一种基于硅基集成磁光环行器的光学全双工收发组件

文档序号:1295546 发布日期:2020-08-07 浏览:6次 >En<

阅读说明:本技术 一种基于硅基集成磁光环行器的光学全双工收发组件 (Optical full-duplex transmitting and receiving assembly based on silicon-based integrated magneto-optical circulator ) 是由 毕磊 严巍 刘书缘 秦俊 张燕 邓龙江 于 2020-05-08 设计创作,主要内容包括:本发明属于集成光学领域,具体涉及一种基于硅基集成磁光环行器的光学全双工收发组件。本发明中的硅基集成磁光环行器件结构采用硅基集成的马赫-曾德尔干涉结构或硅基集成的微环结构,结合互易与非互易移相对收发信号的相位进行调控,达到分离收发信号的目的。最终本发明大大降低了整体组件的尺寸及制备成本,改善了整体组件对回波信号的耦合性能;有效规避了在分立光学探测组件中存在的装调误差和低信噪比等问题,并提供了硅基集成磁光环行器、激光器、光探测器和激光天线一起集成的更优的技术方案,可以显著提高激光雷达等激光主动探测系统的性能,对降低系统的体积、重量、成本,具有重要意义。(The invention belongs to the field of integrated optics, and particularly relates to an optical full-duplex transceiving component based on a silicon-based integrated magneto-optical circulator. The silicon-based integrated magneto-optical ring device structure adopts a silicon-based integrated Mach-Zehnder interference structure or a silicon-based integrated micro-ring structure, and combines the reciprocal and non-reciprocal movement to regulate and control the phase of transmitting and receiving signals, thereby achieving the purpose of separating the transmitting and receiving signals. Finally, the size and the preparation cost of the whole assembly are greatly reduced, and the coupling performance of the whole assembly to echo signals is improved; the problems of installation and adjustment errors, low signal-to-noise ratio and the like existing in a discrete optical detection assembly are effectively avoided, a better technical scheme that a silicon-based integrated magneto-optical circulator, a laser, a light detector and a laser antenna are integrated together is provided, the performance of laser active detection systems such as a laser radar and the like can be remarkably improved, and the method has important significance for reducing the size, the weight and the cost of the system.)

一种基于硅基集成磁光环行器的光学全双工收发组件

技术领域

本发明属于集成光学领域,具体涉及一种基于硅基光电子技术的激光主动探测组件。

背景技术

硅基光电子技术近年来发展迅速,由于其性能优越,与精细工艺特性相兼容的特点,使其在激光雷达和激光主动探测领域逐渐受到重视。

在分立的激光雷达系统中,发射端和接收端通常采用两个独立的光学窗口进行激光发射和探测。这样的系统存在两个显著的问题。第一,激光发射光路和激光探测光路需要通过精确的手动装调,使发射光束的光轴与接收望远镜的光轴保持共轴或平行。若装调出现误差,将显著影响系统的信号强度,甚至出现无法探测反射回波的情况。第二,激光探测光路通常具有较大的空间探测角度范围,致使较强的环境光进入光探测器,在强光环境下造成系统的信噪比低,难以实现远距离探测。

采用磁光环行器可以使激光探测发射和接收端共用同一天线孔径,其原理是利用磁光材料的光学非互易性,使反射光沿与发射光不同的光路回到光探测器,从而避免了装调、低信噪比等问题。然而,分立的光环行器尺寸大、成本高、难以与激光器、探测器等光学元件耦合。

发明内容

针对上述存在问题或不足,为了发展小型化收发一体的光学探测组件,避免因手动装调以及低信噪比等问题带来的探测误差,本发明提供了一种基于硅基集成磁光环行器的光学全双工收发组件,通过激光器、光探测器、激光天线与硅基集成磁光环行器的有效耦合,以及硅基集成磁光环行器件的非互易传输的特性,实现全双工的激光探测。

该基于硅基集成磁光环行器的光学全双工收发组件由激光器、光探测器、激光天线以及硅基集成磁光环行器组成,其中硅基集成磁光环行器是该全双工激光探测组件的核心器件。

所述硅基集成磁光环行器包括硅基集成的马赫-曾德尔干涉结构或硅基集成的微环结构以及硅基集成磁光波导。

进一步的,对于硅基集成的马赫-曾德尔干涉结构而言:该结构的两个干涉臂借助180°的弯曲波导对传输进行转向处理,使得转向后的波导是朝相反方向传输的。硅基集成磁光波导则分别设计在硅基集成的马赫-曾德尔干涉结构双臂的正反传输方向上,使得光波在其中一臂的硅基集成磁光波导中的传输是正向,而在另一臂中则是反向。硅基集成的马赫-曾德尔干涉结构的双臂的互易相位差为π/2的奇数倍;并通过设计硅基集成磁光波导的长度,使得该结构的双臂的非互易相位差为π/2。

硅基集成的马赫-曾德尔干涉结构的分光与合光部分分别由两个集成3dB耦合器构成。在硅基集成的马赫-曾德尔干涉结构的四个端口中,将同一端面的两个端口分别作为硅基集成磁光环行器的输入端口与接收端口;在另一端面中,将与输入端口传输相隔离的端口挂起,剩下的一个端口作为硅基集成磁光环行器的发射端口。

进一步的,对于硅基集成的微环结构而言:该结构包括两根互相平行的硅基集成直波导,以及位于两根互相平行的硅基集成直波导之间的硅基集成环形光波导,硅基集成环形光波导为圆形或跑道形。硅基集成磁光波导设置在硅基集成环形波导部分。

在该硅基集成的微环结构的四个端口中,将同一端面的两个端口分别作为硅基集成磁光环行器的输入端口与硅基集成磁光环行器的发射端口;在另一端面中,将与硅基集成磁光环行器的发射端口处于同一根硅基集成直波导中的端口作为硅基集成磁光环行器的接收端口,将剩下的一个端口挂起不用。

所述激光器与硅基集成磁光环行器的输入端口通过光纤、光栅或端面与其对准耦合,接硅基集成磁光环行器的输入端口;其输出功率及输出波长根据具体应用环境而定,可选择采用分立式激光器或波导集成激光器。

所述光探测器与硅基集成磁光环行器的接收端口通过光纤、光栅或端面与其对准耦合,接硅基集成磁光环行器的接收端口;光探测器的探测范围及探测强度根据激光源和应用环境而定,可选择分立式光探测器或波导集成光探测器。

所述激光天线与硅基集成磁光环行器的发射端口通过光纤、光栅或端面与其对准耦合,接硅基集成磁光环行器的发射端口;激光天线将激光器产生经硅基集成磁光环行器传输至其的激光进行准直处理,压缩其发散角以获得更好的方向性并进行发射;同时需要接收被探测对象的微弱的反射光。激光天线可以由集成的光波导、光波导阵列或光栅构成。

基于硅基集成磁光环行器的光学全双工收发组件工作时,硅基集成磁光环行器的输入端口接收由激光器产生的探测信号并通过硅基集成磁光环行器进入激光天线进行单路发射,经激光天线处理过的探测信号被待测对象反射后,产生回波信号,该回波信号由激光天线接收并通过硅基集成磁光环行器的发射端口返回硅基集成磁光环行器,进而从另一路返回硅基集成磁光环行器的接收端口连接的光探测器,从而达到双工的目的。

进一步的,为了提高整个组件的传输效率,可对各个连接端口作进一步耦合优化,同时还需要进一步提高磁光波导的优值,以及增大弯曲波导的半径等,使得整体组件的损耗最小化。若为了完全消除耦合损耗,则需要将激光器、光探测器、激光天线和硅基集成磁光环行器四者同时在同一材料基底上进行单片集成,形成一个完全集成互连的光学探测组件。此外,为了获得更大的探测范围,可利用相控阵激光天线作为激光天线以达到空间扫描的目的。

本发明中的硅基集成磁光环行器结构采用硅基集成的马赫-曾德尔干涉结构或硅基集成的微环结构,结合互易与非互易移相对收发信号的相位进行调控,达到分离收发信号的目的。本发明采用的基于硅基集成磁光环行器的光学全双工收发架构,大大降低了整体组件的尺寸及制备成本,改善了整体组件对回波信号的耦合性能;有效规避了在分立光学探测组件中存在的装调误差和低信噪比等问题,并提供了硅基集成磁光环行器、激光器、光探测器和激光天线一起集成的更优的技术方案,可以显著提高激光雷达等激光主动探测系统的性能,对降低系统的体积、重量、成本,具有重要意义。

附图说明

图1为本发明实施例的整体结构示意图;

图2为本发明实施例的硅基集成磁光环行器中磁光波导截面结构示意图;

图3为本发明实施例的硅基集成磁光环行器中磁光波导的截面TM零阶模式中电场y方向分量示意图;

图4为本发明实施例的探测信号与回波信号的传输谱线示意图。

附图标记:1-激光器,2-光探测器,3-激光天线,4-硅基集成磁光环行器,5-硅基集成磁光波导,6-3dB耦合器,7-硅基光波导,8-二氧化硅衬底。

具体实施方式

如背景技术部分中所述,由于在分立的激光探测器件中,发射端和接收端通常采用两个独立的光学窗口进行激光发射和探测,这样的系统存在装调误差以及低信噪比等问题。同时,整体的分立组件尺寸大、成本高、难以与激光器、探测器、发射天线等光学元件耦合。

本发明提出的基于硅基集成磁光环行器的光学全双工收发组件,可以显著提高探测性能,降低系统的体积、重量以及成本。

本发明解决上述技术问题所采取的技术方案是:在传统的光学收发组件中引入硅基集成磁光环行器,分别将激光器、光探测器和激光天线与之进行耦合,组成了新型的基于硅基集成磁光环行器的收发一体激光探测组件。结构中所采用的硅基集成磁光环行器件由光刻刻蚀加工硅基集成光波导结构以及沉积磁光材料制备而得。

下面结合实施例和附图对本发明作进一步阐述。

一种基于硅基集成磁光环行器的光学全双工收发组件,其中硅基集成磁光环行器的制备方法如下:

步骤1、光刻及刻蚀半导体(包含但不限于硅与氮化硅材料)基板,获得单模集成光波导及马赫-曾德尔干涉结构或微环结构,用以结合互易与非互易移相对输出与接收的信号进行相位调控。

步骤2、通过溅射等方法生长一层低折射率包层将整个器件包覆。并作为沉积磁光材料的阻挡层(包含但不限于氧化硅材料)。

步骤3、在设计的磁光波导上表面位置通过二次光刻得到沉积磁光材料的窗口,窗口宽度大于光波导宽度。在水平垂直于磁光波导的外加强磁场下,磁光材料可以使波导中的TM偏振模式产生非互易移相。在硅基集成的马赫-曾德尔干涉结构中,磁光波导的长度应使正反向传输光的非互易相位之差为π/2。

步骤4、在窗口处生长(包含但不限于脉冲激光沉积技术和晶圆键合技术)磁光材料(包含但不限于铈元素掺杂的钇铁石榴石)。

步骤5、设计互易与非互易移相关系,使正向输出信号与反向接收信号耦合进不同的波导,实现收发信号的分离。

本实施例的器件结构如图1所示,1-激光器,2-光探测器,3-激光天线,4-硅基集成磁光环行器,5-硅基集成磁光波导,6-3dB耦合器,7-硅基光波导,8-二氧化硅衬底。其中硅基集成磁光环行器基于马赫-曾德尔干涉结构,激光器与光探测器分别与硅基集成磁光环行器的输入端口与接收端口进行耦合,激光天线与硅基集成磁光环行器的发射端口进行耦合(包含但不限于端面耦合与光栅耦合技术)。

从激光器发出的信号经过硅基集成磁光环行器进入激光天线进行发射。激光天线将接收的压缩发散角的激光(探测信号)发射后,探测信号被待测对象反射后产生回波信号,回波信号再由激光天线接收并返回硅基集成磁光环行器的发射端口从而重新耦合进硅基集成磁光环行器,并沿着与发射光路不同的路径传播至接收端口,进入光探测器。其中硅基集成磁光环行器利用磁光材料的光学非互易性,实现了对前后传输信号的分离。

硅基集成磁光环行器中磁光波导的截面结构图如图2所示,波导芯层为半导体材料(包含但不限于硅与氮化硅材料)。本实施例中:作为硅波导而言,其厚度为220nm,宽度为500nm;作为氮化硅波导而言,其厚度为400nm,宽度为1000nm。外部由氧化硅(SiO2)作为低折射率包层,上包层的钇铁石榴石(YIG)和铈掺杂的钇铁石榴石(Ce:YIG)的厚度分别为50nm和100nm。

在硅基集成光波导中,光的传播被限制为一种传输模式,即TM模式的基模TM0模式。该模式的电场分布图如图3所示,主要表现为y方向的分量。

本实施例的基于硅基集成磁光环行器的光学全双工收发组件的探测信号与回波信号的传输谱线图如图4所示。测试时,在硅基集成磁光环行器中与磁光波导相垂直的水平方向上施加外加磁场使磁光薄膜在面内方向上达到磁饱和。输入端口处的激光信号为波长从1510nm至1620nm的连续光谱,光功率设置为8dBm,并通过光纤以端面耦合的方法输入进硅基集成磁光环行器内。在发射端口,光波被重新耦合进另外一根光纤回到光探测器中,以模拟进入激光天线的信号。探测数据为波长与对应的光强,波长探测间距设置为2pm。

利用同样的激光器与光探测器,分别再对发射端口至输入端口与发射端口至接收端口这两路信号进行测试,以模拟组件接收回波信号时的情形。由传输谱线可见在1565nm波段附近,除去端面耦合损耗,与硅基集成直波导的传输强度相比,由输入端口至发射端口与由发射端口返回接收端口的信号传输基本一致,且硅基集成磁光环行器的插入损耗在4dB左右。而从发射端口返回输入端口的信号强度则被额外抑制了20dB。

至此,实施例模拟测试了本发明基于硅基集成磁光环行器的光学收发组件,并达到了20dB的收发信号间的串扰隔离和4dB的插入损耗,实现了性能较好的光学全双工收发组件。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于氧化硅掩膜的铌酸锂光子芯片制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!