消弧用绝缘材料成型体及断路器

文档序号:1343654 发布日期:2020-07-17 浏览:28次 >En<

阅读说明:本技术 消弧用绝缘材料成型体及断路器 (Arc-extinguishing insulating material molded body and circuit breaker ) 是由 细越文彦 桧座秀一 渡边真也 石仓智史 川名隆志 于 2018-12-03 设计创作,主要内容包括:本发明涉及消弧用绝缘材料成型体及断路器。所述消弧用绝缘材料成型体为包含每单位体积所含的氧原子量为1.75×10&lt;Sup&gt;-2&lt;/Sup&gt;[mol/cm&lt;Sup&gt;3&lt;/Sup&gt;]以上的热固化性树脂固化体的消弧用绝缘材料成型体。热固化性树脂固化体优选为包含以下的环氧树脂组合物的固化体:每1分子所含的氧原子数的比例为全部构成原子数的9.0%以上的环氧树脂和每1分子所含的氧原子数的比例为全部构成原子数的12.5%以上的酸酐。(The invention relates to an arc-extinguishing insulating material molded body and a circuit breaker, wherein the arc-extinguishing insulating material molded body contains oxygen atoms with a content of 1.75 × 10 per unit volume ‑2 [mol/cm 3 ]An arc-extinguishing insulating material molded body of the above-described thermosetting resin cured body. The thermosetting resin cured product is preferably a cured product of an epoxy resin composition containing: a ring having a ratio of the number of oxygen atoms contained in 1 molecule of the ring being 9.0% or more of the total number of constituent atomsAn oxygen resin and an acid anhydride in which the proportion of the number of oxygen atoms contained in 1 molecule is 12.5% or more of the total number of constituent atoms.)

消弧用绝缘材料成型体及断路器

技术领域

本发明涉及消弧用绝缘材料成型体及具备其的断路器。

背景技术

就断路器而言,为在由于过负荷、短路等主要因素而在二次侧的电路(负荷电路、电线等)中异常的电流流动时通过将电路开放、将来自一次侧的电源供给隔断而为了避免二次侧的电路的损伤所使用的装置。就这样的断路器而言,例如,在一般家庭、工场、事务所等中使用。

一般地,断路器具备消弧室、可动触头及固定触头。这些触头各自具有接点,被收容在消弧室内。在通电时,可动触头与固定触头进行接触。在这样的断路器中,在过剩电流或额定电流的通电时,通过使可动触头的接点与固定触头的接点分开,强制地将电流隔断。此时在可动触头与固定触头之间,产生(触发(日语:点弧))电弧。这是由于:即使可动触头与固定触头分离,电流也要继续流动。

电弧成为对断路器的构成部件的热的负担及电磁力的负担,因此需要迅速地进行消弧。因此,在断路器中,为了促进隔断时所产生的电弧的消弧,在电弧产生部的周边配置具备有助于电弧的消弧的消弧用绝缘材料成型体(以下,有时简写为成型体)的消弧装置。就消弧用绝缘材料成型体而言,如果将其暴露于电弧,则构成该成型体的材料自身分解而产生气体,通过产生的气体所引起的电弧的冷却及产生的气体的喷射所引起的电弧的伸展等,有助于电弧的迅速的消弧。

例如,作为用于消弧装置的绝缘材料的基质树脂,在专利文献1中,公开有使用环氧树脂、不饱和聚酯树脂等热固化性树脂。一般地,就热固化性树脂而言,与热塑性树脂相比,可实现耐热性、耐热变形性、机械强度等优异的消弧装置。

另外,在专利文献2中,公开有消弧用树脂加工品,其在作为基质树脂的环氧树脂中添加有微胶囊,所谓微胶囊通过由在聚苯乙烯系聚合物中含有0.1~30质量%的环氧系聚合物的组合物所构成的被膜将含有水的芯物质内包。

现有技术文献

专利文献

专利文献1:日本特开昭54-9756号公报

专利文献2:日本特开2009-295419号公报

发明内容

发明要解决的课题

在电弧隔断时,由于接点等的金属类由于电弧热而熔解生成的金属粒子、及由绝缘材料产生的碳粒子等导电性飞散物质的附着,存在成型体表面的绝缘性能降低的问题。就专利文献1中所示的现有的绝缘材料而言,由于树脂及填充材料的热分解气体所引起的导电性物质的氧化、或者高电阻化作用不足,存在着不能抑制绝缘性能的降低的课题。另外,在专利文献2中,虽然通过含有水的微胶囊的添加而赋予上述的氧化-高电阻化作用,但存在着发生微胶囊自身的破损、芯物质的挥发及流出而引起成型体的耐热性及机械强度的降低的课题。

本发明为了解决上述的课题而完成,目的在于提供能够在电弧隔断后维持成型体表面的绝缘性能、且耐热性及机械强度优异的消弧用绝缘材料成型体。

用于解决课题的手段

本发明为消弧用绝缘材料成型体,其特征在于,由每单位体积所含的氧原子量为1.75×10-2[mol/cm3]以上的热固化性树脂固化体形成。

发明的效果

根据本发明,能够提供能够在电弧隔断后维持成型体表面的绝缘性能、且耐热性及机械强度优异的消弧用绝缘材料成型体。

附图说明

图1A为表示实施方式2涉及的断路器中的消弧装置的隔断时的样子的示意的正视图。

图1B为包含沿着图1A中所示的Ib-Ib的截面的消弧装置的示意的侧视图。

图2为表示实施方式2涉及的断路器中的消弧装置的示意的立体图。

图3为实施方式2涉及的断路器的一例的示意的截面图。

图4为图3中所示的断路器的部分截面图。

图5A为表示固定触头与消弧用绝缘材料成型体的配置关系的一例的示意的侧视图。

图5B为表示图5A中所示的固定触头与消弧用绝缘材料成型体的配置关系的示意的俯视图。

图6为实施方式3涉及的断路器的一例的示意的截面图。

图7为图6中所示的断路器的部分截面图。

图8A为实施例中的绝缘性试验中使用的装置的截面图。

图8B为图8A中所示的实施例中的绝缘性试验中使用的装置的侧视图。

图9A为表示电弧隔断后的成型体中央部的表面电阻率与成型体中所含的氧原子量的关系的坐标图。

图9B为表示电弧隔断后的成型体端部的表面电阻率与成型体中所含的氧原子量的关系的坐标图。

具体实施方式

以下,对于本发明的实施方式进行说明。但是,本发明并不限定于以下的实施方式,在不脱离本发明的主旨的范围内可适当地改变。另外,在以下所示的附图中,为了容易理解,有时各部的比例尺与实际不同。在各附图间也同样。

实施方式1.

<消弧用绝缘材料成型体>

就实施方式1涉及的消弧用绝缘材料成型体而言,由每单位体积所含的氧原子量为1.75×10-2[mol/cm3]以上的热固化性树脂固化体形成。通过在热固化性树脂固化体中包含1.75×10-2[mol/cm3]以上的氧,在电弧曝露时发生的基质树脂的热分解过程中,能够产生在分子中含有氧原子的气体的含有率高的热分解气体。因此,可进行电弧的迅速的消弧,且可将飞散金属粒子及飞散碳粒子氧化及高电阻化,因此能够维持电弧隔断后的成型体表面处的绝缘性能。与上述的效果相伴,能够抑制为了提高消弧性能而在消弧用绝缘材料成型体中通常所添加的发泡剂、产生水等的填充剂等的添加量,因此能够抑制成型体的耐热性及机械强度的降低。另一方面,如果氧原子量不到1.75×10-2[mol/cm3],则不能将电弧隔断时产生的飞散金属粒子及飞散碳粒子充分地氧化及高电阻化。

在本说明书中,就热固化性树脂固化体中所含的氧原子量而言,是由使用采用树脂的热分解现象的有机元素分析(ElementalAnalysis:EA)所测定的氧含量[质量%]、和热固化性树脂固化体中使用的树脂成分的比重[g/cm3]而算出的值。就热固化性树脂固化体中所含的氧原子量而言,从抑制化学键合力小的C-O键的增加所引起的热物性的降低、及交联点的增加所引起的韧性等机械物性降低、且进一步维持电弧隔断后的成型体表面处的绝缘性能的观点考虑,优选为1.8×10-2[mol/cm3]以上且3.0×10-2[mol/cm3]以下。

作为热固化性树脂固化体,优选为包含由碳(C)原子、氧(O)原子和氢(H)原子构成的树脂的组合物的固化体,更优选为包含环氧树脂的组合物的固化体。作为环氧树脂组合物,优选:包含每1分子中所含的氧原子数的比例为全部构成原子数的9.0%以上的环氧化合物作为主剂、且包含每1分子中所含的氧原子数的比例为全部构成原子数的12.5%以上的酸酐作为固化剂。

应予说明,在本说明书中,所谓氧原子数的比例,在关注于环氧化合物及酸酐各自单一体的构成元素的情况下,意指该化合物中所含的氧原子数除以该化合物中所含的全部构成原子数时的比例(%)。氧原子数的比例能够由化合物的组成式来算出。

如果环氧化合物的每1分子中所含的氧原子数的比例为全部构成原子数的9.0%以上,则能够更长期地维持电弧隔断后的成型体表面处的绝缘性能。作为在此使用的环氧化合物,只要每1分子中所含的氧原子数的比例为全部构成原子数的9.0%以上,则对其分子结构并无限定,可从在分子中具有2个以上的环氧基的公知的环氧化合物中适当地选择。环氧化合物可单独地使用,或者可将2种以上混合使用。从维持固化物的物性的观点考虑,就环氧化合物的每1分子中所含的氧原子数的比例而言,相对于全部构成原子数,优选为9.0%以上且11.5%以下。另外,在使用2种以上的环氧化合物的情况下,只要是满足将各环氧化合物的每1分子中所含的氧原子数的比例进行平均所得的值为9.0%以上的基准的范围,则可将氧原子数的比例不到9.0%的环氧化合物在环氧化合物的混合物的50质量%以内的范围内进行并用。其中,所谓将各环氧化合物的每1分子中所含的氧原子数的比例进行平均所得的值,由对于使用的环氧化合物各自的氧原子数的比例分别乘以混合比(将环氧化合物的混合物的总量设为1)所得的值的合计值来表示。

在上述的环氧化合物中,从能够得到耐热性及机械强度更优异的消弧用绝缘材料成型体的观点考虑,优选脂环式环氧化合物。就脂环式环氧化合物而言,与具有芳香环的环氧化合物相比,热分解所需的能量小,因此能够抑制电弧隔断时所产生的飞散碳粒子的生成,对于成型体表面的绝缘性能的维持是有效的。进而,就脂环式环氧化合物而言,由于主链的刚性高且具有梯子状结构,因此与元素组成同等的直链高分子相比,能够得到耐热性及耐热变形性优异的消弧用绝缘材料成型体。可以说它们具有更适合作为暴露于电弧的高温的构件的性质。

作为上述的脂环式环氧化合物,例如,可列举出3,4-环氧环己基甲基-3,4-环氧环己烷甲酸酯、双(3,4-环氧环己基甲基)己二酸酯、1,4-环己烷二甲醇双(3,4-环氧环己烷甲酸酯)、4-乙烯基环己烷二氧化物、2-(3,4-环氧)-环己基-5,5-螺(3,4-环氧)环己烷-间-二噁烷等。这些脂环式环氧化合物可单独地使用,或者可将2种以上混合使用。

另外,如果酸酐的每1分子所含的氧原子数的比例为全部构成原子数的12.5%以上,则能够更长期地维持电弧隔断后的成型体表面处的绝缘性能。作为在此使用的酸酐,只要每1分子中所含的氧原子数的比例为全部构成原子数的12.5%以上,则对其分子结构并无限定,可从公知的酸酐系固化剂中适当地选择。酸酐可单独地使用,或者可将2种以上混合使用。从维持固化物的物性的观点考虑,相对于全部构成原子数,酸酐的每1分子中所含的氧原子数的比例优选为12.5%以上且14.0%以下。另外,在使用2种以上的酸酐的情况下,只要是满足将各酸酐的每1分子中所含的氧原子数的比例进行平均所得的值为12.5%以上的基准的范围,可将氧原子数的比例不到12.5%的酸酐在酸酐的混合物的50质量%以内的范围内进行并用。在此,所谓将各酸酐的每1分子中所含的氧原子数的比例进行平均所得的值,由对于使用的酸酐各自的氧原子数的比例分别乘以混合比(将酸酐的混合物的总量设为1)所得的值的合计值来表示。

作为上述的酸酐,例如,可列举出双环[2.2.1]庚烷-2,3-二羧酸酐、甲基-5-降冰片烯-2,3-二羧酸酐、甲基环己烯-1,2-二羧酸酐等。这些酸酐可以单独使用或将两种以上混合使用。这些酸酐中,从提高固化物的耐热性及耐湿性的观点来看,优选:含有降冰片烷结构或降冰片烯结构的双环[2.2.1]庚烷-2,3-二羧酸酐及甲基-5-降冰片烯-2,3-二羧酸酐。

就环氧树脂组合物中的作为固化剂的酸酐的配合量而言,相对于作为主剂的环氧化合物100质量份,优选为90质量份以上且150质量份以下,更优选为110质量份以上且140质量份以下。如果酸酐的配合量为90质量份以上且150质量份以下,则能够得到电特性及机械特性更优异的固化体。

另外,在上述的环氧树脂组合物中,可添加固化促进剂。所谓固化促进剂,是环氧化合物通过酸酐来进行固化时具有促进固化反应的作用的化合物。作为固化促进剂,只要是作为环氧树脂用的固化促进剂而一般使用的固化促进剂,则没有限制,优选咪唑系固化促进剂及二氮杂双环十一碳烯系固化促进剂。固化促进剂可单独地使用,或者可将2种以上混合使用。作为咪唑系固化促进剂,例如,可列举出2-乙基-4-甲基咪唑、2-甲基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑等。另外,作为二氮杂双环十一碳烯系固化促进剂,例如,可列举出1,8-二氮杂双环[5.4.0]十一碳烯-7(DBU)及其盐。也可使用咪唑系固化促进剂或二氮杂双环十一碳烯系固化促进剂与其他环氧树脂用固化促进剂的混合物。

就环氧树脂组合物中的固化促进剂的配合量而言,相对于环氧化合物100质量份,优选为0.1质量份以上且5质量份以下,更优选为0.2质量份以上且3质量份以下。如果固化促进剂的配合量不到0.1质量份,有时无法充分地获得固化促进效果。另一方面,如果固化促进剂的配合量超过5质量份,有时固化体的色相变差。

作为热固化性树脂固化体,优选为使不饱和聚酯树脂在自由基聚合性单体中溶解而得到的不饱和聚酯树脂组合物的固化体。就不饱和聚酯树脂而言,只要为使不饱和多元酸或其酸酐、多元醇、和作为任选成分的饱和多元酸或其酸酐进行反应而得到的,则对其种类并无特别限定。对不饱和聚酯树脂的重均分子量并无限定,优选为1000~30000。

作为不饱和多元酸或其酸酐,例如,可列举出马来酸酐、马来酸、富马酸、柠康酸、衣康酸、甲基环己烯-1,2-二甲酸酐等。这些不饱和多元酸可单独地使用,或者可将2种以上混合使用。

作为多元醇,例如,可列举出乙二醇、丙二醇、丁二醇、二甘醇、二丙二醇、三甘醇、戊二醇、己二醇、双酚A等。这些多元醇可单独地使用,或者可将2种以上混合使用。

作为饱和多元酸或其酸酐,例如,可列举出间苯二甲酸、邻苯二甲酸、邻苯二甲酸酐、对苯二甲酸、琥珀酸、己二酸、癸二酸、2,6?萘二甲酸、双环[2.2.1]庚烷-2,3-二甲酸酐等。这些饱和多元酸可单独地使用,或者可将2种以上混合使用。

作为自由基聚合性单体,可列举出苯乙烯、乙烯基甲苯、二乙烯基苯、丁二烯等。这些自由基聚合性单体可单独地使用,或者可将2种以上混合使用。在这些自由基聚合性单体中,从增长自由基的稳定性高、通过减少不饱和键的未反应部位而能够提高固化物的特性的观点考虑,优选苯乙烯。

从更长期地维持电弧隔断后的成型体表面的绝缘性能、且维持固化物的物性的观点考虑,不饱和聚酯树脂组合物更优选为:使选自由马来酸酐、马来酸及富马酸组成的组中的不饱和多元酸或其酸酐、选自由间苯二甲酸、邻苯二甲酸、邻苯二甲酸酐、对苯二甲酸、琥珀酸及己二酸组成的组中的饱和多元酸或其酸酐、和选自由丙二醇、乙二醇、丁二醇、二甘醇和二丙二醇组成的组中的多元醇进行反应而成的不饱和聚酯树脂在自由基聚合性单体中溶解而成的产物。

就不饱和聚酯树脂及自由基聚合性单体的配合量而言,可适当地调整以使得将不饱和聚酯树脂组合物固化所得到的固化体的每单位体积所含的氧原子量成为1.75×10-2[mol/cm3]以上。

另外,在不饱和聚酯树脂组合物中,可添加固化剂。固化剂为具有促进不饱和聚酯树脂与自由基聚合性单体的交联反应的作用的化合物。作为固化剂,只要是作为不饱和聚酯树脂的固化剂而一般使用的固化剂,则并无限制,优选使用有机过氧化物系的固化剂。固化剂可单独使用,或者可将2种以上混合使用。作为有机过氧化物系固化剂,例如,可列举出过氧化甲乙酮、过氧化苯甲酰、过氧化二枯基、过氧化叔丁基等。有机过氧化物系固化剂可与各种固化促进剂一起使用。固化促进剂具有通过促进有机过氧化物系固化剂的分解、即自由基的生成而使不饱和聚酯树脂的固化加速的作用。作为固化促进剂,只要是作为不饱和聚酯树脂的固化促进剂而一般使用的固化促进剂,则并无限制,能够使用金属皂、叔胺等。

在本实施方式涉及的消弧用绝缘材料成型体中,可含有选自由玻璃纤维、无机矿物、陶瓷纤维、金属氢氧化物和它们的混合物组成的组中的无机填充材料。通过含有无机填充材料,能够进一步提高消弧用绝缘材料成型体的耐热性及机械强度。就无机填充材料的含量而言,相对于消弧用绝缘材料成型体,优选为不到80质量%,更优选为0质量%以上且50质量%以下。如果无机填充材料的含量为80质量%以上,有时通过电弧曝露而生成的热分解气体的产生量不足,电弧的隔断效果降低。

作为无机矿物,可利用氧化钛、滑石、碳酸钙、硅灰石、钛酸钾等包含合成矿物的公知的矿物类。就这样的无机填充材料而言,只要可在消弧用绝缘材料成型体内均匀地分散,就能够对其形状和大小没有限定地使用。从进一步提高机械强度的观点考虑,作为无机填充材料的形状,优选为纤维状、鳞片状、针状的任一者。

另外,在使本实施方式涉及的消弧用绝缘材料成型体中含有金属氢氧化物作为无机填充材料的情况下,能够赋予金属氢氧化物的脱水吸热反应或来自金属氢氧化物的产生水蒸汽成分的作用所引起的、阻燃效果、成型体表面的绝缘性能维持效果及消弧性能提高效果。作为金属氢氧化物,可列举出氢氧化铝、氢氧化镁等。就作为无机填充材料的金属氢氧化物而言,只要可在消弧用绝缘材料成型体内均匀地分散,则能够对其形状和大小没有限定地来使用。但是,在本实施方式中,通过增大消弧用绝缘材料成型体的基质树脂中所含的氧原子量,达到上述效果的提高。因此,就金属氢氧化物而言,在不阻碍基质树脂的效果的范围内,优选少量地添加。

进而,在本实施方式涉及的消弧用绝缘材料成型体中,在不损害本发明的效果的范围内可添加阻燃剂、阻燃助剂、抗氧化剂、稳定剂、着色剂等公知的添加剂。

作为本实施方式涉及的消弧用绝缘材料成型体的制造方法,并无特别限定,能够采用注射成型法、反应注射成型法、铸塑法、压缩成型法、传递成型法等该技术领域中公知的方法进行。

作为本实施方式中所使用的环氧树脂组合物的固化方法,并无特别限定,能够使用密闭式固化炉、可进行连续固化的隧道炉等,采用该技术领域中公知的方法来进行。就固化温度及固化时间而言,优选100℃以上且250℃以下、30秒以上且15小时以下的范围。为了减小内部应力、得到耐热性优异的消弧用绝缘材料成型体,优选:实施采用100℃以上且150℃以下、0.5小时以上且5小时以下的条件进行前固化后采用180℃以上且250℃以下、0.5小时以上且15小时以下的条件实施后固化的2阶段固化。就这样得到的环氧树脂组合物的固化体而言,每单位体积所含的氧原子量多,能够作为耐热性及机械强度优异的消弧用绝缘材料成型体来使用。

作为本实施方式中所使用的不饱和聚酯树脂组合物的固化方法,并无特别限定,能够使用密闭式固化炉、加热模具等,采用该技术领域中公知的方法来进行。就固化温度及固化时间而言,可设为20℃以上且200℃以下、10秒以上且24小时以下的范围。从提高耐热性及机械强度的观点考虑,固化温度及固化时间优选设为60℃以上且170℃以下、10秒以上且12小时以下。

实施方式2.

<断路器>

图1A为表示实施方式2涉及的断路器中的消弧装置的隔断时的样子的示意的正视图。图1B为表示包含沿着图1A中所示的Ib-Ib的截面的消弧装置的隔断时的样子的示意的侧视图。在图1A及图1B中,可动接点2设置在可动触头1的固定触头3侧。另外,固定接点4设置在固定触头3的一端且与可动接点2对应的位置。进而,就消弧用绝缘材料成型体5而言,设置在暴露于在可动接点2与固定接点4之间所产生的电弧的部分,以使得将可动接点2和固定接点4的周围夹持。就本实施方式涉及的断路器中的消弧装置中使用的消弧用绝缘材料成型体5而言,由实施方式1中所说明的热固化性树脂固化体形成。

其次,对于断路器的动作进行说明。在断路器中,通过开闭机构部(参照图3和图4)动作,可动触头1转动,由此成为可动接点2与固定接点4接触或分开的结构。通过使接点之间接触,将电力从电源供给至负荷。为了确保通电的可靠性,用规定的接触压力使可动接点2压靠于固定接点4。

如果发生短路事故等、在电路中流过大的过电流,则可动接点2与固定接点4之间的接触面处的电磁排斥力变得非常强。为了克服对可动接点2所施加的接触压力,可动触头1转动、可动接点2与固定接点4分开。进而,通过开闭机构部及拉开装置的动作,随着固定接点4与可动接点2的分开距离增大,电弧电阻增大,由此电弧电压上升。

在这样的隔断动作中,在可动接点2与固定接点4之间,在短时间、即数毫秒内由电弧产生大量的能量。此时,通过将消弧用绝缘材料成型体5暴露于电弧,产生热分解气体,通过产生的热分解气体将电弧冷却而消弧。

另外,图2为表示实施方式2涉及的断路器中的消弧装置的示意的立体图。在图2中,示出断路器的隔断时(关状态)的样子。在该消弧装置中,将金属制的具有U字型或V字型的缺口部7的多个消弧板6以一定间隔进行配置。在可动接点2与固定接点4之间产生的电弧8被磁力向消弧板6的方向拉拽而伸长,因此电弧电压进一步上升。进而,通过将电弧8收进消弧板6,对过电流进行限流,将电弧8消弧,将电路隔断。

对上述断路器更详细地说明。图3为实施方式2涉及的断路器的一例的示意的截面图。在图3中,示出断路器的接触时(开状态)的样子。图4为图3中所示的断路器的部分截面图。在图4中,示出断路器的隔断时(关状态)的样子。断路器包括:由铜等导体构成的可动触头1;固接于可动触头1的一端的可动接点2;与可动接点2接触或分开的固定接点4;固接有固定接点4的、由铜等导体构成的固定触头3;消弧装置100;将可动触头1转动并开闭驱动的开闭机构部110;用于用手动操作开闭机构部110的把手13;拉开装置部120;在固定触头3的另一端部构成的电源侧的端子部9;和负荷侧的端子部10。就罩14及基底15而言,将上述的各部件收纳和/或固定,构成壳体18的一部分。就将端子部9与壳体18内隔离的尾板17而言,被插入设置于基底15的导槽16而安装。另外,就尾板17而言,具有将通过电弧8所产生的电弧气体排出的排气孔17a。从外部电源将配线连接于断路器。

就消弧装置100而言,由用于将在可动接点2与固定接点4之间所产生的电弧8进行冷却及消弧的由磁性体的金属制成的多个消弧板6(格网)、用两侧将消弧板6保持的消弧侧板11(在图3及图4中示出消弧侧板的单侧)、和消弧用绝缘材料成型体5构成。将消弧装置100中的多个消弧板6以一定间隔进行配置。消弧用绝缘材料成型体5及消弧侧板11由绝缘材料形成。这些中,至少消弧用绝缘材料成型体5由实施方式1中所说明的热固化性树脂固化体形成。就消弧用绝缘材料成型体5而言,在图4中所示的状态下,设置在可动接点2与固定接点4之间。就消弧用绝缘材料成型体5而言,从上面看,以使固定接点4露出、将暴露于电弧8的固定触头3的其他的大部分覆盖的方式来设置(参照图5A及图5B)。

就消弧用绝缘材料成型体5而言,以热分解气体的喷射所引起的电弧8的冷却及消弧、热分解气体的气流所引起的电弧8向消弧板6的诱导、以及消弧装置100内的绝缘遮蔽为目的而设置。就本实施方式涉及的断路器而言,通过具备:由每单位体积所含的氧原子量为1.75×10-2[mol/cm3]以上的热固化性树脂固化体形成的消弧用绝缘材料成型体5,使热分解气体中的在分子中含有氧原子的气体的含有率增大、具有维持成型体表面及断路器内部的绝缘性的效果。通过该效果,能够抑制断路器中的再触发(日语:再点弧)。进而,就该热固化性树脂固化体而言,与聚酰胺等热塑性树脂相比,可减少电弧曝露时的损耗量,因此有助于断路器的长寿命化。另外,通过该效果,抑制电弧曝露时的断路器内部的压力上升,因此能够减小对断路器的壳体所施加的负荷。

图5A为示意地表示消弧用绝缘材料成型体5与触头对(可动触头1及固定触头3)的配置关系的一例的侧视图。图5B为示意地表示图5A中所示的消弧用绝缘材料成型体5与触头对(可动触头1和固定触头3)的配置关系的一例的俯视图。在图5A及图5B中,消弧用绝缘材料成型体5设置在触头对附近。如图5B中所示,就消弧用绝缘材料成型体5而言,从上面看,以使固定接点4露出、将暴露于电弧8的固定触头3的其他的大部分覆盖的方式来设置。该消弧用绝缘材料成型体5也起到用于使电弧8不移动至固定触头3的固定接点4以外的部分的绝缘构件的作用。

就本实施方式涉及的断路器中的消弧用绝缘材料成型体5的配置而言,并不限定于上述说明的配置。即,在断路器中,可将消弧用绝缘材料成型体5配置在电弧产生部位的附近,即,能够以充分的量使热分解气体产生且妨碍电弧的移动的位置。例如,以磁场的作用所产生的电弧的拉拽及伸长为目的,可将消弧用绝缘材料成型体5配置在设置于断路器的内部的磁铁的周围或附近。

实施方式3.

<断路器>

图6为实施方式3涉及的断路器的一例的示意的截面图。在图6中,示出断路器的接触时(开状态)的样子。图7为图6中所示的断路器的部分截面图。在图7中,示出断路器的隔断时(关状态)的样子。断路器具备:由铜等导体构成的可动触头1、可动接点2、固定接点4、由铜等导体构成的固定触头3、消弧装置100、将可动触头1转动而进行开闭驱动的开闭机构部110、和拉开装置部120。将可动接点2及固定接点4收纳在消弧室28内。可动接点2设置在可动触头1的固定触头3侧。另外,固定接点4设置在固定触头3的一端且与可动接点2对应的位置。

就消弧装置100而言,由用于使在接点间所产生的电弧行走至消弧装置100的可动侧电弧滚环23及固定侧电弧滚环24、用于将行走至消弧装置100的电弧冷却及消弧的薄板状的由磁性体的金属构成的多个消弧板6、和消弧用绝缘材料成型体5构成。就消弧装置100中的多个消弧板6而言,以一定间隔被配置在消弧室28内的上方。在消弧室28的上部,设置有用于将电弧气体向消弧室28的外部排气的排气口。进而,就消弧用绝缘材料成型体5而言,在图7中所示的状态下,被设置在暴露于在可动接点2与固定接点4之间所产生的电弧的部分,以使得从两侧将可动接点2和固定接点4夹持。就本实施方式涉及的断路器中的消弧装置100中使用的消弧用绝缘材料成型体5而言,由实施方式1中所说明的热固化性树脂固化体形成。

其次,对于断路器的动作进行说明。在断路器中,开闭机构部动作,可动触头1转动,由此成为可动接点2与固定接点4接触或分开的结构。使接点之间接触,由此通过与可动触头1连接的下部导体21及与固定触头3连接的上部导体22来将电力从电源供给。为了确保通电的可靠性,以规定的接触压力使可动接点2压靠于固定接点4。

如果发生短路事故等、在电路中流过大的过电流,则配置于下部导体21的过电流检测器23检测出过电流。如果检测出过电流,则将在电流通电时保持可动触头1的锁存器24解除,以旋转轴25为中心,可动触头1在顺时针方向上旋转,可动接点2与固定接点4分开。随着可动接点2与固定接点4的分开距离增大,电弧电阻增大,由此电弧电压上升。

在该隔断动作中,在可动接点2与固定接点4之间,在短时间、即数毫秒内由电弧产生大量的能量。此时,通过将消弧用绝缘材料成型体5暴露于电弧,产生热分解气体,通过产生的热分解气体,电弧8被冷却、被消弧。

另外,就在可动接点2与固定接点4之间所产生的电弧而言,通过流过可动触头1和固定触头3的电流所产生的磁驱动力、来自消弧用绝缘材料成型体5的电弧暴露时所产生的热分解气体的消弧室28内的压力上升、与消弧室28的向外部的排气所相伴的气体的流动、消弧板6的磁吸引力等的作用,换流至可动接点侧电弧滚环26及固定接点侧电弧滚环27,向消弧室28内的上方移动。通过将电弧收进消弧板6,使过电流限流,将电弧消弧,将电路隔断。

就消弧用绝缘材料成型体5而言,以热分解气体的喷射所引起的电弧8的冷却及消弧、热分解气体的气流所引起的电弧8向消弧板6的诱导、及消弧装置100内的绝缘遮蔽为目的而设置。就本实施方式涉及的断路器而言,通过具备:由每单位体积所含的氧原子量为1.75×10-2[mol/cm3]以上的热固化性树脂固化体形成的消弧用绝缘材料成型体5,使热分解气体中的在分子中含有氧原子的气体的含有率增大,具有维持成型体表面及断路器内部的绝缘性的效果。

就本实施方式涉及的断路器中的消弧用绝缘材料成型体5的配置而言,并不限定于上述说明的配置。即,在断路器中,可将消弧用绝缘材料成型体5配置在电弧产生部位的附近,即,能够以充分的量使热分解气体产生、且妨碍电弧的移动的位置。

实施例

在以下记载本发明的实施例,但本发明并不限定于这些实施例。

[实施例1~7、比较例1~4]

(材料组成)

在表1及表2中,示出实施例1~7及比较例1~4的消弧用绝缘材料成型体的材料组成。

就实施例1~4的消弧用绝缘材料成型体而言,使用包含作为环氧化合物的3,4-环氧环己基甲基-3,4-环氧环己烷甲酸酯(氧原子数的比例:10.5%)、双(3,4-环氧环己基甲基)己二酸酯(氧原子数的比例:10.7%)或1,4-环己烷二甲醇双(3,4-环氧环己烷甲酸酯)(氧原子数的比例:10.0%)、作为酸酐的双环[2.2.1]庚烷-2,3-二甲酸酐(氧原子数的比例:12.8%)或甲基-5-降冰片烯-2,3-二甲酸酐(氧原子数的比例:13.0%)、和作为固化促进剂的2-乙基-4-甲基咪唑的环氧树脂组合物来制作。

就比较例1的消弧用绝缘材料成型体而言,使用包含作为环氧化合物的双酚A型环氧化合物(三菱ケミカル株式会社制造、制品名:jER828、氧原子数的比例:8.2%)、作为酸酐的双环[2.2.1]庚烷-2,3-二甲酸酐(氧原子数的比例:12.8%)、和作为固化促进剂的2-乙基-4-甲基咪唑的环氧树脂组合物来制作。双酚A型环氧化合物在其分子结构中具有芳香环。

就比较例2的消弧用绝缘材料成型体而言,使用包含作为环氧化合物的氢化双酚A型环氧化合物(三菱ケミカル株式会社制造、制品名:YX8000、氧原子数的比例:6.6%)、作为酸酐的双环[2.2.1]庚烷-2,3-二甲酸酐(氧原子数的比例:12.8%)、和作为固化促进剂的2-乙基-4-甲基咪唑的环氧树脂组合物来制作。就氢化双酚A型环氧化合物而言,由于为将双酚A型环氧化合物的所有芳香环都置换为环己烷环的化合物,因此为脂环式环氧化合物。

就实施例5及6以及比较例3的消弧用绝缘材料成型体而言,使用包含使作为不饱和多元酸的马来酸酐30质量份、作为多元醇的丙二醇40质量份及作为饱和多元酸的间苯二甲酸30质量份反应所得到的不饱和聚酯树脂、作为自由基聚合性单体的苯乙烯、和作为固化剂的过氧化苯甲酰的不饱和聚酯树脂组合物来制作。

就实施例7及比较例4的消弧用绝缘材料成型体而言,使用包含使作为不饱和多元酸的马来酸酐20质量份、作为多元醇的丙二醇40质量份及作为饱和多元酸的间苯二甲酸40质量份反应所得到的不饱和聚酯树脂、作为自由基聚合性单体的苯乙烯、和作为固化剂的过氧化苯甲酰的不饱和聚酯树脂组合物来制作。

(消弧用绝缘材料成型体的制作方法)

在实施例1及2中,将相对于环氧化合物100质量份包含酸酐130质量份及固化促进剂1质量份的环氧树脂组合物搅拌直至成为均质。然后,将环氧树脂组合物注入到模框内,实施加热固化处理,由此使环氧树脂组合物固化,得到纵40mm×横60mm×厚2mm的消弧用绝缘材料成型体。作为加热固化处理,实施120℃下2小时的前固化处理、和200℃下4小时的后固化处理。

在实施例3及4中,将相对于环氧化合物100质量份包含酸酐110质量份及固化促进剂1质量份的环氧树脂组合物搅拌直至成为均质。然后,将环氧树脂组合物注入到模框内,实施加热固化处理,由此使环氧树脂组合物固化,得到纵40mm×横60mm×厚2mm的消弧用绝缘材料成型体。作为加热固化处理,实施120℃下2小时的前固化处理、和180℃下6小时的后固化处理。

在比较例1和2中,将相对于环氧化合物100质量份包含酸酐100质量份及固化促进剂1质量份的环氧树脂组合物搅拌直至成为均质。然后,将环氧树脂组合物注入到模框内,实施加热固化处理,由此使环氧树脂组合物固化,得到纵40mm×横60mm×厚2mm的消弧用绝缘材料成型体。作为加热固化处理,实施120℃下2小时的前固化处理、和180℃下6小时的后固化处理。

在实施例5~7以及比较例3及4中,将相对于不饱和聚酯树脂100质量份包含自由基聚合性单体30质量份~70质量份及固化剂1.5质量份的不饱和聚酯树脂组合物搅拌直至成为均质。然后,将不饱和聚酯树脂组合物注入到模框内,实施加热固化处理,由此使不饱和聚酯树脂组合物固化,得到纵40mm×横60mm×厚2mm的消弧用绝缘材料成型体。作为加热固化处理,实施130℃下8小时的固化。

(成型体中所含的氧原子量的测定)

就实施例1~7及比较例1~4的消弧用绝缘材料成型体中所含的每单位体积的氧原子量而言,由通过有机元素分析装置(制造商:Elementar、装置名:varioEL-III)所测定的氧含量、和通过比重测定装置所测定的比重来算出。将结果示于表1和表2中。

(绝缘性试验)

实施对得到的消弧用绝缘材料成型体的绝缘性进行评价的试验。图8A为表示该绝缘性试验中所使用的装置的示意的截面图。图8B为表示该绝缘性试验中所使用的装置的示意的侧视图。在图8A和图8B中,30为对置电极,31为试验容器,32为试样台。该绝缘性试验采用流过300V、30kA的过电流的电路来进行。在电极接点,使用Ag60wt%-WC36wt%-石墨4wt%的组成的材料。该绝缘性试验模拟了如下现象:在电路中过电流流过时产生电弧,由于该电弧,图1~7中所示的可动接点2及固定接点4熔融、飞散,其成分附着于在这些接点附近所设置的部件。将电弧隔断后的消弧用绝缘材料成型体回收,测定成型体中央部(电弧产生点附近)的表面电阻率及成型体端部的表面电阻率。图9A为表示成型体中央部的表面电阻率与成型体中所含的氧原子量的关系的坐标图,图9B为表示成型体端部的表面电阻率与成型体中所含的氧原子量的关系的坐标图。

对于实施例1~7的消弧用绝缘材料成型体而言,得到每单位体积所含的氧原子量为1.75×10-2[mol/cm3]以上的固化体。在实施例1~4中,作为原料即环氧化合物及酸酐,使用分子中所含的氧原子数的比例为一定量以上的物质,制作消弧用绝缘材料成型体,因此固化体中的氧原子量成为1.75×10-2[mol/cm3]以上。另外,在实施例5~7中,由于调整了不饱和聚酯树脂的原料的组成比及自由基聚合性单体的配合量,因此固化体中的氧原子量成为1.75×10-2[mol/cm3]以上。与此相对,在比较例1及2中,作为原料即环氧化合物,使用分子中所含的氧原子数的比例小的物质,制作消弧用绝缘材料成型体,因此固化体中的氧原子量成为不到1.75×10-2[mol/cm3]。另外,在比较例3及4中,由于调整了不饱和聚酯树脂的原料的组成比及自由基聚合性单体的配合量,因此固化体中的氧原子量成为不到1.75×10-2[mol/cm3]。

在实施例1~7中,确认:绝缘性试验实施后的消弧用绝缘材料成型体表面的表面电阻率在成型体中央部及端部处的任意处都能够维持初期值。这是由于:通过使成型体中所含的氧原子量为1.75×10-2[mol/cm3]以上,使电弧热所引起的成型体的热分解时产生的热分解气体大量地包含在分子中含有氧原子的气体,产生由于电弧而熔融、飞散的来自接点的金属成分的高电阻化作用及从成型体所释放的游离碳的减少作用。在比较例1~4中,确认:成型体中央部的表面电阻率与初期值相比略微降低,成型体端部的表面电阻率从初期值大幅地降低。认为这是由于成型体中所含的氧原子量不充分,因此飞散的金属的高电阻化作用及游离碳的减少作用变得有限。

由以上的结果可知,根据本发明,能够提供在电弧隔断时能够维持成型体表面的绝缘性能、且耐热性及机械强度优异的消弧用绝缘材料成型体。

附图标记的说明

1可动触头、2可动接点、3固定触头、4固定接点、5消弧用绝缘材料成型体、6消弧板、7缺口部、8电弧、9,10端子部、11消弧侧板、13把手、14罩、15基底、16导槽、17尾板、17a排气孔、18壳体、21下部导体、22上部导体、23过电流检测器、24锁存器、25旋转轴、26可动接点侧电弧滚环、27固定接点侧电弧滚环、28消弧室、30对置电极、31试验容器、32试样台、100消弧装置、110开闭机构部、120拉开装置部。

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:低压保护开关设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!