氧化物超导线材

文档序号:144597 发布日期:2021-10-22 浏览:34次 >En<

阅读说明:本技术 氧化物超导线材 (Oxide superconducting wire ) 是由 大杉正树 于 2020-03-16 设计创作,主要内容包括:本发明提供一种氧化物超导线材,其具备:在基板上具有氧化物超导层的超导层叠体、及作为覆盖于超导层叠体的外周的Cu镀层的稳定化层,Cu镀层的平均晶粒尺寸为3.30μm以上且为Cu镀层的厚度以下。(The present invention provides an oxide superconducting wire, which comprises: the superconducting laminate comprises a superconducting laminate having an oxide superconducting layer on a substrate, and a stabilizing layer which is a Cu plating layer covering the outer periphery of the superconducting laminate, wherein the average grain size of the Cu plating layer is 3.30 [ mu ] m or more and the thickness of the Cu plating layer is not more than the thickness of the Cu plating layer.)

氧化物超导线材

技术领域

本发明涉及一种氧化物超导线材。

本申请基于2019年3月28日在日本提出申请的日本特愿第2019-064777号主张优先权,并将其内容援用于此。

背景技术

RE123类氧化物超导体(REBa2Cu3Oy,RE为稀土元素)在超过液氮温度(77K)的温度(约90K)下显示出超导性。这样的超导体与其他高温超导体相比在磁场中的临界电流密度更高,因此被期待应用于线圈、电缆等。例如专利文献1中记载了一种在基板上形成氧化物超导层与Ag稳定化层之后通过电镀而形成有Cu稳定化层的氧化物超导线材。

现有技术文献

专利文献

专利文献1:日本特开第2007-80780号公报

发明内容

本发明要解决的技术问题

在氧化物超导体的超导状态局部不稳定的情况下,稳定化层起到了作为此时流通的电流的旁路的作用。因此,要求在低温下稳定化层的电阻低。

本发明鉴于上述情况而完成,本发明提供一种具有在低温下为低电阻的稳定化层的氧化物超导线材。

解决技术问题的技术手段

本发明的第一方案为一种氧化物超导线材,其具备:在基板上具有氧化物超导层的超导层叠体、及作为覆盖于所述超导层叠体的外周的Cu镀层的稳定化层,所述Cu镀层的平均晶粒尺寸为3.30μm以上且为所述Cu镀层的厚度以下。

本发明的第二方案为一种氧化物超导线材,其具备:在基板上具有氧化物超导层的超导层叠体、及作为覆盖于所述超导层叠体的外周的Cu镀层的稳定化层,所述Cu镀层的每100μm长度中的平均晶界数量为30个以下。

本发明的第三方案中,上述第一方案或第二方案的氧化物超导线材中的所述稳定化层的剩余电阻比(293K下的比电阻与15K下的比电阻之比)为110以上且130以下。

发明效果

由于构成稳定化层的Cu镀层的平均晶粒尺寸大、或其每单位长度中的平均晶界数量少,因此本发明的上述方案能够具有在低温下为低电阻的稳定化层。

附图说明

图1为实施方式的氧化物超导线材的截面图。

具体实施方式

以下,基于优选的实施方式,参照附图对本发明进行说明。

如图1所示,实施方式的氧化物超导线材10具备超导层叠体15、及覆盖于超导层叠体15的外周的稳定化层16。超导层叠体15在基板11上方具有氧化物超导层13即可。超导层叠体15例如也可以为具有基板11、中间层12、氧化物超导层13以及保护层14的结构。

基板11例如为在厚度方向的两侧分别具有第一主面11a以及第二主面11b的带状金属基板。作为构成金属基板的金属的具体实例,可列举出以哈氏合金(Hastelloy,注册商标)为代表的镍合金、不锈钢、向镍合金中导入了织构的取向Ni-W合金等。在使用统一金属晶体的排列并取向的取向基板作为基板11的情况下,可以不形成中间层12,而在基板11上直接形成氧化物超导层13。将基板11上形成氧化物超导层13的一侧称为第一主面11a,将与第一主面11a相反的一侧的面、即背面称为第二主面11b。基板11的厚度适当调整即可,例如为10~1000μm的范围。

中间层12可以为多层结构,例如可以自基板11侧至氧化物超导层13侧依次具有防扩散层、基础层(bed layer)、取向层、覆盖层(cap layer)等。这些层并不仅限于一定以每层各为一层的方式设置,有时会省略部分层,或者有时会将同一种层重复层叠两层以上。中间层12可以为金属氧化物。通过将氧化物超导层13成膜于取向性优异的中间层12上,易于获得取向性优异的氧化物超导层13。

氧化物超导层13例如由氧化物超导体构成。作为氧化物超导体,例如可列举出以通式REBa2Cu3Oy(RE123)等表示的RE-Ba-Cu-O类氧化物超导体。作为稀土元素RE,可列举出Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的一种或两种以上。在RE123的通式中,y为7-x(氧缺位量)。此外,RE:Ba:Cu的比率不仅限于1:2:3,也可以为非整比。氧化物超导层13的厚度例如为0.5~5μm左右。

氧化物超导层13中也可以导入有基于不同种类的材料的人工钉扎等作为人工的晶体缺陷。作为用于向氧化物超导层13中导入人工钉扎的不同种类的材料,例如可列举出BaSnO3(BSO)、BaZrO3(BZO)、BaHfO3(BHO)、BaTiO3(BTO)、SnO2、TiO2、ZrO2、LaMnO3、ZnO等中的至少一种以上。

保护层14具有使过电流分流、或者抑制氧化物超导层13与设置于保护层14上方的层之间发生的化学反应等的功能。作为构成保护层14的材料,可列举出银(Ag)、铜(Cu)、金(Au)或者包含上述金属中的一种以上的合金(例如Ag合金、Cu合金、Au合金)。保护层14的厚度优选为例如1~30μm左右,在减薄保护层14的情况下,也可以为10μm以下、5μm以下、2μm以下等。保护层14也可以形成于超导层叠体15的侧面15s或者基板11的第二主面11b。超导层叠体15的不同的面上所形成的保护层14的厚度可以大致相同也可以不同。保护层14也可以由两种以上的金属或者两层以上的金属层构成。保护层14能够通过蒸镀法、溅射法等形成。

稳定化层16可以以遍布超导层叠体15的包括第一主面15a、第二主面15b及侧面15s的整个外周的方式而形成。超导层叠体15的第一主面15a例如为保护层14的表面,但并不仅限于此。超导层叠体15的第二主面15b例如为基板11的第二主面11b,但并不仅限于此,例如在保护层14也形成于基板11的第二主面11b上的情况下也可以为保护层14上的面。超导层叠体15的侧面15s为宽度方向两侧的两个面。

稳定化层16具有使产生的过电流分流、或者对氧化物超导层13以及保护层14进行机械性增强等的功能。稳定化层16为由铜(Cu)等的金属构成的镀层。稳定化层16的厚度没有特别的限定,但优选为例如2~300μm左右,例如可以为200μm以下、100μm以下、50μm以下、20μm左右、10μm左右、5μm左右等。超导层叠体15的第一主面15a、第二主面15b、侧面15s上所形成的稳定化层16的厚度可以彼此大致相同。

作为评价稳定化层16的低温下的电阻或者导电性的指标,可列举出剩余电阻比(RRR:Residual Resistance Ratio)。剩余电阻比为规定的两个温度下的比电阻(电阻率)的比率,其作为高温下的比电阻ρ高温与低温下的比电阻ρ低温之间的比率,能够通过RRR=ρ高温低温求出。作为一个例子,可列举出293K下的比电阻ρ293K与15K下的比电阻ρ15K之间的比率,即ρ293K15K。RRR越大,则表示低温下的导电性越高于高温(常温)下的导电性。Cu镀层的ρ293K15K优选为例如100以上。

在构成稳定化层16的Cu镀层中,Cu镀层的平均晶粒尺寸优选为2μm以上。由于Cu镀层的平均晶粒尺寸大,可降低低温下的电阻。Cu镀层的平均晶粒尺寸更优选为2.5μm以上,进一步优选为3μm以上。Cu镀层的平均晶粒尺寸的上限没有特别的限定,例如可列举出4μm、5μm、6μm、7μm、8μm、9μm、10μm等。Cu镀层的平均晶粒尺寸通常为Cu镀层的厚度以下。

此外,在构成稳定化层16的Cu镀层中,Cu镀层的每100μm长度中的平均晶界数量优选为50个以下。由于Cu镀层的每单位长度中的平均晶界数量少,可降低低温下的电阻。作为单位长度,例如可列举出氧化物超导线材10的长度方向上的100μm的长度。Cu镀层的每100μm长度中的平均晶界数量更优选为40个以下,进一步优选为35个以下。Cu镀层的每100μm长度中的平均晶界数量的下限没有特别的限定,例如可列举出10个、15个、20个、25个、30个等。

Cu镀层的平均晶粒尺寸以及Cu镀层的每单位长度中的平均晶界数量例如能够通过使用采用了扫描型电子显微镜(SEM:Scanning Electron Microscope)的Cu镀层的截面照片进行测定。

构成稳定化层16的铜镀层例如能够通过电镀形成。在通过电镀形成铜镀层的情况下,可以事先通过蒸镀法、溅射法等形成银(Ag)、铜(Cu)、锡(Sn)等的金属层作为衬底层。作为Cu镀层的电镀中所使用的镀浴,可列举出硫酸铜镀浴、氰化铜镀浴、焦磷酸铜镀浴等。作为硫酸铜镀液,通常可使用含有硫酸铜五水合物、硫酸、添加剂、氯离子的水溶液等。

Cu镀层的至少一部分也可以通过无电解电镀形成。在该情况下,可使用甲醛浴、乙醛酸浴、次亚磷酸盐浴、钴盐浴等。常规的甲醛浴可使用含有二价铜盐、还原剂(甲醛等)及络合剂(罗谢尔盐等)、pH调节剂(氢氧化钠)、添加剂(氰化合物)的镀液。

作为调整Cu镀层的平均晶粒尺寸或Cu镀层的每单位长度中的平均晶界数量的方法,可列举出对Cu的电镀条件中的至少一个以上的条件进行变更的方法。作为具体的电镀条件,例如可列举出镀液的浓度、镀浴的种类、电流密度、过电压的程度、温度、有无添加剂、有无电镀后的热处理等。例如,电流密度越大,则Cu镀层的平均晶粒尺寸会变得越小。此外,通过进行电镀后的热处理,Cu镀层的平均晶粒尺寸变大。作为镀浴的添加剂没有特别的限定,可列举出络合剂、pH调节剂、流平剂等。

本实施方式的氧化物超导线材10中,构成稳定化层16的Cu镀层的晶粒尺寸大、或者每单位长度中的平均晶界数量少,因此能够抑制因晶界产生的电阻。金属的电阻被分为:起因于金属原子的热振动等且温度依存性较大的部分,及起因于金属晶体的不完整性且温度依存性较小的部分(剩余电阻)。温度依存性较大的部分的电阻在低温下会变小,但剩余电阻即使在低温下也会以有限的值而剩余。在此,通过降低剩余电阻,RRR增大,从而能够提高低温下的导电性。

以上,基于优选的实施方式对本发明进行了说明,但本发明并不限定于上述的实施方式,可以在不脱离本发明主旨的范围内进行各种变更。作为变更,可列举出各实施方式中的构成要素的追加、替换、省略以及其他变更。

关于中间层12以及氧化物超导层13的成膜法,只要能够根据金属氧化物的组成适当成膜,则没有特别的限定。作为成膜法,例如可列举出溅射法、蒸镀法等干式成膜法;溶胶凝胶法等湿式成膜法。作为蒸镀法,可列举出电子束蒸镀法、离子束辅助沉积(IBAD:Ion-Beam-Assisted Deposition)法、脉冲激光沉积(PLD:Pulsed Laser Deposition)法、化学气相沉积(CVD:Chemical Vapor Deposition)法等。

中间层12中的防扩散层具有抑制基板11的部分成分发生扩散并作为杂质混入氧化物超导层13侧的功能。作为防扩散层,例如可列举出Si3N4、Al2O3、GZO(Gd2Zr2O7)等。防扩散层的厚度例如可列举出10~400nm。

中间层12中的基础层具有减少基板11与氧化物超导层13的界面上的反应、提高形成于其上方的层的取向性等的功能。作为基础层的材质,例如可列举出Y2O3、Er2O3、CeO2、Dy2O3、Eu2O3、Ho2O3、La2O3等。基础层的厚度例如可列举出10~100nm。

中间层12中的取向层由双轴取向的物质形成,以控制其之上的覆盖层的晶体取向性。作为取向层的材质,例如可列举出Gd2Zr2O7、MgO、ZrO2-Y2O3(YSZ)、SrTiO3、CeO2、Y2O3、Al2O3、Gd2O3、Zr2O3、Ho2O3、Nd2O3等金属氧化物。取向层优选通过IBAD法形成。

中间层12中的覆盖层成膜于取向层的表面,且晶粒沿面内方向取向。作为覆盖层的材质,例如可列举出CeO2、Y2O3、Al2O3、Gd2O3、ZrO2、YSZ、Ho2O3、Nd2O3、LaMnO3等。覆盖层的厚度例如可列举出50~5000nm。

为了确保对氧化物超导线材周围的电绝缘,可以在氧化物超导线材的外周缠绕聚酰亚胺等的绝缘胶带,或在氧化物超导线材的外周形成树脂层。另外,绝缘胶带或树脂层等绝缘包覆层并非是必须的,可以根据氧化物超导线材的用途适当设置绝缘包覆层,或者也可以制成无绝缘包覆层的构成。

为了使用氧化物超导线材制作超导线圈,例如在将氧化物超导线材沿着缠线框的外周面缠绕必要的层数而构成线圈形状的多层卷绕线圈之后,以覆盖缠绕的氧化物超导线材的方式将氧化物超导线材含浸于环氧树脂等树脂中,由此能够固定氧化物超导线材。

实施例

以下,使用具体的实施例对氧化物超导线材10的制造方法进行说明。另外,本发明并不限定于如下实施例。

首先,按照如下步骤,准备规定宽度的超导层叠体15。

(1)对哈氏合金(注册商标)C-276的带状基板11进行研磨。

(2)使用丙酮对基板11进行脱脂·清洗。

(3)通过离子束溅射法使Al2O3防扩散层成膜。

(4)通过离子束溅射法使Y2O3基础层成膜。

(5)通过IBAD法使MgO取向层成膜。

(6)通过PLD法使CeO2覆盖层成膜。

(7)通过PLD法使GdBa2Cu3O7-x氧化物超导层13成膜。

(8)通过自氧化物超导层13的表面方向实施的溅射法使Ag保护层14成膜。

(9)对超导层叠体15进行氧退火处理。

(10)通过4mm宽的纵切(slit)加工对超导层叠体15进行细线化处理。

接着,通过自第一主面15a的方向及第二主面15b的方向实施的溅射法,使Cu衬底层成膜于超导层叠体15。

接着,通过硫酸铜电镀形成厚度为20μm的稳定化层16。

实施例中,通过表1所示的条件获得样本编号1~5的氧化物超导线材10。

[表1]

编号 镀液 热处理 电流密度
1 硫酸铜五水合物、硫酸、盐酸、添加剂 10A/dm<sup>2</sup>
2 包含硫酸铜五水合物、硫酸、盐酸 10A/dm<sup>2</sup>
3 硫酸铜五水合物、硫酸、盐酸、添加剂 10A/dm<sup>2</sup>
4 硫酸铜五水合物、硫酸、盐酸、添加剂 10A/dm<sup>2</sup>
5 硫酸铜五水合物、氯、流平剂 10A/dm<sup>2</sup>

接着,对获得的氧化物超导线材10,测定构成稳定化层16的Cu镀层的剩余电阻比以及平均晶粒尺寸。

Cu镀层的剩余电阻比(RRR)作为293K下的比电阻ρ293K与15K下的比电阻ρ15K的比率,即ρ293K15K而算出。

对于Cu镀层的平均晶粒尺寸,对每一个样本拍摄45张平行于氧化物超导线材10的长度方向的截面的SEM照片(23μm×23μm的视野范围),在每一张照片中沿氧化物超导线材10的长度方向画出三条线段,按照JIS H 0501(锻造铜及铜合金平均晶粒度评估的方法)的切断法,计数被线段完全切断的晶粒数,将作为其切断长度的平均值而求出的以μm为单位的晶粒度直接用作Cu镀层的平均晶粒尺寸。

对于沿氧化物超导线材10的长度方向画出的三条线段,在厚度为20μm的稳定化层16的自其表面约3.2μm、约10.0μm、约16.8μm深的位置(相对于稳定化层16厚度分别为约16%、约50%、约84%的位置)画出。

Cu镀层的每100μm长度中的平均晶界数量(个)作为下述数值而算出,即,将长度100μm除以上述平均晶粒尺寸(μm)而得到的数值。

将以上的测定结果示于表2。

[表2]

作为稳定化层,使用已作为氧化物超导线材的稳定化层得到实际应用的带状Cu箔时的剩余电阻比为100左右。因此,作为评价结果,将剩余电阻比为100以上的样本判定为优良品(优良),将剩余电阻比小于100的样本判定为不良品(不良)。结果显示Cu镀层的平均晶粒尺寸越大,则Cu镀层的剩余电阻比的值越高。

附图标记说明

10:氧化物超导线材;11:基板;11a:基板的第一主面;11b:基板的第二主面;12:中间层;13:氧化物超导层;14:保护层;15:超导层叠体;15a:超导层叠体的第一主面;15b:超导层叠体的第二主面;15s:超导层叠体的侧面;16:稳定化层。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:绝缘片材

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!