一种磁共振超导磁体升降场装置

文档序号:1275242 发布日期:2020-08-25 浏览:18次 >En<

阅读说明:本技术 一种磁共振超导磁体升降场装置 (Magnetic resonance superconducting magnet lifting field device ) 是由 代天立 周超 秦经刚 李建刚 金环 高鹏 薛圣泉 于 2020-05-25 设计创作,主要内容包括:本发明公开了一种磁共振超导磁体升降场装置,包括:包括第一变换器单元,第二变换器单元、第三变换器单元;以及超导磁体负载;第一变换器单元为双向AC/DC变换器单元,第二变换器单元为隔离型双向DC/DC变换器单元,第三变换器单元为H桥。本发明可完成电网向磁共振超导磁体正向传输能量,超导磁体向电网反向回馈能量以及超导磁体励磁完成后可靠的切入超导开关。本发明第二变换器单元采用高频变压器完成电气隔离,省去了第一变换器的工频变压器,大大减小电源整机体积;第三变换器不仅实现了励磁退磁过程中输出电压极性切换,且励磁完成后超导磁体电流在第三变换器开关管和超导磁体中流动,提高后续超导磁体闭环的可靠性。(The invention discloses a magnetic resonance superconducting magnet lifting field device, which comprises: the converter comprises a first converter unit, a second converter unit and a third converter unit; and a superconducting magnet load; the first converter unit is a bidirectional AC/DC converter unit, the second converter unit is an isolated bidirectional DC/DC converter unit, and the third converter unit is an H-bridge. The invention can complete the forward energy transmission from the power grid to the magnetic resonance superconducting magnet, the reverse energy feedback from the superconducting magnet to the power grid, and the reliable switching-in of the superconducting switch after the completion of the excitation of the superconducting magnet. The second converter unit adopts a high-frequency transformer to complete electrical isolation, so that a power frequency transformer of the first converter is omitted, and the size of the whole power supply is greatly reduced; the third converter not only realizes the output voltage polarity switching in the excitation and demagnetization process, but also improves the reliability of subsequent superconducting magnet closed loop because the superconducting magnet current flows in the third converter switch tube and the superconducting magnet after the excitation is finished.)

一种磁共振超导磁体升降场装置

技术领域

本发明涉及到超导磁体领域,特别涉及到一种磁共振超导磁体电源及控制方法。

背景技术

磁共振成像(Nuclear Magnetic Resonance Imaging,MRI)是利用核磁共振原理,检测目标核素能级跳跃所释放的能量从而检测目标核素在生物体内的分布,广泛的应用于临床医用和科学研究领域,是重要的影像学设备。超导磁体是MRI的重要部件,在目标区域内产生高均匀度磁场分布。超导磁体的升降场由磁体电源控制完成,要求电源具有双向能量传输的能力,电源可靠性高。

一方面,超导磁体经常励磁和退磁,举例来说,磁共振在运输过程中通常无磁场,到达现场时再升场调试,故而要求磁体电源体积小,便于运输。早期的超导磁体电源采用基于工频变压器隔离的可控硅整流电路,如论文“双反星型整流电路并联运行分析”所述结构,电源体积大且响应速度慢,纹波较大。工频变压器隔离的PWM整流器方案是后期发展的拓扑结构,如论文“高场磁共振超导磁体电源的拓扑设计与分析”,虽然其动态响应速度有所提高,但还需采用工频变压器,整机体积仍较大。

另一方面,现有文献和专利较少有针对磁共振超导磁体切入超导开关所做的特殊控制电路。超导开关是磁共振超导磁体稳态运行的必不可少的部件,并联在超导磁体两端,保证了目标区域的磁场高均匀度。当超导磁体电流达到设定值后,超导开关通过控制转变为超导态,超导磁体电流逐渐流过超导开关,电源输出电流逐渐降为0,电源断开;该过程负载突变,输出电流突变,电源处于暂态运行工况中,会出现变压器偏磁等问题,影响了电源的可靠运行。

发明内容

针对现存问题,本发明提供了一种小型化、高可靠性的磁共振超导磁体升降场装置。小型化、高可靠性是电能变换装置发展的一个重要趋势,也是磁共振超导磁体系统对磁体电源的要求。

为实现上述目的,本发明采取的技术方案为:一种磁共振超导磁体升降场装置,包括第一变换器单元,第二变换器单元、第三变换器单元;以及超导磁体负载;所述第一变换器单元为双向AC/DC变换器单元,第二变换器单元为隔离型双向DC/DC变换器单元,第三变换器单元为H桥,通过引线将第一变换器连接到电网侧,且第一变换器单元、第二变换器单元、第三变换器单元、超导磁体负载依次连接

第一变换器单元完成电网侧AC交流电压Vgrid到第二变换器单元输入侧DC直流电压V1的变换,其中V1侧电压通过采用PWM整流器控制保持恒定;当电网向超导磁体传输能量时,PWM整流器工作在整流模态,电网电压和电网电流相位夹角小于90度;当超导磁体能量回馈到电网时,PWM整流器工作在有源逆变模态,电网电压和电网电流相位夹角大于90度。

进一步的,第三变换器是H桥变换器;包括第一开关管K1、第二开关管K2、第三开关管K3和第四开关管K4,所有开关管均处于导通或截止状态。

进一步的,第一变换器完成电网侧交流电压到第二变换器单元输入侧直流电压的变换,其中第二变换器单元输入侧直流电压通过控制保持恒定;第二变换器单元完成直流侧输入到直流侧输出的变换;第三变换器单元能够切换输出电压极性切换并保证超导磁体闭环可靠切换。

进一步的,励磁时,通过控制,第一变换器单元向第二变换器单元传递能量,第二变换器单元向第三变换器单元传递能量,第三变换器单元输出电压为正,超导磁体电流在控制下增大,磁体储能。

进一步的,退磁时,通过控制,第三变换器单元输出电压为负,超导磁体电流在控制下减小,磁体泄能,第三变换器单元向第二变换器单元传递能量,第二变换器单元向电网回馈能量。

进一步的,超导磁体闭环时,通过控制,第一变换器单元与电网不传递能量,第三变换器单元的第一开关管导通,第三开关管的反向二极管续流,第二开关管和第四开关管截止,超导磁体电流在第一开关管和第三开关管的反向二极管续流,再控制超导开关令其处于超导态,将电流转移到超导开关支路中,完成超导磁体的电流闭环。

进一步的,当电网向超导磁体传输能量即超导磁体处于励磁状态,第一开关管导通,第四开关管的反向二极管续流,第二开关管和第三开关管截止,超导磁体端电压为正;当电网向超导磁体传输能量即超导磁体处于退磁状态,第二开关管导通,第三开关管的反向二极管续流,第一开关管和第四开关管截止,超导磁体端电压为负;当超导磁体电流达到设定值后,第一开关管导通,第三开关管的反向二极管续流,第二开关管和第四开关管截止,超导磁体电流在第一开关管和第三开关管的反向二极管续流,再控制超导开关令其处于超导态,将电流转移到超导开关支路中,完成超导磁体的电流闭环。

有益效果

本发明采用双向AC/DC变换器+双向隔离型DC/DC变换器+H桥的组合拓扑结构,将高频变压器用于电气隔离和能量传输,可省略PWM整流器端的工频变压器,降低了电源的体积;H桥300单元不仅可改变输出电压的极性(极性为正励磁,极性为负退磁),进一步的,通过控制,超导磁体闭环电流仅在模块300和超导磁体中流动,提高了电源在负载突变瞬间运行的可靠性。

附图说明

图1是本发明一种磁共振超导磁体电源结构示意简图;

图2是本发明第二变换器的拓扑结构示意图;

图3是本发明第三变换器的拓扑结构示意图;

图4是本发明磁共振超导磁体、磁体电源以及超导开关接线示意简图;

图5是本发明超导磁体励磁时第三变换器电路运行示意图;

图6是本发明超导磁体退磁时第三变换器电路运行示意图;

图7是本发明超导磁体励磁完成后第三变换器电路运行示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。

参照图1所示,一种磁共振超导磁体电源(即升降场装置),包括第一变换器双向AC/DC变换器单元100,第二变换器双向隔离DC/DC变换器单元200,H桥单元300以及负载超导磁体单元400。

第一变换器双向AC/DC变换器单元100完成电网侧AC交流电压Vgrid到第二变换器双向隔离DC/DC变换器单元200输入侧DC直流电压V1的变换,其中V1侧电压通过控制保持恒定,可选择PWM整流器。当电网向超导磁体传输能量时,PWM整流器工作在整流模态,电网电压和电网电流相位夹角小于90度;当超导磁体能量回馈到电网时,PWM整流器工作在有源逆变模态,电网电压和电网电流相位夹角大于90度。

参考图2所示,第二变换器单元200为双向隔离DC/DC变换器,如双有源桥(Dual-Active-Bridge,DAB),可完成直流侧输入V1到直流侧输出V2的变换,电压V2大小经第二变换器200单元调整;第三变换器是H桥,完成电压极性切换和闭环高可靠性运行。第二变换器单元200包括全桥单元H1 210和全桥单元H2 220、高频变压器TF、电感L、稳压电容C1和C2。通过控制全桥单元H1 210和全桥单元H2 220的开关管S1、S2、S3、S4以及Q1、Q2、Q3、Q4驱动脉冲信号,即可调整全桥单元H1 210输出电压VAB和全桥单元H2 220输入电压VCD交流输出移相角。当电网向超导磁体传输能量时,全桥单元H1210输出电压VAB相位超前全桥单元H2 220输入电压VCD;当超导磁体向电网回馈能量时,全桥单元H1 210输出电压VAB相位滞后全桥单元H2220输入电压VCD

参考图3所示,第三变换器单元300是H桥,包括第一开关管K1、第二开关管K2、第三开关管K3和第四开关管K4,所有开关管均处于导通或截止状态。第三变换器单元300的输入电压为第二变换器单元200的输出电压V2,输出电压为超导磁体端电压VO

参考图4所示为本发明磁共振超导磁体、磁体电源以及超导开关接线示意简图,包括超导磁体410,超导开关420,低温杜瓦及低温环境430以及磁体电源440组成,超导开关420并联在超导磁体410端部。

参考图5所示为本发明超导磁体励磁时第三变换器电路运行示意图。粗线路为电流通路,虚线开关管为电流通路开关管。当电网向超导磁体传输能量即超导磁体处于励磁状态,第一开关管K1导通,第四开关管K4的反向二极管D4续流,第二开关管K2和第三开关管K3截止,超导磁体端电压为正。

参考图6所示为本发明超导磁体退磁时第三变换器电路运行示意图。粗线路为电流通路,虚线开关管为无电流通路开关管。当电网向超导磁体传输能量即超导磁体处于退磁状态,第二开关管K2导通,第三开关管K3的反向二极管D3续流,第一开关管K1和第四开关管K4截止,超导磁体端电压为负。

参考图7所示为本发明超导磁体退磁时第三变换器电路运行示意图。粗线路为电流通路,虚线开关管为无电流通路开关管。当超导磁体电流达到设定值后,第一开关管K1导通,第三开关管K3的反向二极管D3续流,第二开关管K2和第四开关管K4截止,即将超导磁体电流转移到示意图7中粗线部分支路。相比于传统减小电源输出电流方式,该支路开关管不处于开关状态,仅处于导通和反向二极管续流状态,运行可靠性较高,这时超导开关变为超导态,电流由粗线部分支路转移到超导开关支路中完成闭环。

尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,且应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于确定致动器的位置的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类