Hydrophobic function coated particle material and preparation method thereof

文档序号:1485405 发布日期:2020-02-28 浏览:20次 中文

阅读说明:本技术 一种疏水功能包覆的颗粒材料及其制备方法 (Hydrophobic function coated particle material and preparation method thereof ) 是由 周健 于 2019-12-06 设计创作,主要内容包括:本发明是一种疏水功能包覆的颗粒材料及其制备方法,它涉及一种疏水功能包覆的颗粒材料及其制备方法。此所述的颗粒材料一般作为填料而广泛使用的,包括白炭黑、石英粉/砂、碳酸钙、滑石粉、煅烧高岭土、硫酸钡、硅灰石、云母粉、珍珠岩等颗粒。通常这些颗粒材料为亲水性的/吸湿性的。本发明不仅解决了这些易吸湿颗粒材料在常温常压的大气环境或高湿度的条件下储存、运输和使用时会吸收空气中水分的问题,而且有效地解决了这些颗粒粉体在亲油体系不易分散的特性,亲油体系可以包括树脂、橡胶、有机溶剂等。(The invention relates to a particle material coated with a hydrophobic function and a preparation method thereof, in particular to a particle material coated with a hydrophobic function and a preparation method thereof. The particulate material is generally used as a filler, and includes particles such as white carbon black, quartz powder/sand, calcium carbonate, talc powder, calcined kaolin, barium sulfate, wollastonite, mica powder, perlite and the like. Typically these particulate materials are hydrophilic/hygroscopic. The invention not only solves the problem that the hygroscopic granular materials can absorb moisture in the air when being stored, transported and used under the atmospheric environment of normal temperature and pressure or the condition of high humidity, but also effectively solves the characteristic that the granular powder is not easy to disperse in oleophilic systems, wherein the oleophilic systems can comprise resin, rubber, organic solvent and the like.)

1. A hydrophobic function coated particulate material, characterized by: the core is one or more of hydrophilic particle materials, and the coating is a hydrophobic reactant obtained by mixing and reacting a specific gas-phase organic component generated after the thermal decomposition of one or more solid organic molecular materials with low surface energy with the hydrophilic particle materials.

2. The hydrophobically functionally coated particulate material of claim 1, wherein: the low surface energy organic molecular material is a homopolymer or a multi-monomer copolymer.

3. The hydrophobically functionally coated particulate material of claim 2, wherein: the low surface energy organic molecular material is one or a mixture of more of rubber, olefin, organosilicon, polyacrylate and the like, and the mixture is a mixture of materials with different chemical components or different structures or different molecular weights.

4. A low surface energy functionally coated particulate material according to claim 3, wherein: the olefin material is polyolefin, the organic silicon material is polysiloxane, and the polyacrylate material is polyacrylate.

5. The hydrophobically functionally coated particulate material of claim 3, wherein: the shape of the specific organic molecular material is one or more of block, sheet, strip, particle and powder.

6. The hydrophobically functionally coated particulate material of claim 3, wherein: the hydrophilic particle material is one or more of calcium carbonate, white carbon black, quartz powder, silicon micropowder, talcum powder, wollastonite, mica, barium sulfate and the like.

7. The hydrophobically functionally coated particulate material of claim 5, wherein: the particle diameter of the particle material with hydrophilicity is 10nm-80000 μm, and the thickness of the coating layer is 1-20 nm.

8. The hydrophobically functionally coated particulate material of claim 7, wherein: the particle size of the hydrophilic particle material is 5-200 μm, and the thickness of the coating layer is 1-10 nm.

9. A method for preparing a hydrophobically function-coated particulate material as claimed in any of claims 1 to 8, comprising the steps of:

step one, processing organic molecular materials with low surface energy synthesis or structure into blocks, sheets, strips or granules or mixing the shapes;

secondly, placing the processed organic molecular material with low surface energy synthesis or structure in a heating cavity with controllable temperature, and heating until the organic molecular material is decomposed to generate specific gas-phase organic components;

mixing the specific gas-phase organic component generated by decomposition with a hydrophilic particle material to react to form a hydrophobic particle material coated with a special function;

and step four, cooling the particle materials coated with the special functions and then discharging.

10. A method for preparing a hydrophobically function-coated particulate material as claimed in any of claims 1 to 8, comprising the steps of:

step one, processing organic molecular materials with low surface energy synthesis or structure into blocks, sheets, strips or granules or mixing the shapes;

mixing a hydrophilic particle material and the processed organic molecular material with the low surface energy synthesis or structure, placing the mixture in a heating cavity with controllable temperature, and heating the mixture to the decomposition temperature of the organic molecular material with the low surface energy synthesis or structure to generate a specific gas-phase organic component;

mixing the specific gas-phase organic component generated by decomposition with the hydrophilic particle material to react to form the hydrophobic particle material coated with the special function;

and step four, cooling the particle material coated with the hydrophobic function and then discharging.

11. The method for preparing the hydrophobically functionally coated particulate material as claimed in claim 9 or 10, wherein: in the second step, the temperature range of the organic molecular material synthesized or structured by low surface energy to generate the specific gas-phase organic component is 80-350 DEGoC。

12. The method for preparing the hydrophobically functionally coated particulate material as claimed in claim 11, wherein: in the third step, the time for mixing and reacting the specific gas-phase organic component and the hydrophilic granular material is 5-3600 s.

13. The method of preparing a special function coated particulate material of claim 12, wherein: in the third step, the preferable time for mixing and reacting the specific gas-phase organic component with the particulate material having hydrophilicity is 20 to 1800 seconds.

14. The method of preparing the hydrophobically functionally coated particulate material of claim 13, wherein: the atmosphere in the heating cavity is air or inert gas.

15. The method for preparing the hydrophobically functionally coated particulate material of claim 14, wherein: the inert gas is nitrogen or argon.

Technical Field

The invention relates to a particle material coated with a hydrophobic function and a preparation method thereof. The particulate material described herein is typically a hydrophilic material.

Background

The surface of the hydrophilic particle filler has a chemical structure which is greatly different from the internal structure of the filler due to the existence of various functional groups. Most of the fillers have certain acidity and alkalinity, hydrophilic groups are arranged on the surfaces of the fillers, and the fillers are polar; the filled systems, such as resins, rubbers, and organic solvents, are generally hydrophobic. Therefore, the compatibility between the two is poor, and in order to improve the interface bonding between the filler and the filled matrix, the surface of the filler must be subjected to coating modification treatment by adopting a proper method, which is important for improving the final performance of the polymer composite material.

The surface modification is one of key processing technologies for optimizing the performance of the hydrophilic granular material, is very important for improving the application performance and value of the granules, and is a requirement for promoting the continuous healthy and green development of the granular material.

Particulate surface modifying materials are also a requirement for the development of filler companies themselves. The enterprise aims to achieve profit, and compared with the struggle of the enterprise in the low-end market, the enterprise aims to improve the added value of the product, so that the price of the product is sold higher and the application market is wider. The surface modification can not only improve the added value of the product, but also is an important means for widening the application market of the particle material. For example: hydrophilic granular materials such as calcium carbonate, quartz powder, kaolin, barium sulfate and the like play an important role in the polymer material industry such as plastics, rubber, adhesives, coatings, cosmetics and the like and in the field of polymer-based composite materials. The compatibility of the particles with high molecular organic substances and organic solvents can be effectively improved through surface modification, so that the particles are changed from common incremental fillers to functional fillers.

On the premise of not influencing the original chemical properties and physical properties of plastics, rubber, paint and the like, the filling proportion of the particles is increased as much as possible so as to save the production cost, which is required by downstream industries of the paint, the plastic, the rubber, the cosmetics and the like and also required by particle filler enterprises.

The method and technology adopted for the hydrophobic coating treatment of the hydrophilic particle material at present is a wet method, for example, patent CN101367548 (a preparation method of hydrophobic nano titanium dioxide powder, patent CN101134852 (a method for organic surface modification of inorganic powder), application publication No. CN102352132A (a preparation method of hydrophobic barium carbonate), patent CN106085070A (a low surface energy micro-nano coating material and a preparation method thereof), application publication No. CN108314949A (a super-hydrophobic surface coating material containing nano titanium dioxide and a preparation method thereof) and the like are invented by the invention, the coating treatment cost of the technologies is high, the process is complex, the treatment time is long (post-treatment which takes time and labor), the coating technology and the coating method have the advantages of no toxicity, no harm, safety, environmental protection, convenient operation and high cost performance.

Disclosure of Invention

The present invention has been made to solve the above problems by providing a hydrophobic function-coated particulate material and a method for preparing the same.

In order to solve the technical problems, the invention adopts the following scheme:

a hydrophobic function coated particulate material, characterized by: the core is one or more of hydrophilic particle materials, and the coating is a hydrophobic reactant obtained by mixing and reacting a specific gas-phase organic component generated after the thermal decomposition of one or more solid low-surface-energy organic molecular materials with the hydrophilic particle materials.

Preferably, the reactant is a polymerization reactant or a repolymerization reactant.

Preferably, the low surface energy organic molecular material is a homopolymer or a comonomer.

Preferably, the low surface energy organic molecular material is one or a mixture of more of rubber, olefins, silicones, polyacrylates and the like, and the mixture of the same kind of materials is a mixture of materials with different chemical compositions or different structures or different molecular weights.

Preferably, the olefin material is polyolefin, the silicone material is polysiloxane, and the polyacrylate material is polyacrylate.

Preferably, the shape of the low surface energy organic molecular material is one or more of block, sheet, strip, granule and powder.

Preferably, the hydrophilic particulate material is one or more of calcium carbonate, white carbon black, quartz powder, silica powder, talc powder, wollastonite, mica, barium sulfate, and the like.

Note: if not, it may be appreciated that only these few materials can be modified, and indeed the process can be applied to a wide variety of other hydrophilic particulate materials.

Preferably, the particle diameter of the particle material with hydrophilicity is 10nm to 80000 μm, and the thickness of the coating layer is 1 to 20 nm.

Preferably, the particle diameter of the particle material with hydrophilicity is 5 μm to 200 μm, and the thickness of the coating layer is 1nm to 10 nm.

A method for preparing a special function coated granular material is characterized by comprising the following steps:

step one, processing organic molecular materials with low surface energy synthesis or structure into blocks, sheets, strips or granules or mixing the shapes;

secondly, placing the processed organic molecular material with low surface energy synthesis or structure in a heating cavity with controllable temperature, and heating until the organic molecular material is decomposed to generate specific gas-phase organic components;

mixing the specific gas-phase organic component generated by decomposition with the hydrophilic particle material to react to form the hydrophobic particle material coated with the special function;

and step four, cooling the particle material coated with the hydrophobic function and then discharging.

A preparation method of a hydrophobic function coated particle material is characterized by comprising the following steps:

step one, processing organic molecular materials with low surface energy synthesis or structure into blocks, sheets, strips or granules or mixing the shapes;

mixing a hydrophilic particle material and the processed organic molecular material with the low surface energy synthesis or structure, placing the mixture in a heating cavity with controllable temperature, and heating the mixture to the decomposition temperature of the organic molecular material with the specific synthesis or structure to generate a specific gas-phase organic component;

mixing the specific gas-phase organic component generated by decomposition with the hydrophilic particle material to react to form the hydrophobic particle material coated with the special function;

and step four, cooling the particle materials coated with the special functions and then discharging.

Preferably, in the second step, the temperature range of the organic molecular material synthesized or structured by low surface energy to generate the specific gas-phase organic component by heating decomposition is 80-350oC。

Preferably, in the third step, the time for mixing and reacting the specific gas-phase organic component and the hydrophilic granular material is 5-3600 s.

Preferably, in the third step, the time for mixing and reacting the specific gas-phase organic component with the hydrophilic granular material is 20-1800 s.

Preferably, the atmosphere in the heating cavity is air or inert gas.

Preferably, the inert gas is nitrogen or argon.

Compared with the prior art, the particle material coated with the hydrophobic component function and the preparation method thereof have the following advantages:

1. the coating material of the invention is non-toxic, harmless and environment-friendlyMaterialAnd the coating treatment process does not involve the use of any liquid material and solvent, does not generate waste gas, waste water, solvent and dangerous solid waste, and is green, environment-friendly and safe.

2. The coating is uniform and complete.

3. The coating layer has high hydrophobicity, effectively reduces the moisture absorption of the particle materials in production, transportation and storage, and has very good dispersibility in lipophilic media such as resin, rubber and organic solvent.

4. The coating process has the advantages of low temperature and short time, and effectively saves the production cost.

5. The method has the advantages of simple process, convenient and quick operation, low equipment investment, low treatment cost, and outstanding safety and environmental protection.

Description of the drawings fig. 1 is a graph showing a comparison of hydrophobicity before and after coating with perlite powder.

FIG. 2 is a graph showing the comparison of hydrophobicity before and after coating with calcium carbonate powder.

Detailed Description

The technical solutions in the embodiments of the present invention will be described clearly and completely below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, are within the scope of the present invention.

The invention relates to a particle material coated with a hydrophobic component function, which comprises a coating layer and a core arranged in the coating layer, wherein the core comprises at least one particle material with different components, the material of the coating layer is selected from at least one reactant of a specific gas-phase organic component generated by thermal decomposition of organic molecular materials with low surface energy synthesis or structure, such as rubber, polyolefin, polysiloxane, polyacrylate and the like, and the particle material is selected from conventional hydrophilic particle powder materials, such as calcium carbonate, white carbon black, quartz powder, silicon micropowder, talcum powder, wollastonite, mica, barium sulfate and the like.

The mixture of organic molecular materials synthesized or structured by low surface energy can also be the same kind of materials but with different chemical compositions, different chemical structures or different molecular weights, and can be homopolymer, or multi-monomer copolymer, and can be non-crosslinked, or partially crosslinked, or non-crosslinked, and can be foamed, or non-foamed.

The particulate material is one or more of a hydrophilic material.

The thickness of the coating layer is 1nm to 20nm, and more preferably, the thickness of the coating layer is 1nm to 10 nm.

The particle size of the core is 10nm-80000 μm, preferably the total particle size of the core is 10 nm-200 μm, more preferably the total particle size of the core is 5 μm-200 μm. The particulate powder material is hydrophilic.

The embodiment of the invention provides a preparation method of a particle material coated with a hydrophobic component, which comprises the following steps:

providing at least one core particle of a component, each component being of a material selected from one of the hydrophilic particulate materials;

and (3) a material coating process: step one, processing a solid organic molecular material with low surface energy synthesis or structure into a shape with a larger surface area, or a block shape, a slice shape, a fine strip shape, a granule shape or a mixed shape; secondly, placing the processed organic molecular material with low surface energy synthesis or structure in a heating cavity for heating decomposition; thirdly, quickly and fully mixing the specific gas-phase organic components generated by decomposition with the hydrophilic particles for reaction, and reacting the gas-phase organic components to coat the particle materials; and step four, cooling and discharging to obtain the particle material with the hydrophobic surface.

Or directly mixing the processed organic molecular material with low surface energy synthesis or structure with hydrophilic particles in the second step, heating the mixture to a specific decomposition temperature, and fully mixing and reacting for about 5-3600s to perform a coating reaction.

The heating temperature, depending on the low surface energy synthesized or structured organic molecular material used, is generally 80 to 350 deg.CoC. The specific decomposition temperature range can be determined by Analysis such as TGA (Thermogravimetric Analysis), GC-MS (gas chromatography-Mass Spectrometry), IR (Infra-red, Infrared Spectroscopy), NMR (Nuclear Magnetic Resonance), and the like.

The particle diameter in each core particle is on the micro-nanometer scale, and preferably, the particle diameter of each core particle is 5 μm to 200. mu.m.

The coating treatment preferably has a thickness of 1-10nm, and the mixing reaction preferably takes 20-1800 s.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于海钓的可实现快速降解的仿生鱼饵

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!