复合式感测装置封装结构及封装方法

文档序号:1537036 发布日期:2020-02-14 浏览:31次 >En<

阅读说明:本技术 复合式感测装置封装结构及封装方法 (Composite sensing device packaging structure and packaging method ) 是由 邹文杰 张夷华 陈志维 于 2019-07-16 设计创作,主要内容包括:本申请公开了一种复合式感测装置封装结构,包括一发光组件,密封于一第一透明模塑物质中;一感光组件,密封于一第二透明模塑物质中;一基板,其上设置有该发光组件、该感光组件、该第一透明模塑物质和该第二透明模塑物质;以及一不透明遮挡组件,设置于该基板上以及该第一透明模塑物质与该第二透明模塑物质之间,其中该不透明遮挡组件是由室温为液态的不透明胶材通过一固化处理所形成。(The application discloses a composite sensing device packaging structure, which comprises a light-emitting component sealed in a first transparent molding substance; a photosensitive assembly sealed in a second transparent molding material; a substrate on which the light emitting element, the photosensitive element, the first transparent molding substance and the second transparent molding substance are disposed; and an opaque shielding component arranged on the substrate and between the first transparent molding substance and the second transparent molding substance, wherein the opaque shielding component is formed by curing an opaque adhesive material which is liquid at room temperature.)

复合式感测装置封装结构及封装方法

技术领域

本申请涉及一种封装结构及封装方法,尤其涉及一种复合式感测装置封装结构及封装方法。

背景技术

近距离传感器(proximity sensor)及环境光线传感器(ambient light sensor,ALS)广泛应用于移动电话等携带式行动装置或其它消费性电子装置内。近距离传感器和环境光线传感器都需使用感光组件,而且近距离传感器一般还需要使用发光组件(例如红外线发射器)。

为了避免发光组件产生的光线干扰感光组件,传统方式会让感光组件与发光组件之间维持一段距离,以避免串音干扰(crosstalk)。然而,此方式会占据电子装置较大的空间,也会损耗较多的能量(例如,讯号传递的距离越长,所消耗的能量越大)。在空间有限的情况下,避免串音干扰的方式是在发光组件和感光组件之间设置遮挡组件,一般是在芯片封装制程中加入遮挡组件。

现有的一种封装方式是使用金属盖体或塑料盖体作为遮挡组件,然而,金属盖体与塑料盖体需使用订制模具来射出成型,但随着电路面积以及传感器尺寸的缩减,遮挡组件的结构也会一并微型化。碍于模具成型能力的限制,通过射出成型等方式制作微型化的遮挡组件结构的难度会大幅提升,而且微型化的金属盖体与塑料盖体并不易固定于封装结构,也容易发生掉落。

现有的另一种封装方式是采用双料射出成型(Double injection molding)技术,于发光组件和感光组件之间形成不透明模塑物质(例如,树酯)来作为遮挡组件。图1为近距离传感器及环境光线传感器的封装结构1示意图。基板10上设置有发光组件11和感光组件13。在第一次射出成型时,将液态透明树酯注入模具,待凝固后形成透明模塑物质16、17,其中透明模塑物质16、17之间形成有塑形空间。在第二次射出成型时,先将不透明树酯胶锭加热到液态状态下,对液态胶锭施予压力挤入透明模塑物质16、17之间,藉此填充塑形空间来塑型不透明模塑物质18。然而,不透明胶锭需在高温环境下(例如摄氏140度)才能转为液态状,但在高温下会造成透明模塑物质16、17超过玻璃转化温度(Glass transitiontemperature,一般称为Tg点,例如摄氏120度)而软化。在此情况下,当施予压力将液态胶锭挤入塑形空间时,会造成透明模塑物质16、17变形,再加上软化的透明模塑物质16、17无法给予足够的支撑力,导致不透明模塑物质18和透明模塑物质16、17难以确实结合形成预定的结构。实务上更发现,在冷却凝固后,不透明模塑物质18和透明模塑物质16、17因热涨冷缩所致的形变,容易使不透明模塑物质18的侧表面18R、18L和透明模塑物质16、17的侧表面之间存有缝隙而无法结合。

基于上述缺失,实有必要提供一种近距离传感器和环境光线传感器的封装结构与制程来达到阻断串音干扰并使整体微型化的目的,以更符合实际应用的需求。

发明内容

因此,本申请的主要目的即在于提供一种复合式感测装置封装结构及封装方法,其将由室温为液态的不透明胶材通过固化处理而形成不透明遮挡组件。

本申请公开一种复合式感测装置封装结构,包括一发光组件,密封于一第一透明模塑物质中;一感光组件,密封于一第二透明模塑物质中;一基板,其上设置有该发光组件、该感光组件、该第一透明模塑物质和该第二透明模塑物质;以及一不透明遮挡组件,设置于该基板上以及该第一透明模塑物质与该第二透明模塑物质之间;其中该不透明遮挡组件是由室温为液态的不透明胶材通过一固化处理所形成。

本申请还公开一种复合式感测装置封装流程,包括于一基板上设置一发光组件和一感光组件;将该发光组件密封于一第一透明模塑物质中,并将感光组件密封于一第二透明模塑物质中;于该第一透明模塑物质和该第二透明模塑物质之间形成一塑形空间;以及将液态不透明胶材滴入塑形空间,对该液态不透明胶材进行一固化处理,以形成一遮挡组件。

附图说明

图1为现有技术的近距离传感器及环境光线传感器的封装结构示意图。

图2A到图2D为本申请实施例一复合式感测装置封装结构的封装流程示意图。

图3A到图3D为本申请实施例一复合式感测装置封装结构的封装流程示意图。

图4为本申请实施例一封装流程的流程图。

其中,附图标记说明如下:

1、2、3 复合式感测装置封装结构

10、20、30 基板

11、21、31 发光组件

22、24、32、34 导线

13、23、33 感光组件

25、35 模具

250、350 塑形空间

16、17、26、27、39、391、392 透明模塑物质

18 不透明模塑物质

38 液态不透明胶材

280、380 遮挡组件

28U 上表面

28R 右侧表面

28L 左侧表面

28D 下表面

X、Y、Z 方向

4 封装流程

41、42、43、44 步骤

具体实施方式

图2A到图2D为本申请实施例一复合式(Complex)感测装置封装结构2的封装流程示意图。复合式感测装置封装结构2包括一基板20、一发光组件21、导线22、24和一感光组件23。

如图2A所示,发光组件21和感光组件23设置于基板20上,其中发光组件21可以通过导线22连接到基板20,且感光组件23可以通过导线24连接到基板20。惟,除了传统打线制程外,发光组件21或感光组件23也可以通过其它方式连接到基板20,本申请并不以此为限。于一实施例中,基板20为一铜箔基板、一陶瓷基板、一导线支架、一树酯基板或一印刷电路板,而导线22、24则可以为金线,但不限于此。

于本实施例中,复合式感测装置封装结构2可以整合有一近距离传感器(proximity sensor)或一环境光线传感器(ambient light sensor,ALS)。发光组件21用来产生发射光(例如红外光),而感光组件23用来接收发射光的反射光,让近距离传感器可根据发射光和反射光来进行距离估算。此外,感光组件23也可用来接收环境光源产生的环境光,以供环境光线传感器进行亮度(light intensity)估算。于一实施例中,近距离传感器和环境光线传感器的运算电路和感光组件23设置在同一区域,而发光组件21与该区域相距一距离。于其它实施例中,近距离传感器和环境光线传感器各自使用独立的感光组件。

在空间有限的情况下,为了降低感光组件23和发光组件21之间的串音干扰(crosstalk),本申请于感光组件23和发光组件21之间形成不透明的遮挡组件,用来防止感光组件23直接接收到发光组件21发出的发射光。

具体而言,如图2B所示,在射出成型时,将一模具25覆盖于复合式感测装置封装结构2,再将液态透明胶材(例如树酯)注入模具25,待凝固后形成透明模塑物质26、27,并移除模具25。发光组件21和导线22密封于透明模塑物质26中,感光组件23和导线24密封于透明模塑物质27中,且一塑形空间250形成于透明模塑物质26、27之间,使得透明模塑物质26、27彼此分离。于本实施例中,塑形空间250的形状为漏斗形,但不限于此,其可以是I形、T形或其它形状。

如图2C所示,将液态不透明胶材28滴入(包括点胶、抹胶等方式)塑形空间250。请注意,本实施例选用的液态不透明胶材28在室温下即呈现液态,因此可在不加温、不特别施加压力的情况下,将不透明胶材28滴入塑形空间250。如此一来,即可避免图1的习知技术中高温下造成透明模塑物质26、27超过玻璃转化温度而软化的问题,也可避免施压挤入造成透明模塑物质26、27变形的问题。

如图2D所示,对复合式感测装置封装结构2进行固化处理以固化液态不透明胶材28,以固化液态不透明胶材28而形成遮挡组件280。在此结构下,发光组件21发出的发射光可通过透明模塑物质26而传递,环境光源和反射光可穿透透明模塑物质27而被感光组件23所接收,且遮挡组件280可防止发光组件21发出的发射光直接被感光组件23所接收,以兼顾收发功能和降低串音干扰。其中,固化处理系将液态不透明胶材28转化为固体材质的制程,举例而言,当液态不透明胶材28为环氧树酯时,该固化处理可以为烘烤,即将复合式感测装置封装结构2加热到低于摄氏100度的温度使其固化。然而,视该不透明胶材28的材料不同,除了低于摄氏100度的低温固化外,该固化处理也可以为常温固化(通过让不透明胶材28接触气体或液体使其固化)、高于摄氏100度但低于透明模塑物质26、27的玻璃转化温度的高温固化、或是紫外光固化等其它固化处理方式。

请注意,本实施例选用的不透明胶材28例如是环氧树酯、硅胶、树酯跟硅胶混合胶或压克力胶,且该不透明胶材28可以为黑色环氧树酯等本身即不透光的材料,或者该不透明胶材28也可以通过掺杂染剂、碳黑、二氧化硅或二氧化钛等填充物使其形成不透光,其固化温度低于透明模塑物质26、27的玻璃转化温度,因此透明模塑物质26、27不会在烘烤过程中软化,并可给予足够的支撑力,让遮挡组件280和透明模塑物质26、27可顺利结合形成预定的结构。例如,遮挡组件280的右侧表面28R与透明模塑物质26相连,遮挡组件280的左侧表面28L与透明模塑物质27相连,且遮挡组件280的下表面28D与基板20相连。此外,藉由控制液态不透明胶材28滴入塑形空间250的量,可使遮挡组件280的上表面28U呈现平面或凸面,以控制发射光的角度及范围,进而满足不同应用需求。

简言之,本申请在选用具有适当材料特性的不透明胶材的情况下(例如,环氧树酯、硅胶、树酯跟硅胶混合胶、压克力胶等,其室温下为液态且固化温度低于透明模塑物质的玻璃转化温度),通过本申请实施例技术于感光组件23和发光组件21之间形成不透明的遮挡组件280,得以确保遮挡组件280和透明模塑物质26、27确实结合,更不会如同先前技的不透明模塑物质18和透明模塑物质16、17在冷却凝固过程中因热涨冷缩形变而产生缝隙。

图3A到图3D为本申请实施例一复合式感测装置封装结构3的封装流程示意图。复合式感测装置封装结构3包括一基板30、一发光组件31、导线32、34和一感光组件32。

如图3A所示,发光组件31和感光组件32设置于基板30上,其中发光组件31通过导线32连接到基板30,且感光组件32通过导线34连接到基板30。在射出成型时,将一模具35覆盖于复合式感测装置封装结构3,再将液态透明胶材(例如树酯)注入模具35,待凝固后形成透明模塑物质39,并移除模具35。发光组件31、感光组件33和导线32、34密封于透明模塑物质39中。

如图3B所示,使用一切割刀或研磨刀对透明模塑物质39进行塑形,以形成一塑形空间350及透明模塑物质391、392,其中发光组件31和导线32密封于透明模塑物质391中,感光组件23和导线24密封于透明模塑物质392中,且塑形空间350形成于透明模塑物质391、392之间,使得透明模塑物质391、392彼此分离。于本实施例中,由于近距离传感器和环境光线传感器的运算电路和感光组件32设置在同一区域,因此在电路布局设计时,可将感光组件32设置于远离发光组件31的位置,并将近距离传感器和环境光线传感器的运算电路设置于靠近发光组件31的位置。在不影响感光组件32的感光能力的情况下,塑形空间350的范围可延伸到感光组件32的上方,使塑形空间350的形状呈现不对称T形。但不限于此,塑形空间350的形状可以是I形、漏斗形或其它形状。

如图3C所示,将液态不透明胶材38滴入(包括点胶、抹胶等方式)塑形空间350。如图3D所示,对复合式感测装置封装结构3进行固化处理(例如前述烘烤),以固化液态不透明胶材38而形成遮挡组件380。

请注意,复合式感测装置封装结构2、3的差异在于遮挡组件的塑形空间的塑形方式不同。复合式感测装置封装结构2的塑形空间250是藉由模具25的来塑形,此做法的优点是制程步骤较精简,但缺点是制程弹性低(例如,模具25无法重复利用在不同规格的复合式感测装置封装结构)。复合式感测装置封装结构3的塑形空间350是藉由切割刀或研磨刀来塑形,此做法的优点是制程弹性高(例如,切割刀或研磨刀可塑形复杂多样的形状),但缺点是制程步骤较多。本领域具通常知识者可根据实际需求来选择塑形空间的塑形方式。

复合式感测装置封装结构2、3的制造方式可归纳为一封装流程4,如图4所示,封装流程4包括以下步骤。

步骤41:于一基板上设置一发光组件和一感光组件。

步骤42:将发光组件密封于一第一透明模塑物质中,及将感光组件密封于一第二透明模塑物质中。

步骤43:于第一透明模塑物质和第二透明模塑物质之间形成一塑形空间。

步骤44:将液态不透明胶材滴入塑形空间,对液态不透明胶材进行一固化处理,以形成遮挡组件。

关于封装流程4的详细操作方式可参考第2A、2B、2C、2D图和第3A、3B、3C、3D图的相关说明,于此不赘述。

综上所述,本申请在选用具有适当材料特性的不透明胶材的情况下(例如,环氧树酯、硅胶、树酯跟硅胶混合胶、压克力胶等,其室温下为液态且固化温度低于透明模塑物质的玻璃转化温度),通过双料射出技术于感光组件和发光组件之间形成不透明的遮挡组件,以降低感光组件和发光组件之间的串音干扰。

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种太阳能电池的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类