一种哌啶乙酸酯类化合物的制备方法

文档序号:148807 发布日期:2021-10-26 浏览:56次 >En<

阅读说明:本技术 一种哌啶乙酸酯类化合物的制备方法 (Preparation method of piperidine acetate compound ) 是由 祖连锁 施一公 程鹏 于 2021-07-23 设计创作,主要内容包括:本发明提供了一种哌啶乙酸酯类化合物的制备方法,并提供了哌啶乙酸酯类化合物的关键体化合物:式V、式VII和式VIII化合物,本发明创造性地设计并合成这些关键中间体,通过这些关键中间体构建了哌啶乙酸酯类化合物两个手性中心,创新地先以Ellman辅基化学为手段构建胺基所在手性,然后去对称化内酰胺化实现乙酸酯所在手性中心的建立,再经还原得到式II所示哌啶乙酸酯类化合物,该合成思路具有合成路线短和手性控制优秀的特点,明显提高了收率、产品的手性纯度以及反应效率。(The invention provides a preparation method of a piperidine acetate compound, and provides a key body compound of the piperidine acetate compound: the invention relates to compounds of a formula V, a formula VII and a formula VIII, wherein the key intermediates are creatively designed and synthesized, two chiral centers of a piperidine acetate compound are constructed through the key intermediates, the chirality of an amino group is creatively constructed by taking Ellman prosthetic group chemistry as a means, then the chiral center of the acetate is established by means of asymmetric lactamization, and then the piperidine acetate compound shown in a formula II is obtained by reduction.)

一种哌啶乙酸酯类化合物的制备方法

技术领域

本发明涉及有机合成技术领域,具体涉及哌啶乙酸酯类化合物的制备方法。

背景技术

随着社会老龄化日益严重,阿尔茨海默症(Alzheimer’s disease,AD)成为人类面临的重大健康威胁。AD病人标志性特征是脑组织中的淀粉样沉淀,这种沉淀由γ-分泌酶切割淀粉样前体蛋白(APP)产生的多肽(Aβ)聚集形成。γ-分泌酶调节剂可以降低毒性更大的Aβ42的生成,而不影响γ-分泌酶对其他内源底物的切割,是极具潜力的AD治疗手段。

下述式I所示的含有两个手性中心的哌啶乙酸类化合物已被Merk、GSK等公司报道可作为γ-分泌酶调节剂(CN 101044115A;Bioorganic&Medicinal Chemistry Letters,2010,20,1306),用于治疗阿尔茨海默病等脑内β-淀粉样蛋白沉积有关的疾病(见CN101044115A权利要求第12项)。

其中,式II所示的哌啶乙酸酯类化合物是该类γ-分泌酶调节剂合成的关键中间体。

式II所示的哌啶乙酸酯类化合物上具有两个手性中心,目前合成方法有两种:

第一种,利用手性拆分的方法实现所含手性中心的控制(CN 101044115A和Bioorganic&Medicinal Chemistry Letters,2010,20,1306)。其中手性拆分步骤收率仅为38%,效率较低,并且造成资源的浪费。

第二种,利用不对称催化反应实现所含手性中心的控制(Chemistry-A EuropeanJournal,2016,22,14342)。该方法总体步数过长,欠缺实用性。

因此,设计全新的路线简短、手性控制优秀、收率高、合成效率高的式II所示的哌啶乙酸酯类化合物的制备方法是目前亟待解决的技术问题。

发明内容

因此,本发明要解决的技术问题在于克服现有技术中的哌啶乙酸酯类化合物的合成方法存在的缺陷,从而提供一种哌啶乙酸酯类化合物的制备方法、所用的关键中间体和中间体的合成方法。

为此,本发明提供如下技术方案:

本发明提供了一种哌啶乙酸酯类化合物关键中间体,其选自具有如下式V、式VII和式VIII所示结构的化合物中的一种:

其中,R1选自取代或者未取代的5-10元芳基、取代或者未取代的5-10元杂芳基;

R2选自C1-8直链或支链烷基、C3-8环烷基;

R3选自H或者

进一步地,R1中“取代的”意为所述元芳基上1-5个H或者杂芳基上1-4个H被选自C1-4的烷基、F、Cl、Br或氟代烷基所取代。

进一步地,R2为乙基。

进一步地,R1选自取代或未取代的苯基、取代或者未取代的吡啶基。

进一步地,R1中“取代的”意为所述苯基上1-5个H或者吡啶基上1-4个H被选自C1-4的烷基、F、Cl、Br或氟代烷基所取代。

进一步地,R1为4-三氟甲基苯基、3-氟代苯基、吡啶基、3-氯代苯基、苯基或4-甲基苯基。

本发明进一步提供了使用式VI化合物制备式II所示化合物的制备方法,包括如下步骤:

(1)取式VI化合物脱保护得到式C化合物;

(2)式C化合物经去对称内酰胺化得到式VII化合物;

(3)取式VII化合物经还原得到式II化合物;

上述化合物中出现的取代基,定义如式V或VII或VIII所示的哌啶乙酸酯关键中间体中的取代基定义相同。

本发明还提供了上述式VI所示化合物的制备方法如下:

(1)取式III化合物与式IV化合物反应得到式V化合物,

(2)取式V化合物经不对称还原得到式VI化合物;

上述化合物中出现的取代基,定义如式V或VII或VIII所示的哌啶乙酸酯关键中间体中的取代基定义相同。

本发明还提供了使用式VI化合物制备式VII化合物的制备方法,包括如下步骤:

(1)取式VI化合物经脱保护得到式C化合物;

(2)式C化合物经去对称化酰胺化得到式VII化合物;上述化合物中出现的取代基,定义如式V或VII或VIII所示的哌啶乙酸酯关键中间体中的取代基定义相同。

本发明还提供了使用式C化合物制备式VII化合物的制备方法,包括如下步骤:

式C化合物经去对称化酰胺化得到式VII化合物;上述化合物中出现的取代基,定义如式V或VII或VIII所示的哌啶乙酸酯关键中间体中的取代基定义相同。

进一步地,式C化合物在碳酸钾存在下发生去对称化酰胺化。

本发明技术方案,具有如下优点:

1、本发明提供的哌啶乙酸酯类化合物关键中间体,通过创新地设计并合成这些关键中间体,通过这些关键中间体构建了哌啶乙酸酯类化合物两个手性中心的合成思路,创新地先以Ellman辅基化学为手段构建胺基所在手性,然后去对称化内酰胺化实现乙酸酯所在手性中心的建立,尤其重要的是在去对称化内酰胺化过程中先脱除保护基团,利用6元环过渡态控制手性,再经还原得到式II所示哌啶乙酸酯类化合物,该合成思路具有合成路线短和手性控制优秀的特点,明显提高了收率、产品的手性纯度以及反应效率。

2、本发明提供的哌啶乙酸酯类化合物的制备,各步骤的操作条件温和、产率高、成本低、有毒杂质少,且步骤少,利于工业化生产。

附图说明

为了更清楚地说明本发明

具体实施方式

或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例1制得的式IIIa化合物的1HNMR;

图2是本发明实施例7制得的式Va化合物的1HNMR;

图3是本发明实施例13制得的式VIa化合物的1HNMR;

图4是本发明实施例20制得的式VIIa化合物的1HNMR;

图5是本发明实施例26制得的式IIa化合物的1HNMR;

图6是本发明实施例32制得的式VIIa化合物的对映异构体单晶结构热椭球图。

具体实施方式

提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。

实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。

实施例1

本实施例提供一种式III化合物,其反应方程式及制备方法如下:

化合物a-1(9.84mmol)和化合物b-1(610mg,3.28mmol)溶解于乙醇(6mL)中,然后将混合物加热至50℃,并在0.5h内滴加乙醇钠的(6.56mmol,3mL)乙醇溶液。混合物在50℃搅拌24小时后,加入饱和氯化铵水溶液。用乙酸乙酯萃取。有机层经Na2SO4干燥、浓缩、柱层析纯化得到化合物d-1。

将化合物d-1(1.66mmol)溶于N,N-二甲基乙酰胺(9mL)中,向溶液中加入氯化钠(481mg,8.30mmol)固体。将混合物在160℃下搅拌16h,冷却到室温,向反应液中加入水,并用乙酸乙酯萃取。用水洗涤有机层,经Na2SO4干燥、浓缩、柱层析纯化得到产物IIIa。产物IIIa的收率为76%,产物IIIa的1H NMR如图1所示。

产物IIIa的1H NMR(400MHz,Chloroform-d):δ8.08(d,J=8.1Hz,2H),7.72(d,J=8.1Hz,2H),4.11(q,J=7.2Hz,4H),3.18(d,J=6.6Hz,2H),3.09–2.89(m,1H),2.51(d,J=6.3Hz,4H),1.22(t,J=7.1Hz,6H).;13C NMR(101MHz,Chloroform-d)δ197.8,172.1,139.5,134.4(q,J=32.4Hz),128.5,125.7(q,J=3.7Hz),123.6(q,J=272.3Hz),60.5,42.1,37.8,28.1,14.2.;19F NMR(376MHz,Chloroform-d)δ-63.2.;

HRMS(ESI):calcd for C18H22F3O5[M+H]+:375.1419,found 375.1416。

实施例2-6

本实施例提供一系列式III化合物,其制备方法同实施例1,区别仅在于反应底物a和b不同,化合物a的母核结构均为:

化合物b的母核结构均为:

实施例2-6化合物a和化合物b的取代基以及反应结果见表1所示。

表1化合物a和化合物b的取代基以及反应结果

实施例7

本实施例提供一种式V化合物,其反应方程式及制备方法如下:

取IIIa(376mg,1.0mmol)和IV(133mg,1.1mmol)溶于4毫升THF中,之后加入Ti(OEt)4(456mg,2.0mmol)。上述反应回流加热,反应12小时。反应液冷却至室温后,加入4毫升饱和食盐水,然后经硅藻土过滤。滤液经无水Na2SO4干燥、浓缩、柱层析纯化得到产物Va317mg,收率为71%。

产物Va的1H NMR如图2所示。产物Va的1H NMR(400MHz,Chloroform-d):δ8.08(d,J=8.1Hz,2H),7.70(d,J=8.2Hz,2H),4.09(qd,J=7.1,1.3Hz,4H),3.66(dd,J=13.3,8.0Hz,1H),3.36(dd,J=13.2,7.0Hz,1H),2.80–2.66(m,1H),2.58–2.44(m,2H),2.42–2.28(m,2H),1.32(s,9H),1.22(t,J=7.1Hz,6H).;13C NMR(101MHz,Chloroform-d)δ176.1,172.1,171.91,140.51,133.0(q,J=32.7Hz),128.2,125.7(q,J=4.3Hz),123.75(q,J=272.3Hz),60.7,60.6,58.7,38.1,37.9,35.3,31.0,22.9,14.2.;19F NMR(376MHz,Chloroform-d)δ-63.0.;

HRMS(ESI):calcd for C22H31F3NO5S[M+H]+:478.1875,found 478.1886。

实施例8-12

实施例8-12与实施例7的制备方法相同,区别仅在于反应底物式III化合物不同,式III化合物的结构式为其取代基和反应结果见下表2所示。

表2实施例8-12的式III化合物及反应结果

实施例13

本实施例提供一种式VI化合物,其反应方程式及制备方法如下:

将Va(1.50g,3.1mmol)溶于13毫升THF中,在-78℃向反应液中缓慢滴加三仲丁基硼氢化锂的THF溶液(1.0mmol/mL,3.8mL,3.8mmol)。-78℃反应12小时。之后加入饱和NH4Cl水溶液,经乙酸乙酯萃取、干燥(Na2SO4)、浓缩、柱层析纯化得到产物VIa 1.23g,收率为83%,非对映选择性大于10:1。

产物VIa的1H NMR如图3所示。

产物VIa的1H NMR(400MHz,Chloroform-d)δ7.58(d,J=8.1Hz,2H),7.43(d,J=8.0Hz,2H),4.54(td,J=6.8,2.1Hz,1H),4.32(d,J=2.2Hz,1H),4.20–3.99(m,4H),2.53–2.24(m,5H),1.83(dd,J=7.1,5.0Hz,2H),1.29–1.14(m,15H).;13C NMR(101MHz,Chloroform-d)δ172.5,172.0,146.7,129.8(q,J=32.4Hz),127.6,125.5(q,J=3.6Hz),124.1(q,J=272.1Hz)·,60.7,60.6,56.4,55.8,42.2,38.3,38.0,28.8,22.7,14.2.;19FNMR(376MHz,Chloroform-d)δ-62.5.;HRMS(ESI):calcd for C22H33F3NO5S[M+H]+:480.2032,found 480.2043。

实施例14

本实施例与实施例13相似,区别仅在于用LiBHEt3代替三仲丁基硼氢化锂,所得VIa的收率为75%。

实施例15-19

实施例15-19与实施例13的制备方法相同,区别仅在于反应底物式V化合物不同,式V化合物和反应结果见下表3所示。

表3实施例15-19的式V化合物及反应结果

实施例20

本实施例提供一种式VII化合物,其反应方程式及制备方法如下:

VIa(145mg,0.3mmol)溶于3毫升EtOH中,在0℃向反应液中加入HCl的EtOH溶液(2.0mmol/mL,0.45mL,0.9mmol)。室温下反应1小时,反应液浓缩。向反应瓶中依次加入3毫升EtOH和K2CO3(414mg,3.0mmol),室温下搅拌12小时。反应液经硅藻土过滤、浓缩、柱层析纯化得到产物VIIa 89mg,收率为90%。

VIIa的1H NMR如图4所示。

VIIa的1H NMR(400MHz,Chloroform-d)δ7.64(d,J=7.9Hz,2H),7.44(d,J=7.9Hz,2H),5.93(s,1H),4.63(dd,J=11.6,4.1Hz,1H),4.14(q,J=7.2Hz,2H),2.63(ddd,J=17.2,4.9,2.3Hz,1H),2.57–2.44(m,1H),2.44–2.25(m,2H),2.24–2.12(m,2H),1.39(q,J=12.3Hz,1H),1.26(t,J=7.2,1.3Hz,3H).;13C NMR(101MHz,Chloroform-d)δ171.5,171.4,145.9,130.5(q,J=32.6Hz),126.5,126.0(q,J=3.7Hz),123.9(q,J=272.1Hz),60.7,57.3,40.1,38.7,37.3,30.0,14.2.;19F NMR(376MHz,Chloroform-d)δ-62.6.;HRMS(ESI):calcd for C16H19F3NO3[M+H]+:330.1317,found 330.1324。

实施例21-25

实施例21-25与实施例20的制备方法相同,区别仅在于反应底物式VI化合物不同,式VI化合物和反应结果见下表4所示。

表4实施例21-25的式VI化合物及反应结果

实施例26

本实施例提供一种式II化合物,其反应方程式及制备方法如下:

将VIIa(300mg,0.91mmol)溶于9毫升THF中,0℃下向反应液中加入BH3-Me2S(硼烷二甲基硫醚)的THF溶液(2.0mmol/mL,1.37mL,2.74mmol)。0℃下反应12小时,向反应液中加入2毫升EtOH,浓缩。向反应瓶中依次加入5毫升EtOH和5毫升HCl的EtOH溶液(2.0mmol/mL,5mL,10mmol),在50℃下反应1小时。冷却至室温后,将反应液浓缩。加入H2O和二氯甲烷萃取,舍弃有机相。向水相中加入饱和K2CO3水溶液至PH值为11左右,加入二氯甲烷萃取,有机相经干燥(Na2SO4)、浓缩得到产物IIa255 mg,收率为89%。

式IIa的1H NMR如图5所示。

式IIa的(400MHz,Chloroform-d)δ7.56(d,J=8.1Hz,2H),7.47(d,J=8.0Hz,2H),4.11(q,J=7.2Hz,2H),3.71(dd,J=11.3,2.4Hz,1H),3.22(ddd,J=11.8,4.2,2.5Hz,1H),2.84(td,J=12.0,2.6Hz,1H),2.38–2.17(m,2H),2.14–1.99(m,1H),1.92–1.82(m,1H),1.82–1.67(m,2H),1.38–1.01(m,5H).;13C NMR(101MHz,Chloroform-d)δ172.5,148.9,129.4(q,J=32.3Hz),127.0,125.4(q,J=3.9Hz),124.2(q,J=271.7Hz),61.2,60.3,46.8,41.6,41.2,33.9,32.0,14.3.;19F NMR(376MHz,Chloroform-d)δ-62.4.;HRMS(ESI):calcd for C16H21F3NO2[M+H]+:316.1527,found 316.1524。

实施例27-31

实施例27-31与实施例26的制备方法相同,区别仅在于反应底物式VII化合物不同,式VII化合物和反应结果见下表5所示。

表5实施例27-31的式VII化合物及反应结果

实施例32单晶X-射线结晶学

利用式IV的对映异构体,采用相同的合成路线,可以合成式VIIa的对映异构体,经单晶衍射证实该化合物绝对构型,进而证实式VIIa的构型。

化合物VII-a1的单晶X-射线晶体结构(见附图6)。化合物II-a1的晶体结构产生单斜晶架群P21,晶胞参数: α=γ=90°,β=94.052(4)°,晶胞体积晶胞内分子数Z=4,晶体尺寸(mm3):0.43×0.08×0.08,单位化学计量式为C16H18F3NO3,相对分子质量为329.31,理论密度为1.377g/cm3

在Rigaku Synergy CCD区域检测器上收集X-射线强度数据,其使用温度为116.60(14)K的Cu-Kα辐射,μ(Cu Kα)=1.014。在8.62°≤2θ≤142.46°,6≤h≤4,13≤k≤13,30≤l≤31的范围内测量总共10597个反射,从而产生5985个独特反射角(Rint=0.0325)。结构可靠因子S=1.024。

表6 VII-a1的单晶参数

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种含芳基取代吡啶结构的二胺单体及其制备和应用、特勒格碱基聚合物及其制备和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类