过光刻步骤中的掩模设计来进行加热元件10的形状的部分改变。

通过将图6A所示的电压脉冲施加到电极垫1201和1202上,电流流过公共布线区域1211和1212、单独布线区域1221至1228、和加热元件1011至1018。然后,在液体中在每个加热元件1011至1018上产生膜沸腾,由此生成UFB。

与图12A不同,图12B是在元件区域1250中排列有四个加热元件1061至1064的实例。区域1241a至1244a和1241b至1244b是分别与相应的加热元件1061至1064相连的单独布线区域。区域1231和1232是将多个单独布线区域与电极垫1201和1202连接的公共布线区域。

本发明人发现,图12A所示的结构中每个加热元件生成的UFB的量与图12B所示的结构中每个加热元件生成的UFB的量是不同的。这是因为图12A的结构中的每个加热元件1011至1018消耗的能量的量与图12B的结构中的每个加热元件1061至1064消耗的能量的量之间存在差异。具体而言,公共布线区域1211、1212、1231和1232中的布线电阻损耗导致了输入到加热元件的能量的变化以及能量之间的差异。

图13A和13B是示出图12A和12B的结构的等效电路的图。图13A对应于图12A的结构,图13B对应于图12B的结构。参照图12A至13B详细说明能量的变化。

图13A和图13B是将图12A和图12B中的单独布线区域和公共布线区域替换为布线电阻,并且将加热元件替换为加热元件电阻的图。图13A中的rh1至rh8表示与图12A中的加热元件1011至1018相对应的加热元件的电阻值,图13B中的rh61至rh64表示与图12B中的加热元件1061至1064相对应的加热元件的电阻值。图13A中的rliA1 至rliA8表示图12A中的单独布线区域1221a至1228a的电阻值。图13A中的rliB1至rliB8表示图12A中的单独布线区域1221b至1228b的电阻值。图13A中的rlcA1至rlcA8表示图12A中的公共布线区域1211的电阻值。图13A中的rlcB1至rlcB8表示图12A中的公共布线区域1212的电阻值。同样地,图13B中的rliA61至rliA64表示图12B中的单独布线区域1241a至1244a的电阻值,rliB61至rliB64表示图12B中的单独布线区域1241b至1244b的电阻值。rlcA61至rlcA64表示图12B中的公共布线区域1231的电阻值,rlcB61至rlcB64表示图12B中的公共布线区域1232的电阻值。

在电极垫1201和1202之间施加图6A所示的电压脉冲期间(时间t1),流过加热元件的电流在图13A中由i1至i8表示,在图13B中由i61至i64表示。在图13A和13B中,流过加热元件的电流i1至i8和i61至i64用于表明在布线电阻区域中流动的电流。

在这种情况下,输入到图13A中的加热元件1011的能量E1可以由表达式1表示,输入到图13A中的加热元件1018的能量E2可以由表达式2表示:

加热元件1011:E1=i1×i1×rh1×t1 (表达式1);

加热元件1018:E2=i8×i8×rh8×t1 (表达式2)。

另外,输入到图13B中的加热元件1061的能量E3可以由表达式3表示,输入到图13B中的加热元件1064的能量E4可以由表达式4表示:

加热元件1061:E3=i61×i61×rh61×t1 (表达式3);

加热元件1064:E4=i64×i64×rh64×t1 (表达式4)。

由于这种情况下的加热元件是在光刻步骤中同时形成的,所以加热元件的电阻值rh1、rh8、rh61和rh64基本上彼此相等。另一方面,主要因为布线电阻rlc的影响,因而流过加热元件的电流i1≠i8≠i61≠i64。这导致施加到加热元件的能量的变化。因此,如上所述,阻碍了加热元件的寿命的延长。为了延长加热元件的寿命,需要减小输入到元件区域中的加热元件的能量的变化。

下面说明在包括加热元件10的结构中抑制施加到多个加热元件10的能量的变化的实例。

<实施方式1>

图14A至图14C是用于说明减小公共布线区域的布线电阻损耗之差的实例的图。图14A是与图12B的结构相对应的图,示出了抽出的作为元件基板12的一部分的元件区域的平面布局的实例。在图14A所示的结构中,用于控制流过加热元件的电流的开关(SW)1401至1404分别设置在单独布线区域1241b至1244b上。在该结构中,尽管加热元件的供电电压(24V)恒定地施加到电极垫1201和1202,但是当SW断开(L)时,没有电流流过加热元件。图14B是示出驱动加热元件的SW 1401至1404的逻辑信号的波形的图。将逻辑信号H施加到SW1401至1404的每一个上时,SW导通,由供电电压产生的电流开始通过电极垫1201和1202流入相应的加热元件,在每个加热元件上产生膜沸腾。

图12A至图13B所示的结构是在供电电压的施加时间期间同时驱动连接至电极垫的所有加热元件的结构。另一方面,在图14A所示的结构中,利用SW 1401至1404分别改变驱动时机来驱动加热元件1061至1064。这种结构使得可以显著减小公共布线部分1351中的布线电阻损耗,该布线电阻损耗受到流过图13B中的多个加热元件1061至1064的同时的电流的影响。如上所述,通过设置SW 1401至1404以允许以分时方式(time division manner)驱动加热元件,能够抑制输入到加热元件的能量的变化。

图14C是示出多个图14A所示的元件区域排列在元件基板12上的实例的图。为了在短时间内稳定地生成UFB,需要排列许多加热元件。为了便于说明,图14C示出了排列有八个均设置有四个加热元件的元件区域的实施方式,但是也能够以增加每个元件区域中的加热元件的数量或增加元件区域的数量的方式排列大量加热元件。在T-UFB生成单元300中,以覆盖加热元件10但不覆盖元件基板12上的电极垫1201和1202的方式设置壁1421和盖(未示出)以形成液体腔室。尽管在本实施方式中没有设置用于分隔液体腔室内部的壁,但是可以设置用于分隔内部的壁。

<实施方式2>

图15A至15F是说明实施方式2的图。尽管参照图14A至图14C所示的结构说明了将SW设置在元件基板12上的实施方式,但本实施方式是将SW设置在元件基板12的外部以降低元件基板12的成本的实施方式。例如,包括多个加热元件和一对电极垫的元件区域被分成多个组(块),待驱动的块(block)可以由SW切换。在实施方式1中,说明了在元件基板12上设置有将多个加热元件并联连接的公共布线区域1231和1232的实施方式。本实施方式是每个加热元件10连接至独立的单独布线1511和1512的实施方式。

图15A是示出元件区域的布局的图,图15B是图15A的等效电路。在图15A中,脉冲形式的供电电压通过电极垫1501和1502以及对应的一对单独布线1511和1512施加到每个加热元件10,加热元件10被同时驱动。由于在图15A的结构中电流通过对应的一对单独布线1511和1512流到每个加热元件10,所以即使在同时驱动加热元件10的情况下,也可以抑制输入到加热元件10的能量的变化。

图15C是电极垫1501和1502的位置与图15A中的位置不同的布局图。电极垫1501和1502的位置集中在元件基板12的一侧上,因此可以提高布局的自由度并且还可以实现致密的结构。由于在图15C的结构中独立的单独布线也连接到相应的加热元件10,所以仍然可以通过该结构本身抑制能量的变化。然而,在排列更多的加热元件10的情况下,连接到加热元件10的布线的长度根据区域1521中所示的加热元件10的不同位置而彼此不同。这导致布线电阻之间的差异,因此可能发生能量变化。具体地,到排列为远离电极垫1501和1502的加热元件10的单独布线电阻大于到排列为靠近电极垫1501和1502的加热元件10的单独布线电阻。因此,根据到电极垫1501和1502的距离,可能发生流过加热元件的能量的变化。

图15D是与图15C中的结构相比更加抑制能量的变化的布局图。在图15D所示的结构中,图15C的区域1521所示的产生布线电阻之差的区域中的布线宽度如区域1522所示变宽。这样的布局可以抑制输入到加热元件10的能量的变化。在图15D的实例中,使连接至远离电极垫1501和1502的加热元件10的单独配线的宽度宽于连接至靠近电极垫1501和1502的加热元件10的单独配线的宽度。

图15E是表示图15D的等效电路的图,特别是示出与配线宽度之差相对应的配线电阻的图。图15E中的布线电阻之间的关系如下:

rliA1<rliA2<rliA3<rliA4;

rliB1<rliB2<rliB3<rliB4;以及

rliA1+rliC1+rliB1+rliD1=rliA2+rliC2+rliB2+rliD2=rliA3+rliC3+rliB3+rliD3=rliA4+rliC4+rliB4+rliD4。

尽管上述表达式以等号连接,但是电阻可以是基本上彼此相等,只要每个加热元件10能够将生成UFB的膜沸腾的变化保持在预定水平即可。

图15F是示出图15D的变形例的布局。图15F示出了SW 1531至1534形成在元件基板12上的实施方式。SW 1531至1534类似于在实施方式1中描述的SW。通过使用SW 1531至1534以分时方式控制驱动并且使加热元件的布线电阻彼此相等,可以进一步抑制能量的变化。

<实施方式3>

类似于实施方式1,本实施方式具有设置有并联地连接加热元件的公共布线的结构。实施方式1中说明下述实施方式:通过使用SW的分时方式的控制来抑制能量的变化以减小寄生布线电阻的影响。本实施方式说明调节供电电压、加热元件电阻和布线电阻以抑制能量变化的实施方式。

图16A至图16E是说明加热元件的寿命的延长的图。图16A是说明如参考图24A至24D所述的那样能够产生100,000次膜沸腾的加热元件的实际范围的图。

如图16A中所示,用于在加热元件10上生成膜沸腾气泡的起泡阈值能量被设为“1”(第一值)时,输入到加热元件的能量的变化落在第一值的1倍至1.3倍的范围内。这可以延长加热元件10的寿命。如果在将起泡阈值能量设为“1”的情况下将输入到加热元件的能量设为“1”,则根据环境条件可能不会产生膜沸腾,存在这种情况下不生成UFB的风险。为了在所有的加热元件10上稳定地生成膜沸腾气泡,可以考虑例如在将起泡阈值能量设为“1”时,考虑到变化等,将输入到加热元件的能量的变化设为起泡阈值能量的1.1倍以上。然而,着眼于以这种结构排列的多个加热元件10中的在考虑施加电压的变化、加热元件的制造变化以及其他可能的变化的情况下,可能被施加最小的能量的一个加热元件10时,如果将该着眼的加热元件10的起泡阈值能量设为“1”,则可以起泡。虽然在这种情况下有极小的可能性出现起泡阈值能量小于1的加热元件,但相对于加热元件10的总数,这种加热元件的数量非常少。因此,在本实施方式中,说明了将用于在加热元件10上生成膜沸腾气泡的起泡阈值能量设为“1”(第一值),输入到加热元件的能量的变化落在所述第一值的1至1.3倍的范围内的实例。

在本实施方式中,说明了输入到加热元件的能量的变化落入上述范围内的具体结构。本实施方式中使用了在实施方式1中说明了的图12B和13B中的布局。本实施方式中说明了以下实施方式,其通过调节供电电压、加热元件电阻和布线电阻,将输入到加热元件的能量保持在基于起泡阈值能量(1.1倍至1.3倍)的预定范围内。更具体地,说明了调节布线电阻的一种实施方式。在密集地排列加热元件的情况下,使加热元件10周围的布线区域的布局紧凑可以延长加热元件的寿命。尽管在此说明了预定范围是起泡阈值能量的1.1倍以上的实例,但如上所述,预定范围还可以是起泡阈值能量的1倍以上。

本实施方式着眼于图13B中的加热元件部分1352、公共布线部分1351以及电极垫1201和1202这三个部分。加热元件部分1352包括加热元件和单独布线区域。在密集地排列加热元件以在短时间内生成UFB的情况下,期望用于单独布线部分的区域尽可能小。另一方面,希望将尽可能多的加热元件部分连接到公共布线部分1351以密集地排列加热元件。

在图13B中,i61至i64分别是流过加热元件rh61至rh64的电流。如图13B所示,此处输入到加热元件rh61至rh64的能量分别由i61×i61×rh61×t1、i62×i62×rh62×t1、i63×i63×rh63×t1、i63×i63×rh63×t1表示。t1是图6A所示的脉冲宽度。在本实施方式中,在光刻步骤中形成加热元件,加热元件具有相同的加热电阻。因此,输入到加热元件的能量之差与流过每个加热元件的电流的平方成比例。

图16B示出图13B的等效电路,是流过加热元件的电流由i1至i4表示,每个加热元件的电阻值与单独地连接到相应加热元件的布线的寄生电阻值之和由r表示,公共布线部分的电阻值由R1至R4表示的图。

在图16B所示的电路中,根据基尔霍夫电路定律,表达式(5)成立:

在使用表1中的值的情况下,由于输入到加热元件的能量之差与流过每个加热元件的电流的平方成比例,因此输入到每个加热元件的能量比如表2所示。

表1

V1 24V
r 200Ω
R1至R4 3.0Ω

表2

Figure BDA0002393303800000342

Figure BDA0002393303800000351

由于布线电阻的差异,输入到距离电极垫1201和1202最远的加热元件rh64的能量最小。在这种情况下,如上所述,确定待输入的能量以使得输入到最远位置的加热元件rh64的能量是预定范围内的最小值即起泡阈值能量“1”的1.1倍。在下文中,输入到加热元件的能量比(在本实例中为起泡阈值能量的1.1倍)简称为输入能量比。

如表1所示,将V1设为24V,将加热元件与分别布线的寄生电阻部分的电阻值之和即电阻值r设为200Ω,将公共流过的部分的电阻值R1至R4设为3.0Ω。在这种情况下,在rh64的输入能量比设为1.1的情况下,输入最大能量的rh61的输入能量比设为1.2。即,在将起泡阈值能量设为“1”的情况下,输入到每个加热元件的能量的比可以保持在1倍至1.3倍的范围内。这种结构可以通过在每个加热元件上产生1.00×10E10次以上的热沸腾来生成UFB。具体地,通过如表1所示将公共流经布线区域的电阻值R1至R4的每一个保持在包括加热元件电阻值的单独布线的电阻值的约1/100以下,可以延长加热元件的寿命。

图16C是与图16B不同的实例。图16C示出加热元件的数量为八个的实例。图16C中的电路可以表示为图13A中的电路。图16D示出图13A的等效电路,是流过加热元件的电流由i1至i8表示、每个加热元件的电阻值与单独地连接到相应加热元件的布线的寄生电阻值之和由r表示、公共布线部分的电阻值由R1至R8表示的图。

如上所述,例如使用表3所示的值,基于基尔霍夫电路定律,实现将施加最小加热元件输入能量的rh8的能量比设为1.1,将施加最大加热元件输入能量的rh1的能量比设为1.3的结构。在这种情况下,输入到每个加热元件的能量比可以如表4所示。

表3

V1 20V
r 200Ω
R1至R4 0.4Ω

表4

加热元件 输入到加热元件的能量比
rh1 1.2
rh2 1.2
rh3 1.1
rh4 1.1
rh5 1.1
rh6 1.1
rh7 1.1
rh8 1.1

如表4所示,在本实例中,加热元件的供电电压设为20V,加热元件的电阻和连接到相应加热元件的单独布线的电阻之和设为200Ω,公共布线中的寄生布线电阻分别设为0.4Ω。在图16B中的结构中,将公共布线中的寄生布线电阻设为3.0Ω(大约是单独布线和加热元件的电阻值之和的1/100)时可以稳定地生成UFB。另一方面,在图16D所示的结构中,需要将公共布线中的寄生布线电阻设为0.4Ω(单独布线和加热元件的电阻值之和的约1/500)以下。在图16D中的结构中,公共布线部分的低电阻降低了整体损耗,并且将供电电压设为20V可以实现表4中所示的预定能量比。

尽管以两个具体实例给出了说明,但是可以根据加热元件的数量考虑各种变化。在任何情况下,只要输入到加热元件的能量落入输入能量比的预定范围(1倍至1.3倍)内,任何结构都可以适用。如图16C中所示,为了抑制输入到加热元件的能量的变化,可以通过加宽公共布线区域1631和1632的布线宽度来减小公共布线中的寄生布线电阻。或者,如图16E所示,可以通过使公共布线区域1631和1632的布线电阻层的膜厚度大于公共布线区域1231和1232的膜厚度,从而减小公共布线中的寄生布线电阻。即,可以将公共布线的宽度或膜厚设定为使得公共布线中的电阻值的量相对于加热元件的电阻与单独地连接到相应加热元件的布线的电阻之和为预定比例以下。

<变形例1>

图17A至图17G是说明加热元件的寿命延长的各种变形例的图。在图16A至16E中,说明了通过减小公共布线部分的电阻可以抑制整体损耗并因此抑制输入到加热元件的能量的变化的实施方式。为了更紧密地排列加热元件,使与加热元件单独地连接的布线区域尽可能小是有效的。

图17A至图17C是示出形成多个布线层的实例的图。图17A是平面布局图,图17B和17C分别是沿XVIIb-XVIIb线的截面图和沿XVIIc-XVIIc线的截面图。通过形成不同于上述连接加热元件的布线层的用作公共布线部分的布线层,可以实现小型化同时减小公共布线电阻的值。在图17A至图17C中,布线层1701是与连接至加热元件10的公共布线区域1231的层不同的层。通孔1702将连接至加热元件10的公共布线区域1231的层与布线层1701电连接。

在图17A至图17C的实施方式中,示出了考虑到来自加热元件10的热应力(heatstress)的影响而没有在加热元件10下方的底层部分设置布线层1701的实施方式。然而,如果所述结构包括形成在布线层的顶部的阻挡层等以抑制热应力,则布线层1701可以延伸至加热元件10下方的底层部分。尽管在图17A至17C的实施方式中说明了将布线层1701形成为新层的实施方式,但是在设置更多的加热元件以实现更高的密度的情况下,可以另外地设置更多的布线层。如参考图16E所述,可以通过增加直接连接到加热元件10的布线的膜厚度来减小布线电阻;然而,在这种情况下,排列在同一层上的加热元件的形状可以在布线层的图案蚀刻期间改变。如该变形例中所述,如果除了直接连接到加热元件的布线层之外还设置单独的布线层,则可以抑制加热元件的形状变化。

<变形例2>

图17D和17E是说明另一变形例的图。在图17A至图17C中,说明了在基板的形成有加热元件10的同一表面上形成电极垫1201和1202的实施方式。如上所述,其上形成有加热元件10的表面包括与液体接触以生成UFB的区域(液体腔室)。液体腔室被壁和盖子覆盖。同时,电极垫1201和1202排列在液体腔室的外部。如果像这种情况那样使加热元件10与电极垫1201和1202彼此电分离,则布线的路线较长。图17D和图17E示出了在设置有加热元件的同一表面上没有设置电极垫1201和1202,并且形成了穿透到元件基板的另一表面的通孔以在元件基板的背面设置电极垫和布线层的实施方式。图17E是沿图17D中的XVIIe-XVIIe线截取的截面图。

如图17D和17E所示,在元件基板的背面的大部分上形成有布线层1741。元件基板的背面是在形成有加热元件的表面的相反面。由于在元件基板的背面上没有来自加热元件10的热应力的影响,因此元件基板的背面的大部分被用作配线层1741。通孔1742连接在形成有加热元件的表面的布线层和背面的布线层1741。布线层1741是公共布线的层,在背面的大部分形成布线层1741可以减小公共布线的布线电阻。在本实施方式中,在背面的大部分(与图17E的实例中的布线层1741的面积相同)上形成有电极垫1751。图17D和17E中的结构可以密集地排列加热元件10,并且也减小公共布线的布线电阻。因此,即使在密集地排列加热元件10的情况下,也可以稳定地生成UFB。另外,由于在背面形成有电极垫,因此能够在形成有加热元件10的表面的大部分设置液体腔室。因此,可以通过密集地排列加热元件10来延长加热元件的寿命。

图17F是示出排列了多个图17D所示的元件的元件基板12的实例的图。由于在图17F的元件基板12中电极垫没有形成在形成有加热元件的同一表面上,所以形成了壁1761以到达元件基板12的外周部分。为了便于说明,图17F是一个简单的示意,也可以通过增加加热元件的数量和元件的数量来以高速度生成UFB。

图17G是示出将图17D所示的元件排列在整个晶片1771上的实例的图。在上述实施方式中将元件基板12切割成矩形,但是对用于生成UFB的元件基板12的形状没有限制。因此,如图17G所示,可以将整个晶片1771应用于T-UFB生成单元300,而无需将形成有加热元件和布线的基板切出。

如参考图17D至图17G所述,在进行元件基板12的背面布线以将电极垫排列在背面上的情况下,可以容易地将电极垫与用于生成UFB的液体分离。在将电极垫设置在元件基板12的背面的情况下,通过外部装置实现输出供电电压脉冲的驱动器、开关等。例如可以通过驱动与图17G中的晶片1771连接的驱动器等来实现稳定地生成UFB。

<实施方式4>

在实施方式2中,说明了不使用公共布线而是使用独立的单独布线的实施方式。在本实施方式中,说明了与实施方式2同样地使用单独布线,并且将多个加热元件10与单独布线连接的实施方式。

图18A至图18C是说明延长加热元件的寿命的实施方式的图。图18A是示出平面布局的图。如上所述,需要同时驱动更多的加热元件以在短时间内生成UFB。图18A示出了设置有比图15F中更多的加热元件的实例。如图18A所示,SW 1821至1824分别设置在独立的布线区域中。另外,分别在每个独立的布线上提供多个加热元件。本实施方式是通过SW 1821至1824以分时方式改变驱动时机,使设置在相同配线区域上的多个加热元件同时驱动的实施方式。

图18B是图18A的电路,图18C示出了SW 1821至1824的驱动时机。在加热元件1811至1814中,同时驱动的加热元件的分支编号由“a”和“b”表示。例如,在将SW 1821设为“H”的情况下,驱动加热元件1811a和1811b。

即使存在多个加热元件的公共布线部分,这种结构也可以将基本上相同的能量输入到同时驱动的加热元件。因此,可以抑制输入到同时驱动的加热元件的能量的变化。

<实施方式5>

在实施方式1中说明了一种实施方式,其通过使用设置在连接到加热元件的单独布线的SW以分时方式控制的驱动来抑制输入到加热元件的能量的变化。如果缩小公共布线区域以实现更高的密度,则即使在使用SW进行分时方式控制的驱动的情况下,也可能会发生输入到加热元件的能量变化。这是因为,如在实施方式1中所述,远离电极垫1201和1202的加热元件和靠近电极垫1201和1202的加热元件在公共布线区域具有不同的布线电阻。

图19A至19C是说明延长加热元件的寿命的实施方式的图。该实施方式是除了以分时方式改变加热元件的驱动时机之外还执行附加控制的实施方式。图19A是示出布局的图。与参照图14A说明的实施方式类似,该实施方式是SW 1921至1924排列在单独布线区域中的实施方式。该实施方式是根据SW 1921至1924的驱动来改变加热元件的供电电压的实施方式。图19B示出了图19A的电路,图19C是示出了SW的驱动时机以及根据该驱动时机的供电电压的值的示意图。

在该实施方式中,通过使用SW 1921至1924以分时方式驱动加热元件,并且以分时方式改变电压从而以分时方式抑制每个时机输入到加热元件的能量的变化。

如图19C所示,在SW 1921驱动具有最小布线电阻的加热元件1911的时机的供电电压低于在驱动其他加热元件1912至1914的时机的供电电压。另外,如图19C所示,该结构形成为布线电阻的增加,驱动其他加热元件1912至1914的时机的供电电压也增加。尽管在图19C中示出了以分时方式改变供电电压的实施方式,但是除了供电电压,也可以改变用于驱动SW的控制信号的脉冲宽度以抑制能量的变化。具体地,通过改变用于驱动相应的SW的控制信号的脉冲宽度可以改变驱动每个加热元件的时间长度。另外,可以将供电电压的分时方式控制和脉冲宽度控制彼此组合。

例如,即使在公共布线区域的布线宽度相同的情况下,该实施方式也能够抑制输入到加热元件的能量的变化。

<实施方式6>

在上述实施方式中,假定安装在元件基板12中的加热元件10在半导体的光刻步骤中制造并且具有相同的形状和相同的电阻来进行说明。另外,在实施方式1的参照图12B说明的结构中,例如,说明了由于流过加热元件1064的电流小于流过加热元件1061的电流因而发生输入到加热元件的能量的变化。在本实施方式中,根据加热元件的排列的位置关系,将加热元件10制成不同的形状。

图20A至20C是说明延长加热元件的寿命的实施方式的图。图20A是示出在使用如图16A所示的能够在实际范围内产生100,000次膜沸腾的加热元件的情况下,在加热元件形成为不同的形状,因此电阻值彼此不同时是否可以生成UFB的图。将加热元件的每单位面积的起泡阈值能量设为“1”,并且加热元件的形状和电阻值不同的情况下,具有允许输入能量为起泡阈值能量的1.1倍以上且3倍以下的电阻值的形状时,能够产生100,000次的膜沸腾。也就是说,即使在加热元件形成为不同的形状并且电阻值彼此不同的情况下,只要输入能量的变化落入上述范围内,就可以稳定地生成UFB。在该实施方式中,根据所输入的能量将加热元件形成为不同的形状,从而使输入到加热元件的能量的变化保持在第一值的1倍至1.3倍的范围内。因此,可以延长加热元件10的寿命。

图20B是示出本实施方式的布局的实例的图。图20C是示出图20B的电路的图。由于流过靠近电极垫1201和1202的加热元件2001的能量具有较小的布线电阻损耗,因此该能量大于流过远离电极垫1201和1202的加热元件2004的能量。因此,确定加热元件的形状以使得每单位面积的能量相等。具体而言,使加热元件2001的电阻图案的长度(在随着长度的增加而电阻增加的方向)比加热元件2004的电阻图案的长度长。即,使加热元件2001的电流流动方向上的长度比加热元件2004的电流流动方向上的长度长。更具体地,从远离电极垫1201和1202的加热元件2004开始,加热元件距电极垫1201和1202越近,加热元件的电阻图案的长度越长。

在将加热元件10制成不同的形状的情况下,膜沸腾气泡13可以形成为不同的形状。即,使加热元件10具有相同形状对于生成均匀的膜沸腾气泡13更加有用。然而,如上所述,生成UFB至少需要在加热元件之间产生的膜沸腾气泡13,并不一定需要形成均匀的膜沸腾气泡13。本实施方式着眼于根据所输入的能量改变加热元件10的形状从而抑制输入到加热元件10的能量的变化以及延长加热元件的寿命。

<实施方式7>

在该实施方式中,说明了监测加热元件的电阻值,并根据所监测的加热元件的电阻值来调节加热元件的供电电压或施加的脉冲宽度的实施方式。

在实施方式1至5中,假定加热元件具有相同的形状和相同的电阻来进行说明,在实施方式6中,说明了加热元件的形状发生改变的实施方式。为了在更短的时间内快速生成UFB,如图17G所示,需要扩大元件基板或在整个晶片上排列加热元件。在这种情况下,例如,膜厚度的平面内分布或加热元件图案的平面内变化可能引起加热元件的电阻值和初始设计尺寸的变化。这可能改变输入到加热元件的能量,并且使得难以延长加热元件的寿命。

图21A至图21D是说明延长加热元件的寿命的实施方式的图。图21A是示出布局的实例的图。本实施方式是设置了加热元件的电源2101以及电阻测量仪器2102的实施方式。电阻测量仪器2102监测加热元件的电阻值。然后,根据所监测的电阻值来调整输入到加热元件的能量。这使得可以在使用相当大的加热元件基板(例如整个晶片)的情况下,抑制UF生成期间的能量变化。图21B是根据所监测的电阻值调整施加的脉冲宽度的实例。图21C是根据所监测的电阻值来调整加热元件的供电电压的实例。如图21B和21C所示,输入能量的调整可以以分时方式进行,或者可以通过将加热元件分为多个块的块单元来进行。

<变形例>

图21D是示出变形例的图。图21A中的结构表示以分时方式进行控制,并且在分时方式中每个时机驱动一个加热元件的实施方式。图21D是以分时方式进行控制期间在分时方式的每个时机驱动多个加热元件的实例。如图21D所示,可以在将同时驱动的加热元件的数量设为相同的情况下,以分时方式控制电压或脉冲宽度的调节。

<实施方式8>

在上述实施方式中,说明了与SW相对应的块均包括相同数量的多个加热元件,且所述多个加热元件由相对应的SW同时驱动的实施方式。在本实施方式中,说明了根据块来改变由相对应的SW同时驱动的加热元件的数量的实施方式。

图22A至图22D是说明延长加热元件的寿命的实施方式的图。图22A是说明该实施方式的布局的图。在对应于SW 2221的块中设置一个加热元件2211。在对应于SW 2222的块中设置两个加热元件2212a和2212b。在对应于SW 2223的块中设置两个加热元件2213a和2213b。在对应于SW 2224的块中设置三个加热元件2214a、2214b和2214c。图22B示出了根据同时驱动的加热元件的数量来调节供电电压的实例。即使以这种实施方式,也可以抑制输入到加热元件的能量的变化。

<实施方式9>

在上述实施方式中,说明了从电极垫连接的多个加热元件并联电连接的实施方式。在该实施方式中,说明了从电极垫连接的多个加热元件在同一布线上串联电连接的实施方式。

图22C是说明本实施方式的布局的图。如图22C所示,通过串联连接加热元件2231可以使电流恒定。另外,通过驱动多个加热元件可以高速生成UFB。

<变形例>

图22D是示出变形例的图。图22D示出了使加热元件的电阻图案的宽度长于串联连接加热元件的情况下的电阻图案的长度的实例。在串联连接中,由于串联连接,用于驱动加热元件的供电电压高。如果不希望高电压作为加热元件的驱动电源,则图22D所示的结构可以在保持加热元件面积的同时,防止加热元件的电源电压过高。可以采用具有宽的宽度的多个加热元件串联连接的这样的实施方式。

<实施方式10>

在上述实施方式中,说明了通过调整布局或调整驱动时机来抑制输入到加热元件的能量变化的实施方式。在本实施方式中,说明一种使加热元件的两端或一端的电压保持恒定的机制的实施方式。

图23A至图23D是说明延长加热元件的寿命的实施方式的图。图23A是将使电压恒定的电路2301和2302设置在加热元件1011至1018的两端,以保持输入到加热元件的能量恒定的实施方式。通过使用用于使电压恒定的电路2301和2302在加热元件1011至1018的连接部分中强制保持电压恒定,可以抑制输入到加热元件的能量的变化。图23B是示出作为用于使电压恒定的电路的示例的源极随动件(source follower)的图。使用使电压恒定的电路可以吸收布线电阻损耗之间的差异,从而可以抑制输入到加热元件的能量的变化。

图23C和23D是示出分别排列有用于使一侧上的电压恒定的电路2301和电路2303的布局的图。尽管用于使电压恒定的电路仅设置在一侧,但是仍然可以获得使施加于加热元件的电压恒定的效果。另外,可以如图23C所示使用于使电压恒定的电路排列在分支到单独布线区域的之前,并且可以如图23D所示使用于使电压恒定的电路排列在分支到独立布线区域之后。这里说明了排列有使电压恒定的电路的实施方式,但也可以采用在加热元件的两端或一端排列有用于使电流恒定的电路的结构,该电路使流过加热元件的电流恒定。另外,如上所述,可以将电极垫设置在背面,并且可以将用于使电压恒定的电路设置在其上设置有加热元件的表面。

<其他实施方式>

在上述实施方式中,在假定UFB是在恒定温度和恒定环境压力的条件下生成的情况下给出说明。即,不考虑变化的温度和环境压力。由于UFB生成装置通过驱动加热元件来生成UFB,因此,UFB生成装置1(特别是设置有加热元件的UFB产生单元)的温度是变化的。由于膜沸腾在大气压下是在300℃左右产生的,因此根据UFB生成单元的温度所施加的能量可能会增加和减少,因此可以稳定地生成UFB。

为了使用期望的气体生成UFB,期望在将气体尽可能地溶解于生成UFB的液体中之后产生膜沸腾。在这种情况下,通过在使整个UFB生成装置1处于高压下(例如,平均大气压的三倍到四倍)的状态下生成UFB,可以更有效地由所期望的气体稳定地生成UFB。在这种情况下,由于在高压下产生膜沸腾的温度也升高,因此所施加的能量根据膜沸腾阈值而增加,因此,可以像上述实施方式那样抑制能量的变化。

根据本公开,可以有效地产生UFB含有液,并且可以提供具有改善的耐久性的UFB生成装置。

尽管已经参考示例性实施方案说明了本发明,但是应当理解,本发明不限于所公开的示例性实施方案。所附权利要求的范围应被赋予最宽泛的解释,以涵盖所有这样的修改以及等同的结构和功能。

73页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种粉体隔离剂计量配比溶解输送装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类