Nickel electrode micropore atomization element and preparation method thereof

文档序号:1438824 发布日期:2020-03-24 浏览:28次 中文

阅读说明:本技术 一种镍电极微孔雾化元件及其制备方法 (Nickel electrode micropore atomization element and preparation method thereof ) 是由 何龙 施小罗 范文筹 刘志潜 刘宗玉 于 2019-12-05 设计创作,主要内容包括:本发明涉及一种镍电极微孔雾化元件及其制备方法,包括环形压电陶瓷片及贴覆在所述环形压电陶瓷片上的金属片,所述金属片在所述环形压电陶瓷片的环内部分设置有用于雾化的微孔区,所述环形压电陶瓷片表面涂覆有镍形成环形镍电极区。本发明使用镍作为工作电极的微孔雾化元件,流程上采用物理粗化、化学镀、高温键合、电镀、热处理、外圆磨内圆磨等关键工艺来制备镍工作电极,可完全避免因银电极出现发黄发黑而引起性能的严重下降的情况,同时本发明的制备流程便于批量化生产微孔雾化元件。(The invention relates to a nickel electrode micropore atomization element and a preparation method thereof, and the nickel electrode micropore atomization element comprises an annular piezoelectric ceramic piece and a metal sheet attached to the annular piezoelectric ceramic piece, wherein a micropore area for atomization is arranged on the inner part of the metal sheet in the ring of the annular piezoelectric ceramic piece, and the surface of the annular piezoelectric ceramic piece is coated with nickel to form an annular nickel electrode area. The invention uses nickel as the micropore atomization component of the working electrode, and adopts key processes such as physical coarsening, chemical plating, high-temperature bonding, electroplating, heat treatment, external grinding and internal grinding in the process to prepare the nickel working electrode, thereby completely avoiding the serious performance reduction caused by yellowing and blackening of the silver electrode, and simultaneously the preparation process of the invention is convenient for mass production of micropore atomization components.)

1. The micropore atomization element of the nickel electrode is characterized by comprising an annular piezoelectric ceramic piece and a metal substrate attached to the annular piezoelectric ceramic piece, wherein the metal substrate is arranged in an annular part of the annular piezoelectric ceramic piece and used for atomization, and a metal nickel is coated on the surface of the annular piezoelectric ceramic piece to form an annular nickel electrode area.

2. The microporous atomizing element of claim 1, wherein the annular piezoceramic sheet has an outer diameter of 15.9mm, an inner diameter of 7.7mm, and a thickness of 0.56 mm.

3. A method of making a nickel electrode microporous atomizing element for processing any one of the microporous atomizing elements of claims 1-2, said method comprising the steps of:

and S1, putting the annular piezoelectric ceramic wafer in an alumina tank for wet physical coarsening, and filtering and cleaning the annular piezoelectric ceramic wafer by using a coarse sample separation sieve after the tank mill is finished.

S2, placing the cleaned annular piezoelectric ceramic wafer in the step S1 into a chemical plating clamp in a single-chip mode, and then depositing a layer of chemical nickel on the surface of the annular piezoelectric ceramic wafer according to the sequence of activation and sensitization;

s3: dehydrating and air-drying the product plated with the chemical nickel in the step S2, and then putting the product into an oven for high-temperature bonding;

s4: placing the product treated in the step S3 on a rack plating fixture, and then immersing the product in electroplating solution for electroplating twice; after the nickel electroplating is finished, cleaning the product and preparing to be put into the next process;

s5: grinding off the unnecessary nickel layer of the product cleaned in the step S4 by using a cylindrical grinding machine and an internal grinding machine to form a product with two symmetrical surfaces and an annular nickel electrode;

s6: polarizing the product with the annular nickel electrode to obtain an annular nickel electrode piezoelectric vibrator;

s7: combining the annular nickel electrode piezoelectric vibrator with a metal substrate with micropores by using high-temperature epoxy glue;

s8: and (4) carrying out electrode extraction on the product combined in the step S7 to prepare a finished product of the nickel electrode micropore atomization element.

4. The method for preparing a thermal insulation material according to claim 3, wherein after the step S3, before the step S4, a step S31 adhesion test is further included, and the product after the step S3 is subjected to a single adhesion test by using a 3M high-strength adhesive tape; and after the adhesion force reaches the standard, carrying out the nickel electroplating of the step S4.

5. The preparation method according to claim 4, wherein the process conditions of the roughening of step S1 are as follows:

the annular piezoelectric ceramic plate, carborundum and water are put into an alumina tank together, the weight ratio of the annular piezoelectric ceramic plate, the carborundum and the water is 1:3:1.8, the rotation speed of the tank mill is 16r/Min, and the tank mill runs for 25 minutes in forward and reverse rotation respectively.

6. The method of claim 4, wherein the thickness of the electroless nickel layer in step S2 is controlled to be between 4-5 um.

7. The method as claimed in claim 4, wherein the process conditions of the high temperature bonding in step S3 are that the temperature is between 240 ℃ and 260 ℃, and the processing time is 5-8 hours.

8. The preparation method according to claim 4, wherein the two electroplating processes of step S4 are first matte nickel plating, the control range of the thickness of the nickel layer is 2-4um, the second bright nickel plating, and the control range of the thickness of the nickel layer is 3-5 um.

9. The preparation method according to claim 4, wherein the polarization conditions of step S8 are polarization voltage of 0.8KV, temperature of 230 ℃ and polarization time of 10 minutes.

Technical Field

The invention relates to the technical field of electronic components, in particular to a microporous atomization element capable of inhibiting silver migration and a preparation method thereof.

Background

The micropore atomization element belongs to a piezoelectric transduction element with the frequency of kilohertz, has low power consumption when in use, has the complete machine power of only about 2 watts, and can be widely applied to a plurality of fields of humidification, cosmetology, medical treatment, simulated atomization and the like. When the atomizing device works, the exciting circuit is adopted to enable the micropore atomizing element to generate mechanical vibration in the surface for more than 10 ten thousand times per second, and liquid water provided by a water tank or other water supply devices is dispersed into particles of 3-9um to escape from a micropore area of the metal substrate, so that atomization is realized. However, the current microporous atomizing elements have the following problems in use: the electrode material used by the element is silver, the element can be contacted with water vapor in the atomization process, and the surface of the silver electrode can generate the phenomena of yellowing, blackening and the like after being used for a period of time, so that the performance is seriously reduced.

Therefore, it is a technical problem to be solved by those skilled in the art whether a new microporous atomizing element can be designed to overcome the above-mentioned drawbacks.

Disclosure of Invention

In order to overcome the problems in the prior art, the invention provides a preparation technology of a microporous atomization element electrode, which can completely avoid yellowing and blackening of the electrode and is convenient for batch production, so as to solve the problem that the surface of a silver electrode of the existing microporous atomization element can generate yellowing and blackening in the use process.

In order to solve the technical problem, the technical scheme adopted by the invention is as follows:

the micropore atomization element of the nickel electrode is characterized by comprising an annular piezoelectric ceramic piece and a metal substrate attached to the annular piezoelectric ceramic piece, wherein the metal substrate is arranged in an annular part of the annular piezoelectric ceramic piece and used for atomization, and a metal nickel is coated on the surface of the annular piezoelectric ceramic piece to form an annular nickel electrode area.

Preferably, the outer diameter of the annular piezoelectric ceramic plate is 15.9mm, the inner diameter of the annular piezoelectric ceramic plate is 7.7mm, and the thickness of the annular piezoelectric ceramic plate is 0.56 mm.

According to another aspect of the present invention, a method for making a nickel electrode microporous atomizing element for processing the above nickel electrode microporous atomizing element comprises the steps of:

and S1, putting the annular piezoelectric ceramic wafer in an alumina tank for wet physical coarsening, and filtering and cleaning the annular piezoelectric ceramic wafer by using a coarse sample separation sieve after the tank mill is finished.

S2, placing the cleaned annular piezoelectric ceramic wafer in the step S1 into a chemical plating clamp in a single-chip mode, and then depositing a layer of chemical nickel on the surface of the annular piezoelectric ceramic wafer according to the sequence of activation and sensitization;

s3: dehydrating and air-drying the product plated with the chemical nickel in the step S2, and then putting the product into an oven for high-temperature bonding;

s4: placing the product treated in the step S3 on a rack plating fixture, and then immersing the product in electroplating solution for electroplating twice; after the nickel electroplating is finished, cleaning the product and preparing to be put into the next process;

s5: grinding off the unnecessary nickel layer of the product cleaned in the step S4 by using a cylindrical grinding machine and an internal grinding machine to form a product with two symmetrical surfaces and an annular nickel electrode;

s6: polarizing the product with the annular nickel electrode to obtain an annular nickel electrode piezoelectric vibrator;

s7: combining the annular nickel electrode piezoelectric vibrator with a metal substrate with micropores by using high-temperature epoxy glue;

s8: and (4) carrying out electrode extraction on the product combined in the step S7 to prepare a finished product of the nickel electrode micropore atomization element.

Preferably, after the step S3 and before the step S4, a step S31 adhesion test is further included, and the product after the step S3 is subjected to a single adhesion test by using a 3M high-strength adhesive tape; and after the adhesion force reaches the standard, carrying out the nickel electroplating of the step S4.

Preferably, the process conditions of the coarsening in the step S1 are as follows:

the annular piezoelectric ceramic plate, carborundum and water are put into an alumina tank together, the weight ratio of the annular piezoelectric ceramic plate, the carborundum and the water is 1:3:1.8, the rotation speed of the tank mill is 16r/Min, and the tank mill runs for 25 minutes in forward and reverse rotation respectively.

Preferably, the thickness of the electroless nickel layer in the step S2 is controlled to be between 4-5 um.

Preferably, the process conditions of the high-temperature bonding in the step S3 are that the temperature is between 240 and 260 ℃, and the processing time is 5-8 hours.

Preferably, the two electroplating processes in step S4 are first matte nickel plating, the control range of the thickness of the nickel layer is 2-4um, the second bright nickel plating, and the control range of the thickness of the nickel layer is 3-5 um.

Preferably, the process conditions of the step S8 are a polarization voltage of 0.8KV, a temperature of 230 ℃, and a polarization time of 10 minutes.

Compared with the prior art, the invention has the following advantages:

the micropore atomization element adopting the technical scheme of the invention is assembled on a complete machine to be electrified for working, the working electrode is directly contacted with water for electrified aging, and the electrode is still intact after 8000 times of accumulated work, thereby completely eliminating the hidden trouble of the silver electrode. In the preparation process, the outer grinding and the inner grinding are ingeniously combined, so that the batch production of the electrodes becomes simpler and more convenient, and the production efficiency is greatly improved.

Drawings

FIG. 1 is a top view of a nickel electrode microporous atomizing element of the present invention.

Detailed Description

In order that the objects, aspects and advantages of the invention will become more apparent, the embodiments will be described with reference to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made to the embodiments described herein without departing from the scope and spirit of the present invention.

In one embodiment of the invention, the micropore atomization element of the nickel electrode comprises an annular piezoelectric ceramic piece 1 and a metal substrate 2 attached to the reverse side of the annular piezoelectric ceramic piece 1, wherein a micropore area for atomization is arranged on the inner part of a ring of the annular piezoelectric ceramic piece 1 of the metal substrate 2. The surface of the annular piezoelectric ceramic piece 1 is coated with metallic nickel to form an annular nickel electrode area, and meanwhile, a positive electrode welding spot is arranged on one side edge of the annular nickel electrode area and used for welding an electronic wire to complete positive electrode leading-out, as shown in fig. 1.

Meanwhile, according to another aspect of the invention, a preparation method of the nickel electrode micropore atomization element is provided, which comprises the following specific steps:

and S1, putting the ring-shaped piezoelectric ceramic wafer in an alumina tank for wet physical coarsening, and filtering and cleaning the ring-shaped piezoelectric ceramic wafer by using a coarse sample sieve after the tank mill is finished.

Specifically, when in wet physical coarsening, the annular piezoelectric ceramic plate, carborundum and water are put into an alumina tank together, the weight ratio is 1:3:1.8, the rotation speed of a tank mill is 16r/Min, and the operation is carried out for 25 minutes respectively in positive and negative rotation.

S2, placing the cleaned annular piezoelectric ceramic wafer in the step S1 into a chemical plating clamp in a single-chip mode, and then depositing a layer of chemical nickel on the surface of the annular piezoelectric ceramic wafer according to the sequence of activation and sensitization;

specifically, the thickness of the chemical nickel layer is controlled between 4-5 um.

S3: dehydrating and air-drying the product plated with the chemical nickel in the step S2, and then putting the product into an oven for high-temperature bonding;

specifically, the process conditions of the high-temperature bonding are that the temperature is between 240 ℃ and 260 ℃, and the treatment time is 5-8 hours.

S4: placing the product treated in the step S3 on a rack plating fixture, and then immersing the product into electroplating solution to carry out electroplating twice; after the nickel electroplating is finished, cleaning the product and preparing to be put into the next process;

specifically, the two electroplating processes in step S4 are first matte nickel plating, with a nickel layer thickness control range of 2-4um, second bright nickel plating, and a nickel layer thickness control range of 3-5 um.

S5: grinding off the unnecessary nickel layer of the product cleaned in the step S4 by using a cylindrical grinding machine and an internal grinding machine to form a product with two symmetrical surfaces and an annular nickel electrode;

s6: polarizing the product with the annular nickel electrode to obtain an annular nickel electrode piezoelectric vibrator;

specifically, the polarization process conditions include a polarization voltage of 0.8KV, a temperature of 230 ℃, and a polarization time of 10 minutes.

S7: combining the annular nickel electrode piezoelectric vibrator with a metal substrate with micropores by using high-temperature epoxy glue;

s8: and (4) carrying out electrode extraction on the product combined in the step S7 to prepare a finished product of the nickel electrode micropore atomization element.

Specifically, after the step S3, before the step S4, a step S31 adhesion test is further included, and the product after the treatment in the step S3 is subjected to a single adhesion test by using a 3M high-strength adhesive tape; and after the adhesion force reaches the standard, performing nickel electroplating in step S4. The qualification rate of the product can be further improved.

The nickel electrode micropore atomization component manufactured by the embodiment of the invention is assembled on a complete machine and works by electrifying, the working electrode directly contacts with water for electrified aging, and the electrode is still intact after 8000 times of accumulated work, thereby completely eliminating the hidden trouble of the silver electrode. In the preparation process, the outer grinding and the inner grinding are ingeniously combined, so that the batch production of the electrodes becomes simpler and more convenient, and the production efficiency is greatly improved.

The present invention has been described above by way of example, and the nickel electrode microporous atomization element in this example and the manufactured nickel electrode microporous atomization element is circular as a whole, but can be designed into a square shape or other shapes according to actual needs, and is not limited herein. The present invention is not limited to the above-described embodiments, and any modification or variation based on the present invention is within the scope of the claims.

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种零件自动涂胶装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!