用于土工膜表面加糙的复合材料和糙面土工膜及各自的制备方法

文档序号:127667 发布日期:2021-10-22 浏览:31次 >En<

阅读说明:本技术 用于土工膜表面加糙的复合材料和糙面土工膜及各自的制备方法 (Composite material for roughening geomembrane surface, roughened geomembrane and preparation methods of composite material and roughened geomembrane ) 是由 赵志杰 摆音娜 李蕾 徐毅辉 杨黎黎 于 2020-04-14 设计创作,主要内容包括:本发明涉及高分子材料领域,公开了一种用于土工膜表面加糙的复合材料和糙面土工膜及各自的制备方法,该复合材料包含32-65重量%的组分I,15-26重量%的组分II,3-16重量%的组分III和10-30重量%的组分IV;其中,所述组分I为低密度聚乙烯,所述组分II选自聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯和聚酰胺中的至少一种;所述组分III选自聚丙烯和/或高密度聚乙烯;所述组分IV为无机填料。该复合材料经过喷丝工艺喷涂于聚乙烯光面土工膜上,光面土工膜无需加热,同喷丝结合良好,喷丝稳定,喷后不脱落,能达到对聚乙烯光面土工膜加糙的目的。(The invention relates to the field of high polymer materials, and discloses a composite material for roughening the surface of a geomembrane, a roughened geomembrane and respective preparation methods, wherein the composite material comprises 32-65 wt% of a component I, 15-26 wt% of a component II, 3-16 wt% of a component III and 10-30 wt% of a component IV; wherein the component I is low-density polyethylene, and the component II is at least one selected from polystyrene, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate and polyamide; the component III is selected from polypropylene and/or high-density polyethylene; the component IV is an inorganic filler. The composite material is sprayed on the polyethylene smooth-surface geomembrane through a spinning process, the smooth-surface geomembrane does not need to be heated, is well combined with spinning, is stable in spinning, does not fall off after being sprayed, and can achieve the purpose of roughening the polyethylene smooth-surface geomembrane.)

用于土工膜表面加糙的复合材料和糙面土工膜及各自的制备 方法

技术领域

本发明涉及高分子材料领域,具体涉及一种用于土工膜表面加糙的复合材料和糙面土工膜及各自的制备方法。

背景技术

聚乙烯(PE)土工膜是以PE为基础原料生产的防水阻隔性材料,具有极低的渗透性,是理想的防渗材料。与传统的防水材料相比,PE土工膜具有渗透系数低、柔性好、变形适用性强、强度高、整体连接性好、施工方便等优点。PE土工膜按产品外形可分为光滑面土工膜和糙面土工膜。光滑面土工膜表面光滑,摩擦系数低。糙面土工膜表面由凹凸状结构组成,摩擦系数高。与光滑面土工膜相比,糙面土工膜不仅能应用于屋顶防漏、园林绿化、农田水渠的防渗和水土保持、滩涂围垦造田、环境工程中垃圾填埋、三废处理和环境整治、防止沙漠化等工程,还能应用于陡坡或边坡膜体表面需要覆土等要求有较大摩擦系数的工程项目中,是山区施工、陡坡施工等工程项目的首选材料。因此,水利、水电、交通、环保、建筑等各个领域都为糙面土工膜的应用发展提供了广阔的前景。

PE土工膜糙面成型方法主要包括喷丝加糙法、轧花成糙法、化学发泡成糙法和氮气(N2)加糙法等。喷丝加糙法是将PE光滑面土工膜预热,使所需加糙土工膜面层达到热变形温度以上,通过特殊的喷塑设备喷丝,将熔融状塑料丝喷涂在所需加糙的土工膜表面,经过冷却制得粗糙面层的方法。喷丝加糙法属于二次成型,即,将光滑面土工膜再一次加工成型,可将压延成型和吹塑成型工艺生产的光滑面土工膜进行预热喷丝,得到PE糙面土工膜,也可将预热和喷丝工序直接添加到土工膜生产线中,以实现PE糙面土工膜的连续化生产。

喷丝加糙法工艺复杂,关键在于土工膜加糙面的温度控制、塑料丝的制造及喷涂、光面和糙层丝材质的选择等。喷丝工艺难度大,糙面质量不稳定,塑料丝在土工膜表面容易脱落,从而降低其防滑性能。现有技术中,喷丝过程通常需要对长达数米甚至数十米的光面土工膜进行二次加热,喷丝材料与光面土工膜结合不好,容易脱落,脱落后也就失去了防滑的功能,一方面,对光面土工膜进行加热需要消耗大量的热能,另一方面,其加糙效果不持久。

发明内容

针对现有技术存在的上述缺陷,本发明的目的在于提供一种用于土工膜喷丝加糙的复合材料和糙面土工膜及各自的制备方法。该复合材料经喷丝工艺喷涂于聚乙烯光面土工膜上,光面土工膜无需加热,同喷丝结合良好,喷丝稳定,可以达到对聚乙烯光面土工膜加糙的目的。

第一方面,本发明提供一种用于土工膜表面加糙的复合材料,该复合材料包含:32-65重量%的组分I,15-26重量%的组分II,3-16重量%的组分III和10-30重量%的组分IV;所述组分I为低密度聚乙烯,所述组分II选自聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯和聚酰胺中的至少一种;所述组分III选自聚丙烯和/或高密度聚乙烯;所述组分IV选自无机填料。

第二方面,本发明提供一种制备所述复合材料的方法,该方法包括:将所述复合材料中的各组分进行熔融共混并挤出造粒。

第三方面,本发明提供一种糙面土工膜,包括PE光面土工膜和形成在该光面土工膜至少一个表面上的糙面,其中,所述糙面由本发明第一方面所述复合材料制成。

第四方面,本发明提供所述糙面土工膜的制备方法,该制备方法包括:通过喷丝工艺将所述复合材料喷涂于所述PE光面土工膜的至少一个表面上,形成所述糙面。

本发明的复合材料成分简单,成本低廉,以该复合材料对PE光面土工膜的表面进行喷丝加糙,能够省去传统工艺中对土工膜二次加热的过程,节能减耗,喷丝后表面粗糙部分不脱落,加糙持久。

附图说明

图1是表示应用实施例1制备的糙面土工膜的糙面形貌的照片。

具体实施方式

在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

第一方面,本发明提供一种用于土工膜表面加糙的复合材料,以该复合材料的总重量为基准,该复合材料包含:32-65重量%的组分I,15-26重量%的组分II,3-16重量%的组分III和10-30重量%的组分IV。

所述组分I为低密度聚乙烯(LDPE),能够提高所述复合材料与光面土工膜的结合强度。优选地,所述低密度聚乙烯在190℃、2.16kg下的熔体流动质量速率(MFR)为35-50g/10min。

所述组分II能够降低复合材料的熔体拉伸强度。具体地,所述组分II选自聚苯乙烯(PS)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)和聚酰胺(PA)中的一种或两种以上。

优选地,所述聚苯乙烯在200℃、5kg下的熔体流动质量速率为1-8g/10min,密度为1.02-1.07g/cm3

优选地,所述聚碳酸酯在300℃、1.2kg的熔体流动质量速率为3-4g/10min,密度为1.18-1.22g/cm3

优选地,所述聚对苯二甲酸丁二醇酯的密度为1.2-1.5g/cm3

优选地,所述聚甲基丙烯酸甲酯在230℃、3.8kg的熔体流动质量速率为为1.7-2.0g/10min,密度为1.16-1.20g/cm3

优选地,所述聚对苯二甲酸乙二醇酯的密度为1.62-1.70g/cm3

优选地,所述聚酰胺的密度为1-1.6g/cm3。所述聚酰胺可以选自尼龙6、尼龙66、尼龙1010和尼龙1212中的一种或两种以上。

所述组分III选自聚丙烯(PP)和高密度聚乙烯(HDPE),引入组分III能够增加所述复合材料的喷丝挺度。

优选地,所述聚丙烯在230℃、2.16kg下熔体流动质量速率为1-5g/10min。

优选地,所述高密度聚乙烯在190℃、2.16kg下的熔体流动质量速率为0.5-5g/10min。

所述组分IV为无机填料,能为所述复合材料提供喷丝断点,同时可以在糙面膜成形后提供表面微孔结构。优选地,所述无机填料的粒度为90-300μm。所述无机填料可以是直接商购获得的产品。优选地,所述无机填料选自碳酸钙、滑石粉、蒙脱土和二氧化硅中的至少一种。

所述复合材料中还可以含有其它加工助剂,其可根据应用需要确定,例如本领域技术人员所熟知的色母粒、抗氧剂等。所述其它加工助剂的具体种类和用量均为本领域所熟知,本发明不再赘述。

所述复合材料中的各种组分均可通过本领域熟知的方法制得,也可通过商购获得。

所述复合材料通过喷丝工艺能够在PE光滑土工膜表面形成糙面,且与光面土工膜具有较高的结合强度。按照一种实施方式,所述复合材料在190℃、2.16kg下的熔体质量流动速率为16-28g/10min,密度为0.989-1.196g/10cm3,熔体拉伸断裂速度为73-85m/min,熔体拉伸张力为0.004-0.008N。本发明中,熔体流动质量速率(MFR)根据GB/T 3682-2000测得,密度通过GB/T 1033.1-2008测得。熔体拉伸断裂速度、熔体拉伸张力均按照熔体强度测试仪法,采用毛细管流变仪测得。

第二方面,本发明提供一种制备所述复合材料的方法,该方法包括:将所述复合材料中的各组分进行熔融共混并挤出造粒。

本发明复合材料的制备方法可参照现有的熔融共混挤出造粒工艺在双螺杆挤出机上进行。所述双螺杆挤出机的长径比通常大于等于30,转速可以为50-100r/min。优选地,所述挤出温度为170-250℃,挤出速度为5-30rpm,熔体压力为3-35bar。

第三方面,本发明提供一种糙面土工膜,包括PE光面土工膜和形成在该光面土工膜至少一个表面上的糙面,其中,所述糙面是由所述复合材料制成。

第四方面,本发明提供所述糙面土工膜的制备方法,该制备方法包括:通过喷丝工艺将所述复合材料喷涂于所述PE光面土工膜的至少一个表面上,形成所述糙面。

本发明的第三、第四方面旨在说明所述复合材料在糙面土工膜上的应用,因此对所述PE光面土工膜没有特别限定,可参照现有技术选择。所述复合材料通过喷涂法在所述PE光面土工膜形成糙面,可利用现有的土工膜糙面喷涂机制备所述糙面土工膜。一般地,土工膜糙面喷涂机由数个单螺杆挤出机并联而成,并联后整体进行左右移动,所述复合材料由出料口喷射而出,经过热风送至光面土工膜表面,光面土工膜延喷射方向传送卷曲,使表面充分粘结所述复合材料。优选地,喷丝料温为130-150℃,熔体压力为3-35bar,挤出速度为6-80rpm,风温为300-370℃。

所述糙面土工膜的表面喷涂率例如可以为5-20%,喷丝直径可以为0.2-0.5mm。其中,喷涂率=糙丝面积/光面土工膜面积。

在喷丝过程中,所述PE光面土工膜的温度可保持在其热变形温度以下,即所述制备方法无需对PE光面土工膜进行预热的步骤,从而节省能耗。

以下将通过实施例对本发明进行详细描述。

实施例1-6用于说明本发明的复合材料及其制备方法。其中,

实施例和对比例中,

LDPE购自燕山石化,牌号为YG220P,MFR(190℃、2.16kg)为40g/10min,密度0.922±0.005g/cm3

PS购自扬子石化,牌号为158K,MFR(200℃、5kg)为3g/10min,密度1.05g/cm3

PC购自GE塑料公司,牌号为131R,MFR(300℃、1.2kg)为3.5g/10min,密度为1.21g/cm3

PMMA购自台湾奇美,牌号CM-205,MFR(230℃、3.8kg)为1.8g/10min,密度为1.19g/cm3

PET购自美国杜邦,牌号FR330,密度为1.67g/cm3

PBT购自美国杜邦,牌号S600F10,密度为1.30g/cm3

PP购自燕山石化公司,牌号K8303,MFR(1230℃、2.16kg)为2.0g/10min;

HDPE购自燕山石化公司,牌号3000J,MFR(190℃、2.16kg)为2.3g/10min;

PA6购自日本三菱,牌号1030,密度为1.14g/cm3

复合材料的熔体质量流动速率(190℃、2.16kg)根据GB/T 3682-2000测得;密度根据GB/T 1033.1-2008测得;熔体拉伸断裂速度(haul off)、熔体拉伸张力(haul off)均根据熔体强度测试仪法,采用毛细管流变仪测得。

实施例1-6和对比例1-5

按照表1的配方将物料在双螺杆挤出机中熔融共混并挤出造粒,其中,挤出温度为180-230℃,挤出速度为15-20rpm,熔体压力为20-30bar,双螺杆挤出机的长径比为32,转速为70-90r/min,由此制备得到复合材料母粒。

实施例1-6制备的复合材料分别记为A1-A6,对比例1-5制备的复合材料分别记为D1-D5。

表1

*:组分IV中,粉末粒度均为90-300μm。

复合材料A1-A6和D1-D5的性质如表2所示。

表2

以下应用实施例1-6用于说明本发明的糙面土工膜及其制备方法。

应用实施例1-6和应用对比例1-5

采用喷丝工艺分别将复合材料A1-A6和D1-D5喷涂在PE光面土工膜的一个表面上,形成糙面土工膜。

PE光面土工膜的厚度为2mm。

糙面土工膜采用山东大三层塑料机械厂的土工膜糙面喷涂机来制备。其中,喷丝料温为140-145℃,熔体压力为25-305bar,挤出速度为65-70rpm,风温为300-330℃。糙面土工膜表面喷涂率为5%,喷丝直径为0.3mm。

结果显示,实施例1-6的复合材料A1-A6在光面土工膜表面的喷丝均匀(实施例1的复合材料A1喷丝效果如图1所示);

对比例1的复合材料D1无法同光面土工膜进行粘结;

对比例2和3的复合材料D2、D3均形成连续喷丝;

对比例4的复合材料D4喷丝垮塌;

对比例5的复合材料D5形成连续喷丝,且喷丝垮塌。

测试例

(1)摩擦系数

采用摆式摩擦系数仪对糙面土工膜进行摩擦系数测定,滑移速度为10km/h。

(2)质量损失百分率

依据GB/T 17636-1998对糙面土工膜进行磨损试验,以每分钟90周期的频率进行工作,测试磨100个周期的质量损失百分率。

(3)拉伸断裂后糙点距离

采用万能拉力机对糙面土工膜进行拉伸,拉伸速度为50mm/min,根据GB/T1040.2-2006,采用五根样条,测试前每根样条上选选取有效拉伸区域内间隔1mm的3对糙点,待样条断裂后测量两点间距离,每根样条上选取断裂后在同一侧的点为有效值,测试5次,选取中间值为最终测试结果。

糙面土工膜的性质如表3所示。

表3

由表3可知,与对比例相比,实施例1-6的复合材料形成的糙面与光滑土工膜具有较高的结合强度且结合稳定性高。对比例2和3形成连续喷丝,导致光面土工膜加糙后表面纹理构造过大,失去摩擦抗滑力。对比例4喷丝垮塌,降低了摩擦效果;对比例5形成连续喷丝且喷丝垮塌,摩擦效果差。

以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于土工膜表面加糙的复合材料和糙面土工膜及各自的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!