一种太阳电池结构及其制备方法

文档序号:1230594 发布日期:2020-09-08 浏览:30次 >En<

阅读说明:本技术 一种太阳电池结构及其制备方法 (Solar cell structure and preparation method thereof ) 是由 冯康宁 宋明辉 魏成泰 刘冠洲 陈文浚 于 2020-06-05 设计创作,主要内容包括:本发明公开了一种太阳电池结构及其制备方法,所述电池结构包括:支撑衬底,包括第一表面和与第一表面相对的第二表面;下电极,设置于支撑衬底的第一表面之上;键合金属层,设置在支撑衬底的第二表面之上;外延叠层,设置于键合金属层之上;上电极,设置于外延层之上;所述电池结构存在因键合不牢固,外延层脱落而导致键合金属层裸露的爆点;其特征在于:还包含绝缘保护层,位于所述爆点区域之上。采用本发明中的太阳电池结构,可有效解决爆点导致太阳电池漏电或者短路的问题,保持爆点区域次栅线的连贯性,提高光生电流收集能力,从而有效提高大面积太阳电池产品良率。(The invention discloses a solar cell structure and a preparation method thereof, wherein the cell structure comprises: a support substrate including a first surface and a second surface opposite to the first surface; a lower electrode disposed over the first surface of the support substrate; a bonding metal layer disposed over the second surface of the support substrate; an epitaxial stack disposed over the bonding metal layer; the upper electrode is arranged on the epitaxial layer; the battery structure has an explosion point which leads to the exposure of a bonding metal layer due to the loose bonding and the falling of an epitaxial layer; the method is characterized in that: the explosion point device also comprises an insulating protection layer which is positioned above the explosion point area. By adopting the solar cell structure, the problem of electric leakage or short circuit of the solar cell caused by the explosion point can be effectively solved, the continuity of the secondary grid line in the explosion point area is kept, and the photo-generated current collection capability is improved, so that the yield of large-area solar cell products is effectively improved.)

一种太阳电池结构及其制备方法

技术领域

本发明涉及一种太阳电池结构及其制备方法,属于半导体电子器件领域。

背景技术

键合是制备倒装太阳电池常用的一种方法,将外延片与衬底清洗和活化处理后,在高温、高压条件下直接结合,通过范德华力、分子力甚至原子力使晶片键合成为一体的技术。键合时,由于外延片表面颗粒、引入脏污颗粒或晶格位错等原因,上述区域存在键合不牢的问题,导致外延层爆开、脱落,从而键合金属层裸露。爆点区域存在大量载流子复合中心,致使太阳电池器件漏电,导致太阳电池性能不达标;假如在爆点区域蒸镀次栅线,会直接导致太阳电池器件短路。对于大尺寸太阳电池,上述爆点会直接降低产品的良率,因此解决由上述爆点引起的太阳电池漏电或者短路的问题变得尤为重要。

发明内容

鉴于上述现有技术的不足,本发明提出一种太阳电池结构,所述太阳电池结构包括:支撑衬底,包括第一表面和与第一表面相对的第二表面;下电极,设置于支撑衬底的第一表面之上;键合金属层,设置在支撑衬底的第二表面之上;外延叠层,设置于键合金属层之上;上电极,设置于外延层之上;所述电池结构存在因键合不牢固,外延层脱落而导致键合金属层裸露的爆点;其特征在于:还包含绝缘保护层,位于所述爆点区域之上。

优选的,所述上电极由Pad、主栅线和次栅线组成,所述次栅线可以直接在爆点区域上蒸镀。

优选的,所述外延叠层由双结结构或者多结结构组成。

优选的,所述爆点的深度约为5~25μm。

优选的,所述爆点的直径约为10-1000μm。

优选的,在爆点区域沉积绝缘保护层之前,先对所述爆点区域进行化学选择性腐蚀钝化处理。

优选的,所述绝缘保护层为MgF2、Ti3O5、SiO2、SiNx材料组成的单层或多层膜结构。

优选的,所述绝缘保护层的厚度为0.1~5μm。

本发明还提供一种太阳电池结构的制备方法,其步骤如下:1)在生长衬底上生长外延叠层,形成太阳电池外延片;2)在太阳电池外延片与支撑衬底表面均蒸镀键合金属层;3)太阳电池外延片通过键合金属层键合到支撑衬底上;4)化学溶液蚀刻外延片衬底,衬底去除后,表面会出现少量爆点;5)将外延片熔合,超声震荡,使键合不牢的外延层脱落;6)使用化学溶液对爆点区域侧壁进行化学选择性腐蚀;7)在外延片表面沉积绝缘保护层材料,爆点区域点胶,然后蚀刻掉爆点区域以外的绝缘保护层材料,并去胶;8)在外延片表面做上电极光罩;9)进行上电极金属蒸镀、剥离并去除光罩层;10)进行下电极金属层蒸镀、熔合、切割、侧壁钝化处理。

优选的,所述支撑衬底为Si衬底、可伐片或GaAs衬底。

优选的,所述爆点面积小于8%。

优选的,爆点区域使用正性光刻胶进行点胶处理。

优选的,所述爆点区域的次栅线均为连续,可使爆点区域附近的光生电流通过此连续的次栅线快速汇流至Pad电极,导出到外电路。

本发明提出的一种太阳电池结构及其制备方法,具有以下有益效果:

1.可有效避免因爆点导致太阳电池漏电或者短路的问题,从而有效提高大面积太阳电池产品良率,降低生产大尺寸器件的工艺难度;

2.爆点区域面积一般较小,使用上述方法处理后,太阳电池有效吸光面积变化可忽略不计,不会引起电池性能的降低;

3.经过爆点区域的次栅线均为连续,未发生中断,可使爆点区域附近的光生电流通过此未中断的次栅线快速汇流至Pad电极,导出到外电路。

附图说明

本附图说明以倒装三结太阳电池为例进行说明,但不应以此局限本发明的保护范围。

图1为实施例1中太阳电池结构的侧面剖视图。

图2为实施例1中太阳电池结构的俯视示意图。

图3为本实施例1GaAs衬底上GaInP/GaAs/InGaAs倒装三结太阳电池的侧视示意图。

图4是本实施例中GaInP/GaAs/InGaAs倒装三结太阳电池键合在Si片上的侧视示意图。

图5为实施例1中对比太阳电池结构的侧面剖视图。

图6为实施例1中对比太阳电池结构的俯视图。

图中标示:GaAs衬底001、GaInP顶电池002、GaInP/AlGaAs第一隧穿结003、GaAs中电池004、GaAs第二隧穿结005、InGaAs底电池006、键合金属层007、Si片008、爆点009、绝缘保护层010、上电极011、Pad 012、主栅线013、次栅线014、下电极015。

具体实施方式

下面结合具体实施方式对本发明的技术方案作详细说明,但说明仅仅是为了更好的阐述本发明的内容而非限制本发明的保护范围。

本实施例提供一种太阳电池结构,如图1和图2所示,所述太阳电池结构包括:支撑衬底008为Si片;下电极015为Pd/Ag/Au,设置在Si片下表面;键合金属层007Ti/Pt/Au,设置在Si片上表面;InGaAs底电池006,设置在键合金属层007之上;GaAs第二隧穿结005,设置在InGaAs底电池之006上;GaAs中电池004,设置在GaAs第二隧穿结005之上;GaInP/AlGaAs第一隧穿结003,设置在GaAs中电池004之上;GaInP顶电池002设置在GaInP/AlGaAs第一隧穿结003之上;上电极011,设置在GaInP顶电池002之上;所述上电极011由Pad012、主栅线013和次栅线014组成。所述电池结构存在因键合不牢固,外延层脱落而导致键合金属层裸露的爆点009;爆点区域存在大量载流子复合中心,致使太阳电池器件漏电,导致太阳电池性能不达标,假如在爆点区域蒸镀次栅线,会直接导致太阳电池器件短路,本发明提出在所述爆点区域位置沉积绝缘保护层010,可以解决因爆点导致太阳电池的漏电或者短路问题。

所述爆点的深度约为5~25μm,直径约为10-1000μm。

所述绝缘保护层010为MgF2、Ti3O5、SiO2、SiNx材料组成的单层或多层膜结构,本实施例优选为SiNX。材料绝缘保护层010的厚度为0.1~5μm。

本实施例还提供一种太阳电池制备方法,包括以下工艺步骤:

1)将一GaAs衬底001清洗干净,并装入MOCVD 反应室,腔体压力设置在120mbar,运行外延生长程序,依次获得GaInP顶电池002,GaInP/AlGaAs第一隧穿结003,GaAs中电池004,GaAs第二隧穿结005,InGaAs底电池006,从而在GaAs衬底上获得了GaInP/GaAs/InGaAs倒装三结太阳电池外延片,如图3所示。

2)倒装太阳电池外延片与Si片008清洗后,蒸镀键合金属层007Ti/Pt/Au,厚度分别为50/50/400nm。

3)使用键合机台,压力10000kgf,温度250℃下耗时30min,将倒装太阳电池外延片通过金金键合工艺键合到Si片008上,其中Si片008为4英寸,厚度375μm,厚度均匀性为3μm;键合后金属层007厚度1μm,整面厚度均匀性为20nm,如图4所示。

4)使用氨水:双氧水=1:1腐蚀溶液蚀刻GaAs衬底001,衬底去除后,由于外延片表面有凸起颗粒、脏污颗粒、晶格位错,导致AuAu键合不牢,外延层脱落,表面出现少量爆点009,键合金属层裸露。

5)将外延片放入RTA机台,320熔合1min,之后超声震荡5min,使键合不牢的外延层脱落。

6)对外延片进行腐蚀钝化处理,顶电池材料为GaInP,使用盐酸:磷酸混合溶液对顶电池进行侧壁钝化处理,中电池材料为GaAs,使用柠檬酸:双氧水混合溶液对中电池进行钝化处理。

7)使用PECVD设备,260℃下在外延片表面沉积绝缘保护层SiNx 010,厚度200nm;在爆点区域使用AZ P4620正性光刻胶进行点胶处理,之后外延片浸泡3min BOE溶液,去除爆点区域以外的SiNx,浸泡丙酮溶液超声去胶。

8)使用NR9-6000负性光刻胶,在外延片上制作上电极光罩图形。

9)使用蒸镀机蒸镀上电极011,沉积Ti/Pd/Ag/Au金属材料,厚度分别为50/50/60000/100nm,随后进行剥离,并去胶。

10)在Si片008表面蒸镀下电极012,沉积Pd/Ag/Au,厚度分别为50/400/200nm,随后进行熔合、切割、侧壁钝化处理,即可获得如图1所示器件结构。

图5和图6分别为本实施例中的对比太阳电池结构的侧面剖视图和俯视图,其爆点区域未镀绝缘保护层,当对比太阳电池结构工作时,会发生漏电或短路的问题。本发明提出的一种太阳电池结构及其制备方法,可有效避免因爆点导致太阳电池漏电或者短路的问题,从而有效提高大面积太阳电池产品良率,降低生产大尺寸器件的工艺难度;同时爆点区域面积一般较小,使用上述方法处理后,太阳电池有效吸光面积变化可忽略不计,不会引起电池性能的降低;经过爆点区域的次栅线均为连续,未发生中断,可使爆点区域附近的光生电流通过此未中断的次栅线快速汇流至Pad电极,导出到外电路。

以上仅仅是本发明的实施方法,本发明的应用不限于上述的实例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高效率双面受光柔性硅异质结太阳电池的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类