一种利用地震资料计算地应力差异系数的方法

文档序号:1390250 发布日期:2020-02-28 浏览:2次 >En<

阅读说明:本技术 一种利用地震资料计算地应力差异系数的方法 (Method for calculating ground stress difference coefficient by using seismic data ) 是由 齐晴 孙振涛 田建华 陈勇 杨勤林 朱博华 胡玮 史飞洲 裴思嘉 于 2018-08-20 设计创作,主要内容包括:本发明提出了一种利用地震资料计算地应力差异系数的方法,其中,所述方法包括以下步骤:S1:基于地震资料建立地层的应力场;S2:拟合地层面的趋势函数,计算所述地层面上点的曲率变形分量,基于所述曲率变形分量,得出地层面的应力张量;S3:基于所述应力张量得出最大水平主应力和最小水平主应力;S4:基于所述最大水平主应力和所述最小水平主应力,得出地应力差异系数。本发明的方法能够利用三维地震资料计算地应力差异系数;同时可以利用大范围的地应力差异系数计算结果划分开发单元,指导水平井部署,可靠性较高。(The invention provides a method for calculating a ground stress difference coefficient by using seismic data, wherein the method comprises the following steps: s1: establishing a stress field of a stratum based on seismic data; s2: fitting a trend function of the ground surface, calculating a curvature deformation component of a point on the ground surface, and obtaining a stress tensor of the ground surface based on the curvature deformation component; s3: deriving a maximum horizontal principal stress and a minimum horizontal principal stress based on the stress tensor; s4: and deriving a ground stress difference coefficient based on the maximum level principal stress and the minimum level principal stress. The method can utilize three-dimensional seismic data to calculate the ground stress difference coefficient; meanwhile, development units can be divided by utilizing the calculation result of the ground stress difference coefficient in a large range, horizontal well deployment is guided, and reliability is high.)

一种利用地震资料计算地应力差异系数的方法

技术领域

本发明涉及属于地震勘探与开发领域,特别涉及一种利用地震资料计算地应力差异系数的方法。

背景技术

随着石油工业的发展,非常规油气资源逐渐成为各国油气田的增产主体。页岩气藏在全球范围有着广泛的分布,与常规油气藏相比,页岩气藏有着自生自储、低孔低渗的特点,而大规模开采低孔低渗页岩气藏的关键,就在于水平井压裂技术的应用。页岩气水平井开发,首先要对目的层进行射孔,然后进行压裂、造缝,压裂液中的支撑剂对页岩基质孔隙起到了支撑作用,改善了基质的孔隙度和渗透率,能否将页岩储层压裂成网状缝是导致水平井能否增产的重要因素。

CN201710406786公开了一种计算页岩气储层地应力差异系数的方法,通过页岩储层的地层孔隙流体压力梯度FPG、页岩储层上覆地层岩石密度DEN等参数计算页岩储层水平地应力差异系数△Ki,依据△Ki评价页岩储层可压性,水平井水平段页岩储层分段压裂效果验证符合率高的描述页岩储层可压性的评价方法。但是,此方法只能利用录井资料、测井资料计算井点处地应力差异系数,无法适应较大规模的开发区块。

发明内容

为解决现有技术的缺陷,本发明提出了一种利用地震资料计算地应力差异系数的方法。本发明基于地震资料利用地层的构造信息,以及速度、密度信息,建立地层的应力场,并计算得到层位面(即地层面)的应力应变张量及曲率张量,求解出层位面的主曲率、主应变和主应力,最终计算出地应力差异系数,提高了页岩气水平井压裂效果,具有创新性,为页岩气水平井开发奠定了基础,具有国际领先性。

为实现上述目的,本发明提出了一种利用地震资料计算地应力差异系数的方法,其中,所述方法包括以下步骤:

S1:基于地震资料建立地层的应力场;

S2:拟合地层面的趋势函数,计算所述地层面上点的曲率变形分量,基于所述曲率变形分量,得出所述地层面的应力张量;

S3:基于所述应力张量得出最大水平主应力和最小水平主应力;

S4:基于所述最大水平主应力和所述最小水平主应力,得出地应力差异系数数。

如上所述的方法,其中,

在步骤S1中,利用地层的构造信息、速度信息以及密度信息,基于薄板理论,结合变形几何方程和应力应变关系,建立地层的应力场。

如上所述的方法,其中,

在步骤S2中,采用最小二乘法拟合地层面的趋势函数。

如上所述的方法,其中,

在步骤S3中,基于应力莫尔圆理论,根据所述应力张量得出最大水平主应力和最小水平主应力。

如上所述的方法,其中,

趋势函数设定为:

w(x,y)=a0+a1x+a2y+a3x2+a4xy+a5y2

如上所述的方法,其中,

根据下式计算出曲率变形分量,

Figure BDA0001770874110000021

其中,在上式中,

w分别为三个坐标轴上的位移分量;

a3、a4和a5均为趋势函数中的系数;

κx和κy分别表示x和y方向上曲率变形分量;°

κxy表示xy面内的曲率变形分量

如上所述的方法,其中,

根据下式求出所述地层面的应力张量,

Figure BDA0001770874110000031

其中,在上式中,

σx和σy分别表示x和y方向上正应力;

ν为泊松比,E为弹性模量,t为地层厚度。

如上所述的方法,其中,

根据下式求出所述最大水平主应力和所述最小水平主应力,

Figure BDA0001770874110000032

其中,在上式中,

σx和σy分别表示x和y方向上正应力,τxy表示xy面上的切应力;

σmax表示最大水平主应力和σmin表示最小水平主应力。

如上所述的方法,其中,

根据下式求出地应力差异系数K,

Figure BDA0001770874110000033

本方法利用地震资料计算地应力差异系数,综合地层的构造信息,以及速度、密度信息,建立地层的应力场,并计算得到层位面的应力应变张量及曲率张量,求解出层位面的主曲率、主应变和主应力,最终计算出地应力差异系数,可以划分开发单元,为产建方案编制、井轨迹设计与工程设计优化提供依据,是水平井开发领域的一次创新。

本发明的方法对比已有的技术具有以下的优势:

(1)能够利用三维地震资料计算地应力差异系数;

(2)可以利用大范围的地应力差异系数计算结果划分开发单元,指导水平井部署,可靠性较高。

附图说明

在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。

图1为本发明的利用地震资料计算地应力差异系数的方法的流程图;

图2为本发明的一具体实施例的流程图;以及

图3为本发明的X工区龙马溪组地应力差异系数预测结果。

具体实施方式

结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围,下面将结合附图对本发明作进一步说明。

地应力一般指赋存于地层岩石中的内力,地应力对裂缝形态的影响程度主要体现在水平主应力差的大小上,最大水平主应力与最小水平主应力之差与最小水平主应力之间的比值定义为地应力差异系数。当地应力差异系数较小时,人工裂缝沿着天然裂缝方向延伸,将原有天然裂缝沟通并形成网络裂缝;随着地应力差异系数的增加,地应力控制作用逐渐增强,裂缝逐渐沿垂直最小水平主应力方向扩展,裂缝形态相对单一。

气层压力低是页岩气藏开发的主要特点之一,页岩气井通常不会自喷,一般需采用水平井开发,同时进行水平井压裂改造,利用水力作用在气层中形成人工裂缝,以提高气层中流体流动能力。

地应力差异系数定义为最大水平主应力与最小水平主应力之差与最小水平主应力之间的比值。人工裂缝在井筒周围的起裂与扩展受到远地应力场的影响。当地应力差异系数较小时,人工裂缝沿着天然裂缝方向延伸,将原有天然裂缝沟通并形成网络裂缝。当地应力差异系数较大时,天然裂缝发生膨胀,水力裂缝在交汇点处直接穿过天然裂缝,继续沿着原来的最大水平主应力方向扩展,形成两条主裂缝。研究表明,当地应力差异系数小于0.1时,易产生网状裂缝。因此,水平井设计时应综合考虑上述情况,以获得良好的压裂效果和产能。

参考图1所示,本发明的利用地震资料计算地应力差异系数的方法,其特征在于,所述方法包括以下步骤:S1:基于地震资料建立地层的应力场;S2:拟合地层面的趋势函数,计算所述地层面上点的曲率变形分量,基于所述曲率变形分量,得出层位面的应力张量;S3:基于所述应力张量得出最大水平主应力和最小水平主应力;S4:基于所述最大水平主应力和所述最小水平主应力,得出地应力差异系数。

在一具体实施例中,地应力分析需要相对理想的模型:假设地层的构造变形完全是地应力导致的,而且这里假设地球介质是各向同性、均匀连续并且是完全弹性的。通常情况下,发生弯曲变形的地层,其宽度和长度都远远大于其厚度,因此用薄板弯曲理论可以模拟构造面附近的应力状态。

利用地层的构造信息,以及速度、密度信息,基于薄板理论,结合变形几何方程和应力应变关系,建立地层的应力场。利用最小二乘法拟合地层面的趋势函数,求出各点的曲率分量,并计算得到层位面(即地层面)的应力应变张量。根据应力莫尔圆理论,就可求出其主应力大小。根据最大水平主应力与最小水平主应力可以计算出地应力差异系数。

在直角坐标系中,变形几何方程为:

Figure BDA0001770874110000051

其中,在上式中,

εx、εy和εz分别表示x、y和z方向上的正应变

γxy、γyz以及γxz分别表示xy面、yz面和xz面上的切应变。

u、v以及w分别为三个坐标轴上的位移分量

由薄板理论可知:

Figure BDA0001770874110000061

且有:

Figure BDA0001770874110000062

定义曲率变形分量为:

因此,应变分量可写为:

εx=zκxy=zκyxy=2zκxy (5)

通常情况下,应力与应变的关系:

Figure BDA0001770874110000064

其中,在上式(6)中,

ν为泊松比、E为弹性模量

σx、σy和σz分别表示x、y和z方向上正应力;。

τxy、τxz和τyz分别表示xy面、yz面和xz面上的切应力

根据公式(6)可以推导出,应力与应变的关系的逆关系为:

Figure BDA0001770874110000065

其中,

Figure BDA0001770874110000066

基于薄板理论,由于σz=0,因此有:

Figure BDA0001770874110000071

相对体应变θ为:

Figure BDA0001770874110000072

或写为:

Figure BDA0001770874110000073

将应力用应变表示,把式(9)带入式(8),相对σx、σy求解,得到:

Figure BDA0001770874110000074

最后可得到:

Figure BDA0001770874110000075

因而有:

Figure BDA0001770874110000076

地层厚度为t=2z,其中t为双程旅行时,z为地层深度。代入式(13)中得到地层面上的应力分量:

Figure BDA0001770874110000081

根据应力莫尔圆理论,就可求出其主应力大小:

Figure BDA0001770874110000082

因此,只需求得各点的曲率,就可以进一步计算出应变和应力。曲率的计算通常采用最小二乘法拟合地层面的趋势函数,进而计算其上点的曲率分量。

设趋势面的待定系数函数为:

w(x,y)=a0+a1x+a2y+a3x2+a4xy+a5y2 (16)

将n个散点拟合成为一个趋势面时,

Figure BDA0001770874110000083

表示趋势值,Q为趋势值

Figure BDA0001770874110000084

作为原始值wi的估计存在的误差,要使Q达到最小,即:

Figure BDA0001770874110000085

通过求解方程组,就可以得到地层的趋势面函数。

趋势面的曲率计算式为:

Figure BDA0001770874110000091

解方程组可得到地层趋势面拟合曲面的系数a3,a4,a5,由式(18)可得到该点处的曲率。

由式(13)、式(14)、式(18)可分别计算出相应的应力参数,进而得到最大水平主应力与最小水平主应力。

根据最大水平主应力与最小水平主应力大小可以计算出地应力差异系数K:

Figure BDA0001770874110000092

式(19)中σmax和与σmin分别是最大水平主应力和最小水平主应力。

实施例:

图2为利用地震资料计算地应力差异系数方法流程图。第一步,利用深度域构造数据(即综合地层的构造信息),以及速度、密度信息,建立地层的应力场,;第二步,采用最小二乘趋势面拟合的方法,求取出层面的曲率张量,如式(18),基于求出的曲率张量,求取出层位面的应力张量,如式(14);第三步,根据应力莫尔圆理论,求取出最大水平主应力、最小水平主应力,如式(15);第四步,根据最大水平主应力、最小水平主应力,求取出地应力差异系数,如式(19)。

研究表明,当地应力差异系数小于0.1时,易产生网状裂缝,且地应力差异系数越小,越有利于形成裂缝网络。同时,远离断层的地层平缓区,地应力非均质性较低,易形成裂缝网络,有利于水平井压裂改造。

表1为研究区内3口水平井的测试产量情况。X1井和X3井产量均超过10万方/天,属于高产气井;X2井产量较低,仅为6.5万方/天。图2为X工区龙马溪组地应力差异系数预测结果,从图中可以看出,X工区龙马溪组地应力差异系数主要在0.02-0.14之间。其中X1井和X3井地应力差异系数在0.06-0.08之间,位于低值区,有利于压裂改造成网状缝,获得了较好的压裂效果,因此产量较高。而X2井地应力差异系数大于0.1,相对不利于压裂改造,压裂效果较差,是该井低产的重要原因之一。从三口井产能情况来看,验证了地应力差异系数计算结果的可靠性,说明了本方法的合理性。

表1 X工区3口水平井的测试产量情况

本发明提供了一种利用地震资料计算地应力差异系数的方法,属于地震勘探与开发领域。本方法包括:第一步,利用深度域构造数据,以及速度、密度信息,建立地层的应力场;第二步,采用最小二乘趋势面拟合的方法,求取层面的曲率张量,进而求取层位面的应力张量;第三步,根据应力莫尔圆理论,得到最大水平主应力、最小水平主应力;第四步,根据最大水平主应力、最小水平主应力,求取出地应力差异系数。地应力差异系数较小时,有利于形成网状裂缝,取得好的压裂效果。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于冲击波激发震源的转换SH波探测冲刷带方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类