用于单模电光模块的表面安装封装

文档序号:1256312 发布日期:2020-08-21 浏览:19次 >En<

阅读说明:本技术 用于单模电光模块的表面安装封装 (Surface mount package for single mode electro-optic modules ) 是由 戈德蒙·A·哈尔特森 克雷格·埃利奥特 于 2019-01-25 设计创作,主要内容包括:提供了陶瓷球栅阵列(CBGA)封装件形式的电光模块,该电光模块具有可拆卸光纤连接器。该封装件能够使用标准的电子器件拾取、放置和回流制造技术被表面安装在印刷电路板上。这种封装允许将基于超高速单模光纤的光发送和接收器件直接安装在印刷电路板(PCB)上、与其相关的电子器件紧密相邻。对于诸如高速数据中心互连的应用,产生的更短电互连减少了高频电信号的损耗和失真,从而在接口上实现较低的功率信号和较低的错误率。较短的电互连也可以允许更简单的时钟和数据恢复电路,或者在某些情况下,完全消除这些电路中的一些。(An electro-optic module in the form of a Ceramic Ball Grid Array (CBGA) package is provided having a removable fiber optic connector. The package can be surface mounted on a printed circuit board using standard electronic device pick-and-place and reflow manufacturing techniques. This packaging allows for the direct mounting of ultra-high speed single mode fiber based optical transmission and reception devices on a Printed Circuit Board (PCB) in close proximity to its associated electronics. For applications such as high-speed data center interconnects, the resulting shorter electrical interconnects reduce loss and distortion of high-frequency electrical signals, thereby achieving lower power signals and lower error rates on the interface. Shorter electrical interconnects may also allow simpler clock and data recovery circuits, or in some cases, eliminate some of these circuits altogether.)

用于单模电光模块的表面安装封装

相关申请的交叉引用

本申请要求于2018年2月1日提交的标题为“用于单模电光模块的表面安装封装(Surface Mount Packaging for Single Mode Electro-Optical Module)”的美国临时专利申请号62/625,291的优先权,该美国临时专利申请通过引用以其整体并入本文。

技术领域

本发明涉及包括光发送器和接收器(诸如用于数据中心应用的基于单模光纤的光发送器和接收器)的电光装置的封装和互连。

背景技术

高性能光学器件被常规地封装在插入数据交换设备的电路板的面板中的可插拔封装件中,或者被封装在直接安装在电路板上以用于长距离/高性能应用的大型模块中。

在早期,数据中心互连主要是基于铜的。高达1GB/s的互连速度可以容易、廉价地实现在直接表面安装到印刷电路板(PCB)上的小型硅芯片中。用于链接的电连接器通常以高密度布置安装在面板上。通过正确的铜缆,可以容易实现高达100米的距离。光纤接口用于超过100米的距离或需要更高速度的情况。这些光纤接口在数据中心的所有接口中占相对较小的比例,并且根据诸如所需速度和链接距离的参数在它们的具体实现方式中趋向于存在多种。一种解决方案是定义标准的可插拔封装件,该封装件可以支持不同光纤标准的多种阵列,例如单模光纤和多模光纤。这样,通过简单地选择合适的可插拔模块并将其插入设备,可以优化每个特定应用。

随着数据中心业务量进一步增长,对10Gb/s铜链接的需求变得明显。不幸的是,10G铜标准花费若干年方实现所需性能和功耗规格,甚至在数据中心不仅变得更快、而且往往更大时,只能实现约50米的有限范围。由于新一代10G铜互连的最大范围距离比更慢的铜链接更短,因此当许多数据中心变得更大时,清楚的是,当速度随着大型数据中心的大小增长时,只有较短的链接可能是基于铜的,而超过50米的链接必须是光纤。

随着数据中心的大小和互连速度不断增长,光纤将在互连设备中发挥主导作用,而铜仅用于非常短的链接。最终,短链接也可能完全被光纤取代。

尽管铜和光纤互连的作用正在颠倒,但是系统实现尚未发生重大变化。在铜互连主导的时期,铜链接的链接端是直接焊接到PCB的小型电子芯片。除相对少数外,在插入系统板的面板中的可插拔封装件中实现光链接。结果是铜接口可能更密集(即通过每个板中的链接进行测量),这是因为电子芯片很小并且分布在PCB上,而连接器也很小并且可以以非常密集的阵列实现在PCB面板上。与铜链接相比,光模块更大,并且每个链接需要更多的面板面积。

在将来,需要以与PCB面板上的铜链接相同的密度或更高的密度实现光端口。但是,现有的可插拔模块存在许多挑战。例如,这些板上的硅芯片的芯交换容量甚至比最密集和最快的可用可插拔光模块的面板容量高。可插拔模块只可以沿着它们所插入的面板的非常窄的区域散发热。这对于可插拔模块的功耗数据提出了挑战,特别是随着对速度的需求不断增长。而且,光链接的速度每通道增长到25Gb/s和56Gb/s,由于互连长度和速度,板上的芯交换芯片和面板上的可插拔光模块之间的连接设计在电气上变得更具挑战。因此,需要改进或替代的解决方案来实现用于诸如高速数据中心互连的应用的高密度光端口。

发明内容

本发明试图减轻已知的可插拔光学模块的上述缺点中的一个或多个,或至少提供替代方案。

本发明的方面提供了电光模块、光纤连接器以及表面安装电光模块和可拆卸光纤连接器的组件。本发明的实施例提供了被配置用于封装诸如用于包括数据中心互连应用的高速高密度光纤互连的光发送器和接收器的电光器件的模块。

本发明的第一方面提供了一种电光模块,其包括:表面安装封装件主体,包括基板和盖;半导体芯片阵列,包括安装在基板上的光子集成电路,每个光子集成电路包括光子器件和相关的电子器件,每个光子器件包括具有光输出孔的光发射器和具有光输入孔的光接收器中的至少一个;盖包括与每个光子器件的所述光输入/输出孔对准的光学端口阵列,光学端口阵列被配置为连接到承载多个光纤尾纤的光纤连接器的相应光学端口阵列。

例如,封装件的盖的光学端口的阵列包括套圈插座的阵列,该套圈插座的阵列用于接纳承载多个光纤尾纤的光纤连接器的连接器套圈。替代地,盖的光学端口的阵列可以包括光纤短截线套圈的阵列,以用于例如使用分体式套筒联接到承载多个光纤尾纤的光纤连接器的光纤套圈。

在实施例中,表面安装封装件具有球栅阵列(BGA)封装的形式,其中用于电子电路的电连接从电子电路穿过基板延伸到基板的后侧,并且在基板的后侧设置多个焊料球连接阵列以将封装件主体附接到安装表面及其电连接。在一个实施例中,BGA封装件包括陶瓷BGA(CBGA)封装件,其中封装件主体的基板和盖包括陶瓷材料。光纤套圈和套圈插座也包括可以精确模制或机加工的陶瓷材料。

本发明的第二方面提供了一种用于电光模块的可拆卸光纤连接器,该光纤连接器包括:承载多个光纤尾纤的连接器主体;各个光纤连接器,包括用于每个光纤的套圈,套圈被布置为与电光模块的光学端口阵列匹配的阵列,用于将每个光纤的套圈与电光模块的相应光学端口进行光耦合。

本发明的另一方面提供了一种电光组件,其包括:

电光模块和承载多个光纤尾纤的可拆卸光纤连接器,电光模块包括表面安装封装件主体,表面安装封装件主体包括基板和盖;半导体芯片阵列,包括安装在基板上的光子集成电路,每个光子集成电路包括光子器件和相关的电子器件,每个光子器件包括具有光输出孔的光发射器和具有光输入孔的光接收器中的至少一个;盖包括与每个光子器件的所述光输入/输出孔对准的光学端口阵列,例如,其中每个光学端口包括套圈插座或光纤短截线的套圈;可拆卸光纤连接器包括承载光纤尾纤的连接器主体以及布置成与电光模块的光学端口阵列匹配的阵列的各个光纤的连接器套圈,每个光纤的连接器套圈可移除地插入相应的套圈插座或分体式套筒中,用于连接到电光模块的光纤短截线套圈。

例如,电光模块包括陶瓷球栅阵列型封装件,该封装件在使用中被表面安装到诸如PCB的下面基板上。封装件被配置为使用标准组装工艺进行安装,诸如拾取和放置以及焊料回流。直到将光电模块表面安装并且组件准备使用后,附接可拆卸光学连接器。

例如,在实施例中,电光模块包括:陶瓷球栅阵列封装件,包括基板和盖,基板具有前表面和后表面;多个半导体芯片的阵列,包括安装在基板的前表面的器件区域上的光学器件和相关的电子电路,所述光学器件中的每个包括具有光输出孔的光发射器件和具有光输入孔的光接收器件中的至少一个;基板的后表面包括多个焊料球连接的球栅阵列;多个导电互连延伸穿过基板,并且将半导体芯片的电子电路的导电迹线互连到球栅阵列的相应的球连接;盖在基板上延伸并覆盖基板并围绕基板的外周附接,盖的表面包括多个光学端口的阵列,所述多个光学端口的阵列具有与光学器件阵列的所述光输入/输出孔对准的布置;光学端口阵列中的每个光学端口用于连接单模光纤的光纤连接器的套圈。

当光学器件阵列包括布置在基板上的光学器件的n x m阵列时,多个光学端口的阵列包括延伸穿过盖的顶表面并与下面的光发送器和接收器的光输入/输出孔对准的光学端口的n x m阵列的对应布置。例如,其中光学器件的n x m阵列包括光学器件的2×2阵列,并且光学端口被布置为对应的2×2阵列以提供竖直联接或表面联接布置。在边缘联接或横向联接布置中,光学器件的阵列包括基板上的n个光学器件的阵列,并且多个光学端口的阵列包括沿着盖的边缘布置的光学端口的1×n阵列,n个光学器件的阵列的光输入/输出孔与多个光学端口的阵列对准。

在电光模块和承载有多个光学尾纤的可拆卸光学连接器的组件中,其中,电光模块例如通过焊料回流表面安装在印刷电路板上,其中,可拆卸光学连接器包括承载多个光纤尾纤的连接器主体,其中每个光纤具有包括连接器套圈的光纤连接器,并且连接器套圈配置为阵列,以可移除地插入到电光模块的相应光学端口,电光模块和可拆卸光学连接器包括对准和闩锁装置,用于将电光模块和可拆卸光学连接器固定在一起,尾纤的光纤与电光模块的光学器件的光输入/输出孔光学对准。

例如,对准和闩锁装置包括:电光模块和可拆卸连接器的对准表面,用于每个光纤的xyz定位;光学器件之一的相应光输入/输出孔,用于有效的光耦合;闩锁元件,用于将光纤连接器可移除地连接到电光模块。在一个实施例中,对准装置包括间隔件和诸如弹簧元件的弹性柔性元件,用于光纤相对于光学器件的光输入/输出孔的xyz定位。电光模块和光纤连接器的表面可以充当对准元件,用于将每个光纤对准光子器件的相应光输入/输出孔,并与闩锁元件配合以将电光模块和可拆卸光纤连接器对准以实现有效的光耦合。在一个实施例中,在每个芯片附近提供间隔件,以接合光纤连接器的套圈,并确保每个光纤与光子器件的光学孔径之间的正确竖直间隔(z方向),以进行有效的光耦合。

每个光子集成电路可以包括光接收器(诸如,光电二极管检测器)、光发射器(诸如,二极管激光器)或包括光发射器和光检测器的光收发器中的至少一个;光学器件可以包括其他光学部件,诸如调制器、光学放大器和光波导以及组合有光接收器或光发射器以及相关的电子电路。电光模块可以被配置用于承载光纤尾纤的光学连接器的表面联接,即竖直联接或边缘联接。在竖直联接或边缘联接配置中,电光模块和光学连接器包括用于将电光模块和光学连接器固定在一起的闩锁元件。对准装置(诸如电光模块和光纤连接器的对应对准表面)提供x、y、z对准和间隔,从而使尾纤的光纤与电光模块的相应的光接收器件和光发射器件的光学孔径光学对准。

还公开了一种电光模块的制造和组装方法。例如,在制造方法的实施例中,通过常规的拾取和放置以及焊料回流工艺将电光模块表面安装到印刷电路板上。因此,本发明的其他方面提供了如上定义的多个电光模块(其被配置为使用带卷形式进行表面安装)以及用于制造所公开的部件及其组件的方法。

本文描述的实施例的电光模块使得能够以更高的密度来实现光学端口,并且可能以与PCB面板上的铜链接的密度相当或更高的密度来实现光端口。这种封装配置还能够以类似于早期的铜链接的方式在与PCB上的内部交换芯片物理接近的位置在PCB上分配光电(E/O)模块。当E/O模块安装在与之通信的芯交换芯片附近时,通信链路将短得多且更容易实现,从而使信号干净无错误,并消耗更少的功率。通过将光学模块分布在板上,可以通过在板的整个区域上分布散热并在PCB上拾取气流来更有效地冷却它们。

此外,以类似于常规的可表面安装的球栅阵列封装的封装件形式实现电光模块允许以带卷形式运输它们,使得印刷电路板可以以与板上只有电子器件相同的方式组装,例如使用表面贴装、拾取和放置机器、然后使用焊料回流炉。光学封装件配置可承受回流焊炉的热,因此光学模块不需要昂贵的高速电源插座,因为可以进行直接表面安装焊接,并且可以使用标准的返工方法和工具对包括光学模块的板上的缺陷进行返工。这种方法还提高了PCB上链接的信号完整性,例如启用25G或更高速度的链接。由于CBGA封装件的表面安装是在卸下光纤连接器的情况下完成的,因此光纤连接器可以由不需要承受高温PCB处理(诸如焊料回流)的材料和组分制成。

通过以下结合附图对本发明实施例的详细描述,本发明的前述和其他目的、特征、方面和优点将变得更加显而易见,所述描述仅是示例。

附图说明

在附图中,在不同附图中相同或相应的元件具有相同的附图标记,或者在连续附图中相应的元件具有以1000递增的附图标记。

图1示出了组件的示意性等距视图,该组件包括安装在印刷电路板上的第一实施例的电光模块,该组件具有包括四个光纤尾纤的可拆卸光学连接器;

图2示出了包括图1所示的电光模块的组件的部件的示意性分解等距视图;

图3是图2所示的第一实施例的电光模块的示意性放大等距视图;

图4示出了图3的电光模块的部件的示意性分解等距视图;

图5示出了图3的电光模块的示意性俯视图;

图6示出了图3的电光模块的示意性下侧视图;

图7示出了图3的电光模块的示意性侧视图;

图8示出了第一实施例的公光学连接器的示意性等距视图,其中多个光纤和光纤连接器插入到连接器的主体中;

图9示出了图8的光学连接器的示意性侧视图,其中插入了光纤和光纤连接器;

图10示出了图8的光学连接器的示意性俯视平面图;

图11示出了图8的光学连接器的示意性下侧平面图;

图12示出了图8所示的公光学连接器和光纤的部件的示意性等距分解图;

图13示出了在将光纤连接器对准和插入到电光模块期间第二实施例中的电光模块和光纤连接器的组件的部件的示意性横截面图;

图14示出了在电光模块和光纤连接器的对准和插入之后第二实施例的电光模块和光纤连接器的组件的部件的示意性横截面图,闩锁接合以固定部件;

图15示出了包括集成电光子器件的半导体芯片的示例的平面体的显微照片,其中该电光子器件包括光电二极管检测器和相关的电子电路;

图16示出了图14的电光模块组件的一部分的放大的简化示意侧视图,以示出对准装置的部件;

图17示出了安装在陶瓷基板上的电光子芯片的示例的示意图;

图18示出了组件的示意性等距视图,该组件包括安装在印刷电路板上的第三实施例的电光模块并具有包括四个光纤尾纤的可拆卸光学连接器;

图19示出了包括图18所示的电光模块的组件的部件的示意性等距视图;

图20示出了图19中所示的电光模块的示意性等距视图;

图21示出了图20的电光模块的示意性俯视图;

图22示出了图20的电光模块的示意性侧视图;

图23示出了图20的电光模块的示意性下侧图;

图24示出了图20的电光模块的部件的示意性分解等距视图;

图25示出了第三实施例的公光学连接器的示意性等距视图,其中多个光纤和光纤连接器插入到连接器的主体中;

图26示出了图25的光学连接器的示意性俯视平面图;

图27示出了图25的光学连接器的示意性侧视图,其中插入了光纤和光纤连接器;

图28示出了图25的光学连接器的示意性下侧平面图;

图29示出了图25所示的公光学连接器和光纤的部件的示意性等距分解图;

图30示出了在组装期间包括第三实施例的电光模块和公光学连接器的部件的截面图,示出了内部部件;

图31是组装后的包括第三实施例的电光模块和公光学连接器的部件的截面图,示出了内部部件;

图32示出了在将光纤连接器对准和插入到电光模块中期间,第四实施例的电光模块和光纤连接器的组件的部件的简化示意性横截面图;

图33示出了包括安装在印刷电路板上的第五实施例的电光模块的组件的示意性等距视图,该组件具有包括四个光纤尾纤的可拆卸光学连接器;

图34示出了包括图33中所示的电光模块的组件的部件的示意性等距视图;

图35示出了图34中所示的电光模块的示意性等距视图;

图36示出了图35的电光模块的示意性俯视图;

图37示出了图35的电光模块的示意性侧视图;

图38示出了图35的电光模块的示意性下侧图;

图39示出了图35的电光模块的部件的示意性分解等距视图;

图40示出了第五实施例的公光学连接器的示意性等距视图,其中多个光纤和光纤连接器插入到连接器的主体中;

图41示出了图40的光学连接器的示意性俯视平面图;

图42示出了图40的光学连接器的示意性侧视图;

图43示出了图40的光学连接器的示意性下侧平面图;

图44示出了图40所示的公光学连接器和光纤的部件的示意性等距分解图;

图45示出了在组装期间包括第五实施例的电光模块和公光学连接器的部件的截面图,示出了内部部件;

图46示出了组装后的包括第五实施例的电光模块和公光学连接器的部件的截面图,示出了内部部件;

图47示出了另一实施例的电光模块的示意性等距视图;

图48示出了图47的电光模块的示意性侧视图;

图49示出了图47的电光模块的示意性下侧图;

图50示出了用于另一实施例的电光模块的光学连接器的示意性等距视图,其中插入了光纤和光纤连接器;

图51示出了图50的光学连接器的示意性俯视图;和

图52示出了图50的光学连接器的侧视图。

具体实施方式

图1示出了组件10的等距示意图,该组件包括本发明的第一实施例的电光模块100,电光模块表面安装在包括印刷电路板(PCB)102的基板上。示出了具有连接器主体202的光学连接器200被插入到电光模块100中,连接器主体承载具有应变消除套224的四个单模光纤尾纤220。包括闩锁元件204和206的闩锁装置将光纤连接器200固定到电光学模块100。

图2示出了组件10的部件(包括图1所示的电光模块100和光学连接器200)的分解等距视图。电光模块100具有陶瓷封装件的形式,包括陶瓷基板110和陶瓷盖120,陶瓷封装件包含多个电光集成电路器件(例如,参见图4,电光集成电路器件130)的阵列。在盖120的前表面124上,存在具有陶瓷插座128的四个光学端口126的阵列。该端口阵列布置为接纳由光学连接器200承载的四个公光纤连接器。模块100的基板110的后表面被例如通过焊接而表面安装并直接附接到PCB 102。提供闩锁装置以将光学连接器200固定到电光模块100。例如,如图所示,闩锁元件204和206由插入在电光模块100和连接器200之间的单独的闩锁板208承载。闩锁臂204朝向连接器200延伸,并且布置成与连接器主体202中的相应闩锁开口210接合。闩锁臂206沿相反的方向延伸,并且布置成与围绕电光模块100的盖120的边缘的表面122接合,从而将承载光纤尾纤的连接器200可拆卸地固定到电光模块100,如图1所示。

图3示出了第一实施例的电光模块100的放大等距视图,该电光模块包括陶瓷基板110、陶瓷盖120,并且陶瓷盖具有四个光学端口126的阵列,光学端口包括在盖120的前表面124上的陶瓷插座128。

图4示出了图3中所示的电光模块的部件的分解等距视图。封装件模块100的陶瓷基板110包括四个电光器件130(例如,半导体芯片,包括集成电气和光学部件,诸如光发送器和光接收器、调制器和相关电子控制电路)的阵列。这些电光器件可以被实现为例如单片磷化铟(InP)电光子芯片或硅光子芯片或它们的组合。电光芯片130布置成规则的阵列、分布在陶瓷基板110的顶表面115的区域上。四个陶瓷插座128与电光芯片130对准并且固定到基板110(例如通过使用金锡共晶焊料焊接到焊盘118)。在将插座焊接之后,将陶瓷盖120放置在下面的组件上,端口126对准以接纳插座128。例如,使用金锡共晶焊料将盖120附接到基板110。替代地,可以使用高温粘合剂来附接盖,即当模块100焊接到PCB 102时将经受后续的回流焊接的那种类型的粘合剂。

图5示出了盖120的前表面124的平面视图,示出了电光器件130在光学端口126内对准。如果限定了光发射器的发光表面区域的光学孔径或者限定了光接收器件的光接收表面区域的光学孔径不在电光芯片上居中,则每个芯片相应地位于基板上,即,使得当封装件被组装时,每个光发射器或光检测器的光学孔径居中在盖120的光学端口126中的一个。图6示出了电光模块100的后表面112的平面视图,后表面包括焊料球114的球栅阵列(BGA)。图7示出了电光模块100的侧视图,示出了陶瓷基板110、陶瓷盖120和焊料球114。因此,从下侧看,电光模块100具有陶瓷球栅阵列封装件(CBGA)的形状因数,并且在前侧上包括紧密间隔的四个光学端口126阵列。

CBGA电光模块通过直接附接到下面的PCB提供表面安装,例如使用常规的焊料回流工艺来附接模块并与PCB的导电迹线进行电连接,以互连到PCB承载的信号处理电子器件。在组装期间,模块100独立于承载光纤尾纤的光学连接器200附接到PCB 102。在将电光模块100附接到PCB之后,然后光纤连接器200被插入并闩锁以连接光纤尾纤。即,光纤尾纤竖直联接到电光模块。对于高密度互连,将理解,可以将多个电光模块100安装在PCB上。模块可以分布在PCB的区域上,以便于散热。

在运输和PCB组装期间,电光模块100的盖120中的光学端口被临时覆盖,以保护封装件内的下面的电光部件。例如,端口被防护带(例如能够在PCB组装过程中承受拾取、放置和回流工艺的聚酰亚胺带)覆盖。然后,当将载有光纤尾纤的公连接器200插入电光模块的端口时,移除该带。

现在将参照图8至图12更详细地描述公光学连接器200。在该实施例中,连接器以与常规的光学连接器非常类似的方式实现,例如使用陶瓷套圈和常规的应变消除装置。因为在回流期间公连接器200和所附接的光纤不就位在PCB上以将电光模块连接到PCB,所以可以使用标准部件、光学粘合剂和组装技术来组装公光学连接器200。图8示出了第一实施例的光学连接器模块200的主体202(其中插入四个光纤尾纤220)的等距示意图。应变消除元件224从连接器主体202并围绕光纤的外防护夹套222延伸。设置了闩锁开口210,以接纳图2所示的互连闩锁板208的闩锁臂204。图9示出了插入有公光纤连接器的连接器主体202的侧视图。即,每个光纤尾纤220包括具有光纤连接器的光纤228,该光纤连接器包括延伸穿过主体202的下侧的陶瓷套圈226,并且每个光纤均在外夹套222和应变消除套224内延伸穿过连接器主体202。图10示出了图8所示的连接器200的部件的俯视平面图,图11示出了图8和图9所示的部件的下侧视图,示出了插入在连接器200的主体202中的四个公光纤连接器的套圈226和光纤228。

图12示出了连接器200的部件的等距分解示意图,以示出该组件的更多细节,该连接器包括外连接器主体202和内连接器主体203、应变消除套224、具有包括陶瓷套圈226的公连接器的光纤尾纤220。光纤连接器的套圈226插入到内连接器主体203中,并在光纤连接器227之间定位板簧209,以对准四个光纤连接器。应变消除套224被放置在光纤尾纤220上并且被插入到外连接器主体202中。然后,例如使用延伸穿过板簧209的板的紧固件207(诸如螺钉)将内连接器主体203紧固到例如外连接器主体202。

在使用中,如图1所示,将承载有四个光纤尾纤220的公连接器200插入附接在PCB上的CBGA电光模块100中。由于光纤尾纤穿过光学连接器200竖直联接(表面联接)到电光模块,所以当将公光学连接器200插入并闩锁到电光模块100时,由于光纤尾纤的布线和弯曲可用的紧密空间,期望使用容忍光纤中紧弯曲半径的光纤技术实现光纤尾纤。现在,这种类型的具有紧弯曲半径的高柔性光纤可以以合理价格商购。

在运输和组装过程中,覆盖电光模块的光学端口的防护带将直到插入连接器200之前保留就位。闩锁元件被构造为使得光纤连接器是可移除的,即可拆卸的。因此,如果需要,可以容易地移除光纤连接器,以允许对封装件或相邻的电子部件进行返工。例如,如果在制造测试期间发现问题,则可能需要这样做。

本发明的实施例提供了一种电光模块,该电光模块具有陶瓷球栅阵列(CBGA)封装件的形状因数,该封装件能够使用标准的电子器件拾取、放置和回流制造技术被表面安装在印刷电路板上。这种封装允许将基于超高速单模光纤的光发送和接收器件直接安装在印刷电路板(PCB)上、与其相关的电子器件紧密相邻。这提供了明显更短的电互连(例如长度为与毫米和厘米),这减少了高频电信号的损耗和失真,从而在接口上实现较低的功率信号和较低的错误率。较短的电互连也可以允许更简单的时钟和数据恢复电路,或者在某些情况下,完全消除某些这种电路。

包括可表面安装封装件形式的电光模块和可拆卸光纤连接器的该组件使得诸如数据中心互连的应用的光学端口能够以更高的密度并且可能以密度可比于或者大于PCB面板上铜链接的密度来实现。这种构造还可以使PCB上的电光模块以类似于早期铜线的形式分布在PCB上的内交换芯片附近。当将电光模块安装为与其通信的芯交换芯片邻近时,电链接要短得多,从而有利于链接的实现,例如有助于提供干净无错误并具有较低功耗的信号。通过将光学模块分布在板上,可以通过在板的整个区域上分布散热并在PCB上拾取气流来有效地冷却它们。

以类似于可电子表面安装的球栅阵列封装件的封装件形状因数实现光学模块允许它们以卷带包装形式运输,使得印刷电路板可以以与板上只有电子器件相同的方式组装,例如使用表面贴装、拾取和放置机器、然后使用焊料回流炉。选择用于电光模块的材料被选择为承受回流炉的热,从而可以进行直接表面安装焊接,并且可以使用标准的返工方法和工具对包括光学模块的板上的缺陷进行返工。由于这些原因,期望使用类似于常规表面安装陶瓷球栅阵列(CBGA)封装件的材料来制造模块。这消除了对需要昂贵的高速电插座的光学模块的需求。使用CBGA型电光模块的表面安装的直接电连接有助于改善PCB上的高速链接(例如,25G链接)的信号完整性。适当选择陶瓷封装材料(例如具有良好导热性的封装件基板)也有助于散热。

假设实现封装件中的光学链接的芯片是可靠的、能够以低BER进行长距离操作且成本低,则将减少或消除对多种专用光纤标准以优化成本/性能的需求。因此,单个链接的实现方式有可能满足数据中心几乎所有的要求。通过以类似于旧的铜以太网链接方式将电光封装件焊接在PCB上进行表面安装变得可行。例如,如果性能高且成本低,则可以选择用于数据中心内部的单链接标准。

由于电光芯片安装在可表面安装的CBGA封装件中,并且通过承载光纤尾纤的可拆卸光纤连接器进行与光发送器或接收器的光学孔径的光学连接,因此需要各个光纤、光纤插座和光发射器或接收器的光学孔径的精确光学对准。重要的是,电光模块和光纤连接器的配合表面为光学部件提供适当的物理和光学对准。部分地,这是通过使用用于基板、光纤套圈和CBGA电光封装件的盖的封装材料(诸如可精密模制或可机加工陶瓷零件)来实现的,使得可以制造出具有紧密公差(即亚微米)的部件。优选地,精确的自动对准(例如,用于亚微米放置的自动拾取和放置对准)用于提供部件的x-y轴对准,以将电光芯片放置和附接到封装件基板。这些技术提供了部件的精确x-y轴横向对准,从而使光发射器或接收器的光学孔径相对于光纤居中。另一考虑因素是竖直光学对准,即在z方向上对准,以确保部件以适当的距离间隔开,以在光发射器或光接收器与光纤之间有效地进行光学耦合(例如考虑到光束发散)。在一些实施例中,可以通过对零部件进行精确模制或机加工来提供z方向对准,从而使部件的配合表面(例如电光模块的每个陶瓷插座128的表面和光纤连接器的每个陶瓷套圈226的表面)相对于光发射器或光接收器的光学孔径对准并正确定位光纤的面。在其他实施例的组件中,可以使用闩锁和对准装置的其他布置。

例如,将参照图13至图16所示的简化示意图来描述第二实施例的电光模块1100和光纤连接器1200的组件1000。该组件的许多元件与第一实施例的元件相对应,并且用相同的附图标记增加1000来表示。因此,图13示出了第二实施例的组件1000的部件的简化截面图,包括光纤连接器1200和安装在电路板1102上的呈CBGA封装件形式的电光模块1100,其中将连接器1200对准以准备插入到电光模块1100中。电光模块1100类似于第一实施例的电光模块100,包括陶瓷基板1110、具有光学端口阵列的陶瓷盖,该光学端口包括用于接纳由光纤连接器1200承载的光纤的套圈1226的插座1128。CBGA封装件被表面安装在通过焊料球栅阵列1114附接的下面基板即PCB 1102上。在该实施例中,代替将电光模块和光纤连接器互连的单独的闩锁板,电光该模块包括金属套筒1208,该金属套筒安装在陶瓷部件周围并向上延伸以形成用于接纳连接器1200的插座或接纳器,该金属套筒具有用于接纳光纤连接器1200的闩锁元件1204的闩锁开口1210。陶瓷部件周围的金属套筒提供了接纳器,该接纳器有助于光纤连接器1200在插入到电光模块1100期间对准。如以上针对第一实施例所述,光纤套圈1226和光纤插座1128是精密模制或机加工的陶瓷部件,其提供了当将光纤套圈插入到插座并在下面的光子器件的光学孔径上居中时精确的横向对准,即在xy方向上的精细对准。自动化的拾取放置系统可以提供亚微米的部件对准。如图13所示,光纤与光子器件的光学孔径之间即沿z方向的竖直布置和间隔对于有效的光学耦合也是至关重要的。虽然可以以紧密公差模制或机加工电光模块与光纤连接器的主体和部件的配合表面,但对准时也应考虑其他制造差异,诸如承载有光子集成电路的半导体芯片的厚度。例如,这些芯片通常可以例如通过化学机械抛光在后侧变薄到例如125μm±2至3μm的厚度。因此,可能需要提供对准部件以适应用于光学对准的几微米的径向和竖直调节,如将在下面参照图16进行描述的。

图14示出了第二实施例的组件1000的一部分的简化截面图,包括光纤连接器1200和安装在电路板1102上的呈CBGA封装件形式的电光模块1100,其中,连接器1200被插入到电光模块1100中,并且与接合金属套筒1208中的闩锁孔1210的闩锁1204闩锁在一起。如示意性地示出,光纤的面被定位成距光子器件的光学孔径预定的竖直距离z以进行有效的光学耦合。组件中其他部件的编号与图13相同。

取决于半导体器件的阵列如何安装在基板上,封装件的光学端口被定位成在横向x-y方向和竖直z方向通过适当的对准接纳光纤的套圈。现在将更详细地描述这种光学对准。

仅通过示例,图15示出了电光子芯片500的显微照片,该芯片包括光电检测器502和相关的电子电路504,该电子电路包括具有到接合焊盘506的互连金属化的TIA放大器。在该特定芯片中,光电检测器和其光学孔径位于芯片外周附近,而TIA放大器的电子电路占据芯片的中心区域。即,光学检测器不在芯片上居中。因此,在组装包含该布局的多个芯片的阵列的电光模块时,将芯片定位在基板上,使得用于光纤的光学端口的阵列与每个芯片边缘附近的光电检测器的光学孔对准。可以在芯片上提供附加的电子电路,或者可以将其他电子芯片安装在封装件基板上(例如包括时钟和数据恢复(CDR)电路),以形成接收光学子组件(ROSA)。

图16示出了图14的一部分的放大且简化的示意性截面图,以示出根据第二实施例的电光模块和光纤连接器的组件中的一根光纤和一个光学检测器的xyz对准,其中光子集成电路(芯片)500包括具有类似于图15所示布局的光学检测器,包括光电二极管502和相邻的电子电路504。芯片500附接到陶瓷基板1110,并且通过从芯片500的结合焊盘506延伸的引线键合512电连接到基板的导电迹线510。作为示例,光电二极管检测器502的光学孔径可以是20μm的直径。例如,芯片可以通过例如化学机械抛光在后侧变薄到例如125μm±3μm的厚度。光纤的外径通常为125μm,并且在从其发散光束的光纤面处,来自光纤的光输出的光斑尺寸可以为10μm。光纤连接器的套圈1126的外径可以是例如~1mm。为了使用标准类型的商购连接器部件容纳四个光纤尾纤,电光模块的横向尺寸可以为例如9mm x 9mm或7mm x7mm。为了考虑横向公差,将承载光纤的套圈安装在光纤连接器内提供几微米的横向游隙,以△xy表示,由套圈1228和连接器主体1202之间的弹簧元件1302示意性表示。类似地,为了适应芯片厚度的变化(例如±3μm),套圈的安装提供了几微米的竖直游隙,由△z表示,并由弹簧元件1304表示。此外,为了确保光纤端面不会无意间接触光子器件的光学孔径并且造成损坏,邻近于芯片500设置间隔件1306。这些间隔件1306接合包围光纤的套圈的对准表面,并且尺寸设置成确保光纤在z方向上竖直地适当间隔开以使光束光斑尺寸与光电二极管的光学孔径匹配。例如,使用自动机器视觉系统来测量到芯片表面的实际距离,并提供适当厚度的间隔件,以形成挡块,以防止光纤端部插入太远,并提供适当的竖直间隔以匹配光束的光斑尺寸,以有效地光耦合到光电二极管的孔径。

例如,图17示出了安装在陶瓷基板1110上的电光子芯片500的示例的示意图,并且具有作为用于z轴对准的间隔件的校准虚设芯片形式的间隔件1306。为了考虑芯片之间的厚度变化,基于芯片500的最终厚度来选择校准虚拟芯片1306的厚度。

图18至图31示出了第三实施例的电光模块和光纤连接器的组件2000及其部件的一系列视图。该实施例的许多特征与第一实施例的特征相对应,并且通过相同附图标记增加2000来标记。如图18、图19和图20所示,该组件包括表面安装电光模块2100和光纤连接器2200。模块2100在盖上提供四个套圈插座2128的阵列,并且在下侧提供球栅阵列2114。电光模块2100的更多细节在图20至图24中示出,光纤连接器2200的更多细节在图25至图29中示出。例如,模块2100和连接器2200的主体及其部件的形式细节与第一实施例不同,例如,连接器提供闩锁开口2210,模块2100提供闩锁突起2122。图29示出了公光纤连接器的内部部件的更多细节,包括光纤套圈2226和包括压缩弹簧2227的弹簧机构。该组件的部件更详细的截面图在图30和图31中示出。图30示出了在组装期间包括第三实施例的电光模块和公光学连接器的部件的截面图,示出了内部部件。图31示出了组装后的相同部件的截面图。

在上述第一实施例中,闩锁装置包括作为独立部件的闩锁板。在该组件的变型中,闩锁元件与电光模块和/或光学连接器集成在一起,如以上针对其他实施例所述。

在上述图示和描述的实施例的电光组件中,封装件的盖的光学端口的阵列包括套圈插座,并且光纤连接器是承载多个光纤连接器的公光纤连接器(其包括对应的阵列光纤套圈)。在替代实施例中,CBGA封装件模块的光学端口的阵列包括套圈阵列,该阵列包括与光发射器或接收器对准的光纤短截线。因此,例如,将CBGA封装件上的套圈插座替换为短截线套圈,该短截线套圈的光纤与玻璃焊料融合以承受烤箱温度。光纤短截线接受标准套圈的分体式套筒到套圈的附接。例如,在实施例中,短截线套圈硬附接到光学CBGA封装件的盖,并且使用高温指数匹配的环氧树脂来减少光纤短截线和光电二极管的光学孔径之间的菲涅耳损耗。如果合适,也可以将透镜光纤形成到光电二极管端部的短截线套圈中。

图32示出了第四实施例的电光模块和光纤连接器的组件的部件在光纤连接器对准和插入到电光模块期间的简化示意性横截面图。同样,许多部件与第一实施例的部件相对应,并通过相同附图标记增加3000进行标记。此实施例的公光连接器3200与第二实施例的相同。另一方面,此实施例的电光模块3100的不同之处在于,模块3100不是具有套圈插座的阵列,而是包括光纤短截线3126的套圈阵列。光纤连接器3200的每个光纤的光纤套圈通过分体式套筒3130连接到电光模块的光纤套圈。

因此,例如,将CBGA封装件上的套圈插座替换为短截线套圈,短截线套圈的光纤与玻璃焊料融合在一起以承受烤箱的温度。光纤短截线接受标准套圈的分体式套筒到套圈的连接。例如,在实施例中,短截线套圈硬附接到CBGA封装件的盖,并且使用高温指数匹配的环氧树脂来减少光纤短截线和光电二极管的光学孔径之间的菲涅耳损耗。如果合适,也可以将透镜光纤形成到光电二极管端部的短截线套圈中。

例如,图33至图46示出了第五实施例的电光模块4100和光纤连接器4200的组件4000及其部件的一系列视图。该实施例的许多特征与第一实施例的特征相对应,并通过相同附图标记增加4000来标记。如图33和图34所示,该组件包括表面安装电光模块4100和光纤连接器4200。电光模块4100的更多细节在图35至图39中示出。模块4100提供了具有四个套圈4126的阵列的盖以及在下侧上的球栅阵列4114,该套圈包括在顶表面上的光纤短截线。如图39所示,将电光芯片500的阵列安装在陶瓷基板4110上,并且将光纤短截线的套圈4126通过套圈凸缘4127安装在芯片上。光纤连接器4200的更多细节示出在图40至图44中。图44示出了公光纤连接器的内部部件的更多细节,包括光纤套圈4226以及包括压缩弹簧4227、套筒4229、垫圈4209的弹簧机构。连接器主体或壳体4202通过紧固件4207固定到内部主体或框架4203。表面安装模块的套圈4126和光纤连接器的套圈4226是例如1.25mm的倒角套圈。该组件的部件的更详细截面图在图45和图46中示出。图45示出了在组装期间包括第三实施例的电光模块4100和公光学连接器4200的部件的截面图,示出了如图33至图44所编号的内部部件,并且分体式套管4130位于光纤短截线的套圈4126上。图46示出了相同部件在组装之后的截面图,其中闩锁将连接器固定至电光模块,并且套圈4226插入到分体式套管4130中以进行光耦合。

上面描述了各种实施例的表面安装电光模块和光纤连接器,其中光纤尾纤通过光学连接器被表面安装并竖直联接到电光模块。这些实施例仅通过示例的方式描述。以上提到的部件的任何特定尺寸也仅作为示例提供。对于未来的高密度数据中心互连,可能期望进一步使电光模块和光纤连接器的封装小型化。将理解,可以对这些实施例进行修改(例如,针对封装不同布局的光子集成电路、针对封装不同数量的光子芯片的阵列)。例如,描述了包括光发送或接收器件的2×2光子集成电路阵列的四重封装件布置的实施例。将理解,所公开的封装对于具有相应数量的光纤尾纤的其他数量的装置和可拆卸光纤连接器是可伸缩的。所描述的实施例的一些元件可以以不同的方式组合以提供这些实施例的变型,例如,包括不同形式的闩锁装置和对准装置。

具有表面发射或接收器件的其他电光子芯片可以不同地配置,其中发射器或检测器的光学孔径居中或放置在芯片上的另一个位置。替代地,在其他配置中,光学器件可以横向地(边缘)联接到基板的一侧的端口(例如对于侧面发射激光二极管)以及包括激光二极管以及调制器、光波导和相关电子器件中的一个或多个的组合的发射器芯片。

因此,在另一配置中,光纤尾纤可以边缘联接至电光模块。下面参照图47至图52描述包括边缘联接的电光模块及其对应的光学连接器的实施例的组件的示例。

图47示出了第三实施例的电光模块300的等距示意图,其中多个光纤被边缘联接到BGA型封装件。即,如图48所示的示意性侧视图所示,沿着陶瓷BGA封装件的一侧设置有包括插座328的四个光纤端口的阵列,该侧视图示出了当被表面安装在诸如PCB 302的基板上时包括光纤插座328的阵列的模块300,该模块具有包括用于接纳光纤连接器的闩锁的闩锁开口的闩锁板310。如针对第一实施例的模块所描述的,电光模块300可以通过包括拾取和放置以及焊料回流的工艺被表面安装并且直接附接到下面的基板。图49示出了图48的电光模块的下侧312的示意性平面图,示出了球连接314的球栅阵列以及光纤插座328的阵列。

图50示出了用于第三实施例的电光模块300的公光学连接器400的等距示意图,而图51示出了示意性俯视侧视图。四个光纤420和光纤连接器428插入连接器的主体402中。图52示出了第三实施例的公光学连接器400的相应的示意性端视图,其中插入了光纤和光纤连接器428。在该实施例中,闩锁装置包括从光学连接器的主体402延伸的一对闩锁元件404,该闩锁元件与电光模块的闩锁接合表面配合,以使得两个部分能够与对准光收发器的光纤牢固地闩锁在一起。该实施例的包括电光模块和光纤连接器的组件提供了光纤尾纤边缘联接(即,横向或侧向联接)到其上安装的PCB。对于具有竖直联接的光纤尾纤的组件,电光模块300类似地以CBGA封装件的形式被制造,并通过常规的拾取和放置和焊料回流工艺表面安装在PCB上。诸如所示的闩锁布置的闩锁装置允许将光纤连接器可拆卸地固定到电光模块。将理解,当电光模块包括边缘发射光学器件时或者对于在PCB上方的竖直间隔有限以容纳光纤尾纤的应用,可以使用这种边缘联接的连接器几何形状。如针对竖直联接的连接器几何形状所述,如果需要,用于边缘联接的连接器配置的闩锁装置和对准装置包括以下部件,该部件包括电光模块和光纤连接器的配合表面以及对准装置(诸如间隔件和弹簧部件),它们提供了光纤与每个电光器件的光发射器或光接收器的光学孔径的对准,即在x、y和z方向上提供精确的对准,以使每个光纤有效地光学耦合到其各自的光发射器或光接收器。对于竖直联接模块的实施例,在边缘联接模块的替代实施例中,电光模块的套圈插座可以用套圈短截线代替,并使用分体式套筒连接封装件模块的套圈和光学连接器的套圈。

尽管已经通过示例详细描述了电光模块、光纤连接器以及电光模块和光纤连接器的组件的特定实施例,但是将理解,可以以不同方式组合这些实施例的元件以提供替代实施例,并且可以对这些实施例进行修改(例如针对封装不同布局的光子集成电路、针对封装不同数量的光子芯片的阵列以及承载相应不同数量的光纤的光纤连接器)。

尽管已经详细地描述和说明了本发明的实施例,但是将清楚地理解,它们仅是说明和示例,而不被认为是限制性的,本发明的范围仅由所附权利要求限制。

46页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:光学元件的移动装置、窄带化激光装置和电子器件的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!