采光构件及采光装置

文档序号:1539480 发布日期:2020-02-14 浏览:40次 >En<

阅读说明:本技术 采光构件及采光装置 (Lighting member and lighting device ) 是由 浅冈康 植木俊 镰田豪 于 2018-06-19 设计创作,主要内容包括:采光构件包括包含多个棱镜结构体的平板结构体,多个棱镜结构体在平板结构体的第一面侧排列设置,平板结构体具有射入面、反射面和射出面,射入面、反射面及射出面相互不平行,棱镜结构体具有抑制从该棱镜结构体中透射的光的波长分散的功能。(The light-collecting member includes a flat plate structure including a plurality of prism structures, the plurality of prism structures being arranged on a first surface side of the flat plate structure, the flat plate structure having an incident surface, a reflecting surface, and an outgoing surface, the incident surface, the reflecting surface, and the outgoing surface being not parallel to each other, and the prism structures having a function of suppressing wavelength dispersion of light transmitted through the prism structures.)

采光构件及采光装置

技术领域

本发明的几个方面涉及采光构件及采光装置。

本申请基于2017年6月19日在日本申请的特愿2017-119661号主张优先权,并将其内容引用在本申请中。

背景技术

专利文献1中公开了一种用于通过建筑物的窗户等将太阳光采入室内的采光装置。在下述的专利文献1中记载了一种由使从第一主面射入的光朝向第二主面偏转的光控制构件和一个主面为平面且另一主面具有凹凸结构的分散抑制构件构成的采光装置。在专利文献1中记载了,由于本发明的采光装置包括具有凹凸结构的分散抑制构件,因此能够抑制照射区域中的虹不均匀且不会给处在室内的人带来违和感。

现有技术文献

专利文献

专利文献1:日本特开2016-70941号公报

发明内容

本发明所要解决的技术问题

在专利文献1的采光装置中,关于相对于分散抑制构件垂直射入的光,通过凹凸结构使光沿上下方向均匀分散。然而,关于相对于分散抑制构件倾斜射入的光,存在如下问题:向凹凸结构的上表面射入的光的量与向下表面射入的光的量不同,无法充分获得照射区域中的虹不均匀的抑制效果。此外,在本说明书中,将从采光构件射出的光发生波长分散而使用者看起来光的颜色像虹那样分离的状态称为虹不均匀。

本发明的一个方案用于解决上述课题,目的之一在于提供能够抑制由射出光形成的虹不均匀的采光构件。另外,另一目的在于提供包括上述采光构件的采光装置。

解决问题的方案

为了达成上述目的,本发明的一个方案的采光构件包括包含多个棱镜结构体的平板结构体,所述多个棱镜结构体在所述平板结构体的第一面侧排列设置,所述平板结构体具有射入面、反射面和射出面,所述射入面、所述反射面及所述射出面相互不平行,所述棱镜结构体具有抑制从该棱镜结构体中透射的光的波长分散的功能。

也可以是,在本发明的一个方案的采光构件的基础上,所述棱镜结构体由含有母材和多个粒子的材料构成,其中,该多个粒子分散在所述母材的内部且折射率与所述母材不同。

也可以是,在本发明的一个方案的采光构件的基础上,所述多个粒子各自的表面积的1/2以上的区域由所述母材覆盖。

也可以是,在本发明的一个方案的采光构件的基础上,所述母材由阿贝数为50以上、折射率为1.45以上、1.58以下的具有可见透光性的材料构成。

也可以是,在本发明的一个方案的采光构件的基础上,所述棱镜结构体由阿贝数为50以上、折射率为1.45以上、1.58以下的具有可见透光性的材料构成。

也可以是,在本发明的一个方案的采光构件的基础上,所述平板结构体还具有在相邻的两个所述棱镜结构体之间的区域设置的透光部,所述透光部具有抑制从该透光部中透射的光的波长分散的功能。

也可以是,在本发明的一个方案的采光构件的基础上,所述透光部含有光散射粒子。

本发明的一个方案的采光装置包括本发明的一个方案的采光构件和支承所述采光构件的支承构件。

也可以是,本发明的一个方案的采光装置还包括在所述采光构件的光射出侧设置的光扩散构件。

发明效果

根据本发明的一个方面,能够实现能够抑制由射出光形成的虹不均匀的采光构件。另外,根据本发明的一个方案,能够实现包括上述采光构件的采光装置。

附图说明

图1是第一实施方式的采光构件的剖视图。

图2A是示出光向采光构件射入的射入光强度的角度分布的图。

图2B是用于说明以往的采光构件的问题点的图。

图2C是用于说明本实施方式的采光构件的作用的图。

图3是示出采光构件的第一变形例的剖视图。

图4是示出采光构件的第二变形例的剖视图。

图5是第二实施方式的采光构件的剖视图。

图6是第三实施方式的采光构件的剖视图。

图7是示出多种树脂材料中的折射率的波长分散的一例的图。

图8是示出光的入射角度与透射率之间的关系的曲线图。

图9是示出折射率与全反射角度的关系的曲线图。

图10是用于说明本发明的发明人试制的采光构件的评价方法的示意图。

图11是示出使用材料A的采光构件的波长分散评价结果的曲线图。

图12是示出使用材料B的采光构件的波长分散评价结果的曲线图。

图13是用于说明本实施方式的采光构件的作用的图。

图14是第四实施方式的采光构件的剖视图。

图15是第五实施方式的采光装置的剖视图。

图16是第一变形例的采光装置的剖视图。

图17是第二变形例的采光装置的剖视图。

图18是第三变形例的采光装置的剖视图。

图19是第六实施方式的采光装置的立体图。

图20是采光装置的剖视图。

图21是第七实施方式的采光装置的立体图。

图22是采光装置的剖视图。

图23是设置有采光装置的房间的剖视图。

图24是示出房间的天花板的俯视图。

图25是示出通过采光装置采光到室内的光(自然光)的照度与基于室内照明装置的照度之间的关系的曲线图。

具体实施方式

[第一实施方式:采光构件]

以下使用图1~图4说明本发明的第一实施方式。

在第一实施方式中,作为本发明的采光构件的一例,举出采光膜的一例。本实施方式的采光膜例如设置于窗玻璃的附近,且用于沿室内的天花板方向采入太阳光。

图1是第一实施方式的采光构件的剖视图。

在以下的说明中,采光装置各部分的位置关系(上下、左右、前后)基于从位于室内的使用者观察的位置关系(上下、左右、前后),只要没有特别说明,在附图中,采光装置各部分的位置关系也与纸面中的位置关系一致。

另外,为了在以下各附图中容易看到各构成要素,存在根据构成要素使尺寸的比例尺不同而示出的情况。

如图1所示,采光构件5包括平板结构体21,该平板结构体21包含具有透光性的基材2和在基材2的第一面2a设置的具有透光性的多个棱镜结构体3。另外,在相邻的棱镜结构体3彼此之间设有空隙部4。在本实施方式中,采光构件5以设置有多个棱镜结构体3的基材2的第一面2a朝向室外侧的方式设置。

作为基材2,使用由例如热塑性聚合物、热硬化性树脂、光聚合性树脂等树脂类构成的透光性基材。使用具有丙烯酸系聚合物、烯烃系聚合物、乙烯系聚合物、纤维素系聚合物、酰胺系聚合物、氟系聚合物、聚氨酯系聚合物、硅酮系聚合物、酰亚胺系聚合物等的透光性基材。具体来说,例如优选使用三乙酰化纤维素(TAC)膜、聚对苯二甲酸乙二醇酯(PET)膜、环烯烃聚合物(COP)膜、聚碳酸酯(PC)膜、聚萘二甲酸乙二醇酯(PEN)膜、聚醚砜(PES)膜、聚酰亚胺(PI)膜等透光性基材。在本实施方式中,作为一例,使用厚度为100μm的PET膜。基材2的全光线透射率优选例如90%以上。由此能够获得充分的透明性。

棱镜结构体3由含有母材31和在母材31的内部分散的多个光散射粒子32的材料构成。光散射粒子32具有不同于母材31的折射率。由此,棱镜结构体3如后所述,具有抑制透射该棱镜结构体的光的波长分散的功能。

母材31由例如丙烯酸树脂或环氧树脂、硅酮树脂等具有透光性及感光性的有机材料构成。另外,这些树脂能够使用将聚合引发剂、偶联剂、单体、有机溶媒等混合而成的透明树脂制的混合物。

此外,聚合引发剂也可以含有稳定剂、抑制剂、增塑剂、荧光增白剂、离型剂、链转移剂、其他光聚合性单体等各种追加成分。母材31的全光线透射率优选90%以上。由此能够获得充分的透明性。

光散射粒子32具有使射入至棱镜结构体3的光散射的作用。光散射粒子32是折射率与母材31不同的粒子(小片)。光散射粒子32优选混入母材31的内部且分散而无凝集。优选多个光散射粒子32各自的表面积的1/2以上的区域由母材31覆盖。

作为光散射粒子32,例如能够使用由玻璃类、丙烯酸系聚合物、烯烃系聚合物、乙烯系聚合物、纤维素系聚合物、酰胺系聚合物、氟系聚合物、聚氨酯系聚合物、硅酮系聚合物、酰亚胺系聚合物树脂类等构成的透光性材料。或者,光散射粒子32也可以是分散在母材31中的气泡。光散射粒子32的形状可以是例如球形、椭圆球形、平板形、多面体等。光散射粒子32的尺寸只要为例如0.5~20μm程度即可,可以均匀也可以不同。

棱镜结构体3是在一个方向(与图1的纸面垂直的方向)上以直线状细长延伸的构件,是与长尺寸方向正交的截面形状为例如三角形的构件。棱镜结构体3的长尺寸方向与基材2的一条边平行。多个棱镜结构体3相互平行地沿铅直方向排列配置。

在本例中,棱镜结构体3的截面形状为等腰三角形。在棱镜结构体3的截面形状中,面3A与面3B所成的角度α1和面3A与面3C所成的角度α2分别为例如65°。另外,棱镜结构体3具有将从面3B及面3C中的一个面3B射入的光由另一面3C反射而将太阳光向室内采光的功能。在该情况下,以下的说明中将面3C称为反射面3C。

从窗玻璃中透射的太阳光L射入棱镜结构体3并从基材2射出时的路径认为有多条,在图1中示出典型的路径。

作为棱镜结构体3,射入内部的光中的任意一条光线通过射入上述反射面3C的点F并从底面3A侧射出。在此,将以与基材2的第一面2a垂直且与棱镜结构体3的延伸方向(X方向)平行的假想平面E为边界的两个空间S1、S2中的存在射入至点F的光线一侧的空间设为第一空间S1,将不存在射入至点F的光线一侧的空间设为第二空间S2。在该情况下,棱镜结构体3具有使由反射面3C反射的光从基材2的第二面2b侧射出并向第一空间S1侧行进的特性。通过该棱镜结构体3的作用,采光构件5将太阳光L向室内采入并沿天花板方向引导。

因此,在平板结构体21中,棱镜结构体3的面3B成为太阳光L的射入面,面3C成为太阳光L的反射面,基材2的第二面2b成为太阳光L的射出面。像这样,平板结构体21具有射入面、反射面和射出面,射入面、反射面及射出面相互不平行。

空隙部4中存在空气。因此,空隙部4的折射率大致为1.0。通过将空隙部4的折射率设为1.0,从而空隙部4与棱镜结构体3的界面处的临界角为最小。在本实施方式的情况下,空隙部4设为由空气构成的空气层,但空隙部4在例如由其他构件覆盖而设为密闭空间的基础上,也可以是由氮气等非活性气体构成的非活性气体层,或成为减压状态的减压层。

也可以取代该构成而向相互相邻的棱镜结构体3之间的空间填充其他低折射率材料。但是,作为棱镜结构体3与空隙部4的界面的折射率差,与空隙部26中存在某种低折射率材料的情况相比,存在空气的情况下为最大。因此,在相邻的棱镜结构体3之间的空隙部4中存在空气的情况下,根据斯涅耳(Snell)定律,射入棱镜结构体3的太阳光L中的由反射面3c全反射的光的临界角最小。

上述构成的采光构件5通过例如使用紫外线(UV)硬化树脂的UV转印法制作。或者,采光构件5使用热塑性的波长分散控制构件通过挤出成形法制作。

以下说明以往的采光构件的问题点和本实施方式的采光构件的作用、效果。

图2A是示出太阳光向采光构件射入的射入光强度的角度分布的图。

如图2A所示,向采光构件射入的太阳光不具有入射角度β的波长依赖性,入射角度β的角度分布具有有限的半值宽度Δβ。

在以往的不具有波长分散抑制功能的采光构件的情况下,若太阳光以规定的入射角度β向采光构件射入,则发生光的波长分散,其结果,光的射出角度θ根据波长而不同。

例如如图2B所示,在红色光(例如波长为650nm)的射出角度分布的中心值θR与蓝色光(例如波长为450nm)的射出角度分布的中心值θB之间产生Δλ的角度差。另外,红色光的射出角度分布和蓝色光的射出角度分布分别具有一定的有限半值宽度Δθ0。

此时,在满足Δθ0<Δλ的状况下,红色光的射出角度分布与蓝色光的射出角度分布不重叠,可见红色光与蓝色光分离。其结果是,在室内的天花板等照射区域中视觉辨认出颜色从蓝色到红色变化的虹不均匀,给处在室内的人带来违和感。

对此,在具有包含光散射粒子32的棱镜结构体3的本实施方式的采光构件5的情况下,例如如图2C所示,光在棱镜结构体3的内部行进时通过光散射粒子32而散射,因此红色光及蓝色光的射出角度分布的半值宽度Δθ1分别比图2B所示的半值宽度Δθ0大。由此,红色光与蓝色光混合而射出光的分光被抑制。此外,在本实施方式的情况下,红色光与蓝色光之间的射出角度差Δλ与以往相比无变化。

此时,在满足Δθ0<Δθ1且Δθ1≥Δλ的状况下,使用者未视觉辨认出红色光与蓝色光分离,室内的天花板等照射区域中的光的着色被抑制,能够提供舒适的空间而不会给处在室内的人带来违和感。但是,若Δθ1过大,则不希望的与水平相比向下的光增加,根据情况,可能因天花板照度降低、眩光增加等而成为不舒适的环境。因此,优选适当地对棱镜结构体3中的光散射粒子32的种类、尺寸、含量等进行调整,避免散射程度过大。

如以上说明,根据本实施方式的采光构件5,不同颜色的光在棱镜结构体3的内部因光散射粒子32而散射,通过相互混合来抑制射出光的分光。其结果是,能够实现能够抑制由射出光形成的虹不均匀的采光构件5。在前述的专利文献1的采光构件中,存在根据光的入射角度而无法充分获得虹不均匀抑制效果的问题,但在本实施方式的采光构件5中,与光的入射角度无关,能够通过使光从棱镜结构体3中通过来获得光散射效果,能够发挥抑制虹不均匀的效果。

此外,若大量光散射粒子32突出到棱镜结构体3的表面而表面的平坦度下降,则会导致作为反射面的反射率降低,采光特性下降。对此,在本实施方式的采光构件5中,多个光散射粒子32各自的表面积的1/2以上的区域由母材31覆盖,因此光散射粒子32的全表面积中的从棱镜结构体3的射入面或反射面露出的部分的表面积相对较少,能够维持希望的采光特性。

另外,根据上述构成,光散射粒子32的一半以上埋入在母材31中,能够抑制来自棱镜结构体3的光散射粒子32的脱落。

此外,本实施方式的采光构件5具备截面形状为三角形状的棱镜结构体3,棱镜结构体的截面形状不限于三角形状,能够采用以下变形例的构成。另外,不限于以下的变形例,能够进一步采用具有其他截面形状的棱镜结构体。

[第一变形例]

图3是示出采光构件的第一变形例的剖视图。

如图3所示,第一变形例的采光构件51具备包含基材2和多个棱镜结构体35的平板结构体22,其中,该多个棱镜结构体35设置在基材2的第一面2a且具有透光性。在本实施方式中,采光构件51以基材2的设置有多个棱镜结构体35的第一面2a朝向室外侧的方式设置。

与棱镜结构体35的长尺寸方向垂直的截面形状为五边形状。在棱镜结构体35中,面35A及面35B主要作为射入面发挥作用,面35C及面35D主要作为反射面发挥作用。基材2的第二面2b作为射出面发挥作用。射入面、反射面及射出面相互不平行。另外,棱镜结构体35包含母材31和多个光散射粒子32,具有抑制从该棱镜结构体35中透射的光的波长分散的功能。

[第二变形例]

图4是示出采光构件的第二变形例的剖视图。

如图4所示,第二变形例的采光构件55具有包含基材2和多个棱镜结构体36的平板结构体23,其中,该多个棱镜结构体36设置在基材2的第二面2b且具有透光性。在本实施方式中,采光构件55以基材2的设置有多个棱镜结构体3的第二面2b朝向室内侧的方式设置。

棱镜结构体36的与长尺寸方向垂直的截面形状为四边形状。在棱镜结构体36中,面36C作为反射面发挥作用,面36A及面36B作为射出面发挥作用。基材2的第一面2a作为射入面发挥作用。因此,射入面、反射面及射出面相互不平行。另外,棱镜结构体36包含母材31和多个光散射粒子32,具有抑制从该棱镜结构体36中透射的光的波长分散的功能。

[第二实施方式:采光构件]

以下使用图5说明第二实施方式的采光构件。

第二实施方式的采光构件的基本构成与第一实施方式相同,基材的第一面侧的构成与第一实施方式不同。

图5是第二实施方式的采光构件的剖视图。

在图5中,对与在第一实施方式中使用的附图共通的构成要素标注相同的附图标记,并省略说明。

如图5所示,采光构件49包括具有基材2、多个棱镜结构体3和多个透光部33的平板结构体24。在本实施方式中,采光构件57以基材2的设有多个棱镜结构体37的第一面2a朝向室外侧的方式设置。

透光部33在基材2的第一面2a中设置为相邻的两个棱镜结构体3之间的区域。即,透光部33以从基材2的第一面2a起的厚度远小于棱镜结构体3的高度且填埋相邻的两个棱镜结构体3之间的谷部的一部分的方式设置。

透光部33包括与构成棱镜结构体3的母材成为一体的母材31和母材31的内部含有的多个光散射粒子32。与棱镜结构体3同样地,在透光部33中,光散射粒子32的折射率也与母材31不同。由此,透光部33具有抑制在该透光部33中透射的光的波长分散的功能。

其他构成与第一实施方式相同。

在本实施方式中,也能够获得与第一实施方式相同的效果,即,能够实现能够抑制由射出光形成的虹不均匀的采光构件49。

此外,在本实施方式的情况下,由于在相邻的棱镜结构体3之间设有包含光散射粒子32的透光部33,因此如以图5的附图标记L1表示的光所示,射入相邻的棱镜结构体3之间的光碰到光散射粒子32而散射。由此,能够减少在相邻的棱镜结构体3之间直线行进而漏出的光,能够抑制窗边的不舒适的直达太阳光。

另外,如以图5的附图标记L2表示的光所示,由基材2的第二面2b(射出面)反射的光在由透光部33的表面33a再次反射而朝向基材2的第二面2b侧时因光散射粒子32而散射。由此能够进一步改善虹不均匀。此外,在本例中,透光部33的表面33a与基材2的第一面a平行,但也可以不与基材2的第一面a平行,或者可以相对于基材2的第一面a倾斜,或者可以设置凹凸。

[第三实施方式:采光构件]

以下使用图6~图13说明第三实施方式的采光构件。

第三实施方式的采光构件的基本构成与第一实施方式相同,棱镜结构体的构成与第一实施方式不同。

图6是第三实施方式的采光构件的剖视图。

在图6~图13中,对与在第一实施方式中使用的附图共通的构成要素标注相同的附图标记,并省略说明。

如图6所示,采光构件57包括平板结构体24,该平板结构体24包含具有透光性的基材2和在基材2的第一面2a设置且具有透光性的多个棱镜结构体37。在本实施方式中,采光构件57以基材2的设有多个棱镜结构体37的第一面2a朝向室外侧的方式设置。

棱镜结构体37由阿贝数为50以上、折射率为1.45以上、1.58以下的具有可见透光性的材料构成。通过使用这种材料,从而棱镜结构体37具有抑制从该棱镜结构体37中透射的光的波长分散的功能。

图7是多种树脂材料中的折射率的波长分散的一例的图。

图7的横轴是波长λ[nm],纵轴是各波长(Δn)处的折射率相对于波长550nm处的折射率(Δn 550)的比(Δn/Δn550)。附图标记A的曲线表示环烯烃聚合物(COP),附图标记B的曲线表示聚碳酸酯(PC),附图标记C的曲线表示聚醚砜(PES)。

如图7所示,通常的材料的折射率随着波长增加而单调减小。然而,折射率的波长分散(曲线的斜率)根据材料而不同。在图7的例子中,COP的波长分散相对较小,PES的波长分散相对较大。

因此,作为定量表示各材料具有的波长分散的大小的指标有阿贝数。在将相对于夫琅禾费线的C线(波长656nm)、D线(589nm)、F线(486nm)的折射率分别设为nC、nD、nF时,阿贝数vd以下述的(1)式定义。

vd=(nD-1)/(nF-nC)…(1)

在折射率的波长分散小的情况下,阿贝数vd变大,在折射率的波长分散大的情况下,阿贝数vd变小。通常存在低折射率树脂的阿贝数vd大而高折射率树脂的阿贝数vd小的倾向。

将多种树脂材料的折射率及阿贝数的一例示出在下述的表1中。

[表1]

树脂材料名称 折射率 阿贝数
环烯烃聚合物 1.53 56
环烯烃共聚物 1.54 56
PMMA 1.49 58
甲基丙烯酸酯(K-55) 1.51 58
聚苯乙烯 1.59 31
PET 1.58 39

在本实施方式中,由于棱镜结构体37的构成材料的阿贝数为50以上,折射率为1.45以上、1.58以下,因此能够使用表1所示的树脂材料中的环烯烃聚合物(COP)、环烯烃共聚物、聚甲基丙烯酸甲酯(PMMA)、甲基丙烯酸酯(K-55)。另外,作为棱镜结构体37的构成材料能够使用包含脂环族基团的聚合物等。

图8是光的入射角度与透射率的关系的曲线图。

在图8中,横轴是光向采光构件射入的入射角度[°],纵轴是光从空气向采光构件射入时的空气-采光构件界面的透射率[%]。示出透射率越高则向采光构件射入的光的比例越大,透射率越低则向采光构件射入的光的比例越小的情况。附图标记D的曲线示出折射率n=1.45的曲线图,附图标记E的曲线示出折射率n=1.52的曲线图,附图标记F的曲线示出折射率n=1.58的曲线图。

如图8所示,无论折射率如何,在入射角度β为0~30°程度的区域中,透射率为95~97%且大致恒定,但若入射角度β超过30°,则表现入射角度越大越急剧下降的倾向。另外,构成棱镜结构体37的材料的折射率越高则透射率越低。若折射率过高,则空气与棱镜结构体37的界面处的反射率变高,太阳光难以透射棱镜结构体37的内部,太阳光的利用效率变差。

图9是表示折射率与全反射角度的关系的曲线图。

在图9中,横轴是折射率,纵轴是光从采光构件射出至空气中时的采光构件-空气界面处的全反射角度[°]。

如图9所示,呈现折射率越大则全反射角度越单调减小的倾向。若构成棱镜结构体37的材料的折射率过低,则全反射角度变大,由棱镜结构体37-空气界面全反射的光仅为入射角度大的角度。在该情况下,未全反射而透射的光的比例、即未朝向室内的天花板侧行进的光增多,太阳光的利用效率变差。另外,若折射率降低,则棱镜结构体37处的折射角度变小,因此无法有效使太阳光弯曲。

在此,本发明的发明人实际制作使棱镜结构体37的构成材料不同的采光构件,评价各采光构件中的虹不均匀产生问题。

各材料的折射率及阿贝数如表2所示。

在此,作为材料A使用非晶质聚烯烃系树脂,作为材料B使用聚碳酸酯树脂。

[表2]

折射率 阿贝数
材料A 1.53 56
材料B 1.58 32

评价方法如图10所示,使光从光源102垂直射入采光构件101的形成有棱镜结构体的第一面101a,通过在第二面101b侧配置的受光机103针对各规定的波长检测光强度,根据其检测值计算透射率。此时,改变受光机103相对于第二面101b的法线方向的设置角度θ(极角)并检测光强度。

将评价结果示出在图11及图12中。

在图11及图12中,横轴为极角[°],纵轴为透射率[%]。

图11是材料A的评价结果,图12是材料B的评价结果。另外,以附图标记T420表示的曲线示出针对波长420nm的光的透射率,以附图标记T550表示的曲线示出针对波长550nm的光的透射率,以附图标记T700表示的曲线示出针对波长700nm的光的透射率。

如图11及图12所示,两种材料均在极角25°附近及极角60°附近出现透射率的峰值,可知光沿该方向射出。如图11所示,在使用折射率为1.53、阿贝数为56的材料A的情况下,极角25°附近的峰值、极角60°附近的峰值的基于波长的峰值位置偏移均很小,在实际目视由该采光构件照射的天花板时,基本上没有视觉辨认到虹不均匀。与此相对,如图12所示,在使用折射率为1.58、阿贝数为32的材料B的情况下,极角25°附近的峰值位置偏移很小,但极角60°附近的峰值位置偏移很大,在从该方向目视由该采光构件照射的天花板时,视觉辨认到虹不均匀。

在此,仅关于折射率及阿贝数不同的两种材料公开了评价结果,但本发明的发明人根据其他评价结果获知,作为棱镜结构体37,优选使用作为非燧石系区域的具有50以上的阿贝数、1.45以上、1.58以下的折射率的材料。即,在使用通常称为高阿贝数的阿贝数为50以上的材料制作采光构件的情况下,是颜色分离少且能够容许虹不均匀的等级。另外,在该评价中,将折射率设定为1.515而设计棱镜结构体的形状,但已知只要使用具有1.45以上、1.58以下的折射率的材料,均能够获得符合设计的射出特性、采光性能。

在本实施方式的包括由阿贝数高的材料构成的棱镜结构体37的采光构件57的情况下,由于波长分散小,因此如图13所示,基于波长的射出角度的差变小。具体来说,红色光(例如波长650nm)的射出角度分布的中心值θR与蓝色光(例如波长450nm)的射出角度分布的中心值θB之间的角度差Δλ1,与图2B所示的以往的采光构件中的角度差Δλ相比变小。另外,红色光的射出角度分布与蓝色光的射出角度分布分别具有一定的有限半值宽度Δθ0。

此时,在满足Δθ0>Δλ1的状况下,使用者未视觉辨认出红色光与蓝色光分离,室内的天花板等照射区域中的光的着色被抑制,能够提供舒适的空间而不会给处在室内的人带来违和感。

如以上说明,根据本实施方式的采光构件57,通过使用由波长分散少的材料构成的棱镜结构体37来抑制射出光的分光。其结果是,能够实现能够抑制由射出光形成的虹不均匀的采光构件57。在前述的专利文献1的采光构件中,存在根据光的入射角度而无法充分获得虹不均匀抑制效果的问题,但在本实施方式的采光构件57中,与光的入射角度无关,能够通过使光通过棱镜结构体37而获得光散射效果,能够发挥抑制虹不均匀的效果。

在本实施方式中,与第一实施方式同样地不限于三角形,能够采用具有多种截面形状的棱镜结构体。

[第四实施方式:采光构件]

以下使用图14说明第四实施方式的采光构件。

第四实施方式的采光构件的基本构成与第一实施方式相同,棱镜结构体的构成与第一实施方式不同。

图14是第四实施方式的采光构件的剖视图。

在图14中,对与在第一实施方式中使用的附图共通的构成要素标注相同的附图标记,并省略说明。

如图14所示,采光构件59包括平板结构体25,该平板结构体25包含具有透光性的基材2和在基材2的第一面2a设置的具有透光性的多个棱镜结构体38。在本实施方式中,采光构件59以基材2的设置有多个棱镜结构体38的第一面2a朝向室外侧的方式设置。

棱镜结构体38由含有母材39和多个光散射粒子32的材料构成。多个光散射粒子32的折射率与母材39的折射率不同,并分散在母材39的内部。作为光散射粒子32的构成材料,能够使用与在第一实施方式中举出的材料相同的材料。

母材39由阿贝数为50以上、折射率为1.45以上、1.58以下的具有可见透光性的材料构成。作为阿贝数为50以上且折射率为1.45以上、1.58以下的母材的构成材料,能够使用与在第二实施方式中举出的材料相同的材料。另外,第一实施方式同样地,优选多个光散射粒子32各自的表面积的1/2以上的区域被母材39覆盖。通过以上构成,棱镜结构体38具有抑制从该棱镜结构体38中透射的光的波长分散的功能。

根据本实施方式的采光构件59,通过棱镜结构体38含有光散射粒子32而各种颜色光的射出角度分布扩大的效果和通过棱镜结构体38的母材39使用波长分散少的材料而基于波长的射出角度差变小的效果双方共同抑制射出光的分光,能够实现能够抑制虹不均匀的采光构件59。

此外,在第三实施方式及第四实施方式的采光构件中,也可以与第二实施方式同样地,在相邻的棱镜结构体之间的区域设置具有波长分散抑制功能的透光部。

[第五实施方式:采光装置]

以下使用图15~图18说明本发明的第五实施方式。

第五实施方式的采光装置是将采光构件与光扩散构件组合而成的结构。

图15是第五实施方式的采光装置的剖视图。图16是第五实施方式的第一变形例的采光装置的剖视图。图17是第五实施方式的第二变形例的采光装置的剖视图。图18是第五实施方式的第三变形例的采光装置的剖视图。

在图15~图18中,对与在第一实施方式中使用的附图共通的构成要素标注相同的附图标记,并省略说明。

如图15所示,采光装置81包括采光构件5、光扩散构件62和框架82(支承构件)。采光构件5包括基材2和在基材2的第一面2a设置的多个棱镜结构体3。光扩散构件62包括基材64和在基材64的第一面64a设置的多个柱面透镜65。采光构件5和光扩散构件62以相互隔开规定的间隔分离配置的状态支承在框架82的内侧。采光装置81通过例如未图示的任意支承构件,以悬吊在窗玻璃的室内侧的方式设置。

从与基材2的第一面2a垂直的方向观察,采光构件5的棱镜结构体3的延伸方向与光扩散构件62的柱面透镜65的延伸方向相互大致正交。在本实施方式中,采光构件5与光扩散构件62以基材2的第二面2b(未设置多个棱镜结构体3的面)与基材64的第一面64a(设有多个柱面透镜65的面)相对的方式配置。即,采光构件5以多个棱镜结构体3朝向室外侧的方式配置,光扩散构件62以多个柱面透镜65朝向室外侧的方式配置。

光扩散构件62包括多个柱面透镜65,因此具有使光主要沿水平方向扩散的各向异性扩散性。作为具有各向异性扩散性的光扩散构件的例子,也可以取代柱面透镜65而使用具有例如沿一个方向细长延伸的凹凸结构的光扩散构件,只要按照使各凹部及各凸部的长尺寸方向沿上下方向且短尺寸方向沿水平方向的方式设置即可。

在本实施方式的采光装置81中使用第一实施方式的采光构件5,因此能够实现能够抑制虹不均匀的采光装置81。此外,由于采光装置81包括光扩散构件62,因此能够使来自采光构件5的射出光的照射范围在水平方向上扩宽。

在本实施方式的采光装置81中,采光构件5和光扩散构件62设置为独立的构件,因此例如在任意构件损伤或破损时容易进行该构件的更换。

此外,在本实施方式的采光装置81中,能够采用以下的多种变形例。

图16是第一变形例的采光装置85的剖视图。

如图16所示,在第一变形例的采光装置85中,采光构件5和光扩散构件62以基材2的第二面2b(未设置多个棱镜结构体3的面)与基材64的第二面64b(未设置多个柱面透镜65的面)相对的方式配置。即,采光构件5以多个棱镜结构体3朝向室外侧的方式配置,光扩散构件62以多个柱面透镜65朝向室内侧的方式配置。

图17是第二变形例的采光装置88的剖视图。

如图17所示,在第二变形例的采光装置88中,采光构件55和光扩散构件62以基材2的第一面2a(设有多个棱镜结构体36的面)与基材64的第一面64a(设有多个柱面透镜65的面)相对的方式配置。即,采光构件55以多个棱镜结构体36朝向室内侧的方式配置,光扩散构件62以多个柱面透镜65朝向室外侧的方式配置。

图18是第三变形例的采光装置91的剖视图。

如图18所示,在第三变形例的采光装置91中,采光构件55和光扩散构件62以基材2的第一面2a(设有多个棱镜结构体36的面)与基材64的第二面64b(未设置多个柱面透镜65的面)相对的方式配置。即,采光构件55以多个棱镜结构体36朝向室内侧的方式配置,光扩散构件62以多个柱面透镜65朝向室内侧的方式配置。

如第五实施方式、第一变形例的采光装置81、85所示,在多个棱镜结构体3朝向室外侧的情况下,能够使用例如具有图1所示的三角形的截面形状或图3所示的五边形的截面形状的棱镜结构体。另一方面,如第二变形例、第三变形例的采光装置88、91所示,在多个棱镜结构体36朝向室内侧的情况下,能够使用例如图4所示的具有四边形的截面形状的棱镜结构体。

[第六实施方式:采光装置]

以下使用图19及图20说明本发明的第六实施方式。

第六实施方式的采光装置是通过采光百叶窗构成的一例。

图19是第六实施方式的采光装置的立体图。图20是采光装置的剖视图。

在图19及图20中,对与在第一实施方式中使用的附图共通的构成要素标注相同的附图标记,并省略说明。

如图19所示,采光百叶窗401包括:隔开规定的间隔排列配置的多个采光叶片402;将多个采光叶片402以相互倾动自如的方式支承的倾动机构(支承机构)403;以及将通过倾动机构403连结的多个采光叶片402以能够进出的方式折叠收纳的收纳机构408。

如图20所示,多个采光叶片402具有采光板411与光扩散板412贴合而成的构成。采光板411包括基材413和在基材413的第一面413a设置的多个棱镜结构体414。光扩散板412包括基材416和在基材416的第一面416a设置的多个柱面透镜417。此外,也可以使用下述采光叶片:使基材416与基材413共通化,在一片基材的两个表面分别设有棱镜结构体414和柱面透镜417。

倾动机构403包括多个方向控制绳。多个方向控制绳省略图示,但沿采光叶片402的长尺寸方向延伸,并支承多个采光叶片402。倾动机构403省略图示,但包括对方向控制绳的一对纵线相互反向地沿上下方向进行移动操作的操作机构。在倾动机构403中,通过基于操作机构的一对纵线的移动操作,能够使多个采光叶片402相互同步倾动。

采光百叶窗401在窗玻璃(未图示)的室内侧从天花板面悬吊,以与窗玻璃的内表面相对的状态使用。此时,采光叶片402以多个棱镜结构体414的排列方向与窗玻璃的纵方向(铅直方向)一致的朝向配置。换言之,采光叶片402以多个棱镜结构体414相对于窗玻璃的延伸方向与窗玻璃的横方向(水平方向)一致的方式配置。在采光叶片402的采光状态下,以棱镜结构体414朝向室外侧且柱面透镜417朝向室内侧的方式设置。

如图20所示,在与窗玻璃的内表面相对的采光百叶窗401中,经由窗玻璃射入至室内的光L由多个棱镜结构体414改变行进方向而向屋内的天花板照射。另外,朝向天花板的光L由天花板反射而照射室内,因此能够替代照明光。因此,在使用这样的采光百叶窗401的情况下,能够期待白天节约建物内的照明设备消耗的能量的节能效果。

在本实施方式中,能够获得与第五实施方式相同的效果,即能够实现能够抑制虹不均匀的采光装置。

另外,根据采光百叶窗401,能够通过使多个采光叶片402倾动来调整朝向天花板的光L的角度。此外,能够调整从多个采光叶片402之间射入的光的量。

如上所述,在使用本实施方式的采光百叶窗401的情况下,能够高效地将室外的自然光(太阳光)采入室内,并能够使处于室内的人感觉直到屋内的里侧都很明亮而不会感觉到眩光。

[第七实施方式:采光装置]

以下使用图21及图22说明本发明的第七实施方式。

第七实施方式的采光装置是通过采光卷帘构成采光装置的一例。

图21是第七实施方式的采光装置的立体图。图22是采光装置的剖视图。

在图21及图22中,对与在第一实施方式中使用的附图共通的构成要素标注相同的附图标记,并省略说明。

如图21所示,采光卷帘301包括采光帘布302和将采光帘布302以卷取自如的方式支承的卷取机构303。

如图22所示,采光帘布302具有采光构件311与光扩散构件312贴合而成的构成。采光构件311包括基材313和在基材313的第一面313a设置的多个棱镜结构体314。光扩散构件312包括基材316和在基材316的第一面316a设置的多个柱面透镜317。也可以使用使基材316与基材313共通化并在一片基材的两个表面分别设有棱镜结构体314和柱面透镜317的采光帘布。

如图21所示,卷取机构303包括:沿采光帘布302的上端部安装的卷芯(支承构件)304;沿采光帘布302的下端部安装的下管(支承构件)305;在采光帘布302的下端部中央安装的拉伸帘线306;以及收纳卷取在卷芯304上的采光帘布302的收纳壳体307。

卷取机构303能够采用拉绳式,将采光帘布302在拉出的位置固定,或将拉伸帘线306从拉出的位置进一步拉拽而解除固定并将采光帘布302自动卷取在卷芯304上。此外,关于卷取机构303不限于这样的拉绳式,也可以是利用链条使卷芯304旋转的链条式卷取机构或通过马达使卷芯304旋转的自动式卷取机构等。

具有以上构成的采光卷帘301以在将收纳壳体307固定在窗玻璃308上部的状态下,使用拉伸帘线306将收纳在收纳壳体307中的采光帘布302拉出并使之与窗玻璃308的内表面相对的状态使用。此时,采光帘布302以相对于窗玻璃308而多个棱镜结构体314的排列方向与窗玻璃308的纵方向(铅直方向)一致的朝向配置。也就是说,采光帘布302以相对于窗玻璃308而多个棱镜结构体314的长尺寸方向与窗玻璃308的横方向(水平方向)一致的方式配置。采光卷帘301以棱镜结构体314朝向室外侧且柱面透镜317朝向室内侧的方式设置。

在与窗玻璃308的内表面相对的采光帘布302中,穿过窗玻璃308射入室内的光由多个棱镜结构体314改变行进方向而朝向室内的天花板照射。另外,朝向天花板的光由天花板反射而照射室内而代替照明光。因此,通过使用这样的采光卷帘301,能够期待白天节约建物内的照明设备消耗的能量的节能效果。

在本实施方式中,能够获得与第五实施方式相同的效果,即能够实现能够抑制虹不均匀的采光装置。

如以上所示,通过使用本实施方式的采光卷帘301,能够高效地将室外的自然光(太阳光)采入室内,并且,能够使处于室内的人感觉直到室内里侧都很明亮而不会感觉眩光。

[照明系统]

图23是示出包括采光系统2010的房间模型2000的图,是沿着图24的J-J’线的剖视图。

图24是示出房间模型2000的天花板的俯视图。

构成导入太阳光的房间2003的天花板2003a的天花板构件优选具有高光反射性。如图23及图24所示,房间2003的天花板2003a作为具有光反射性的天花板构件设置有光反射性天花板构件2003A。光反射性天花板构件2003A促进将来自在窗户2002设置的采光系统2010的外光导入室内里侧。光反射性天花板构件2003A设置在窗边的天花板2003a。具体来说设置在天花板2003a的规定区域E(距离窗户2002大约3m的区域)。

光反射性天花板构件2003A如上所述,高效地将经由设置有由某实施方式的采光装置构成的采光系统2010的窗户2002导入至室内的太阳光导入室里侧。从采光系统2010向室内的天花板2003a导入的太阳光由光反射性天花板构件2003A反射,改变朝向而照射在室内里侧放置的桌子2005的桌面2005a,发挥使该桌面2005a明亮的效果。

光反射性天花板构件2003A可以是扩散反射性,也可以是镜面反射性,但为了兼顾使放置于室内里侧的桌子2005的桌面2005a明亮的效果和抑制对于处于室内的人来说不舒适的眩光的效果,优选使两者的特性适度匹配。

通过采光系统2010导入至室内的光中的大部分朝向天花板。通常,窗户2002附近的光量充分的情况较多。因此,通过同时使用上述的采光系统和光反射性天花板构件2003A,从而能够将射入至窗户附近的天花板(区域E)的光分配至光量比窗边少的室内里侧。

光反射性天花板构件2003A能够通过对例如铝等金属板实施基于几十μm程度的凹凸的压花加工或在形成有同样的凹凸的树脂基板的表面蒸镀铝等金属薄膜而制作。或者,可以以更大周期的曲面形成通过压花加工形成的凹凸。

此外,通过适当改变在光反射性天花板构件2003A形成的压花形状,能够控制光的配光特性或室内的光的分布。例如,在以向室内里侧延伸的条带状实施压花加工的情况下,由光反射性天花板构件2003A反射的光向窗户2002的左右方向(与凹凸的长尺寸方向交叉的方向)扩展。在窗户2002的大小或朝向受限的情况下,利用这样的特性能够通过光反射性天花板构件2003A使光向水平方向扩散并朝向房间的里侧反射。

采光系统2010作为房间2003的照明系统的一部分使用。照明系统由房间整体的构成构件构成,其中,该房间整体的构成构件例如包含采光系统2010、多个室内照明装置2007、二者的控制系统和在天花板2003a设置的光反射性天花板构件2003A。

在房间2003的窗户2002设有采光系统2010。在窗户的上部配置有采光系统2010,在下部侧设有遮光部2008。

在房间2003中,多个室内照明装置2007以格子状沿窗户2002的左右方向(Y方向)及室内的进深方向(X方向)配置。该多个室内照明装置2007与采光系统2010一起构成房间2003整体的照明系统。

如图23及图24所示,例如示出房间2003的宽度方向(窗户2002的左右方向、Y方向)的长度L1为18m、房间2003的进深方向(X方向)的长度L2为9m的办公室的天花板2003a。在此,室内照明装置2007在天花板2003a的横方向(Y方向)及进深方向(X方向)上分别隔开1.8m的间隔P以格子状配置。更具体来说,50个室内照明装置2007以10行(Y方向)×5列(X方向)排列。

室内照明装置2007包括室内照明器具2007a、明亮度检测部2007b和控制部2007c。室内照明装置2007具有将明亮度检测部2007b和控制部2007c与室内照明器具2007a一体化的构成。

室内照明装置2007也可以分别具有多个室内照明器具2007a及明亮度检测部2007b。其中,明亮度检测部2007b针对各室内照明器具2007a各设置一个。明亮度检测部2007b接受室内照明器具2007a照明的被照射面的反射光,检测被照射面的照度。在此,通过明亮度检测部200b检测在室内放置的桌子2005的桌面2005a的照度。

在室内照明装置2007各设有一个的控制部2007c相互连接。各室内照明装置2007通过相互连接的控制部2007c进行反馈控制,以由各明亮度检测部2007b检测的桌面2005a的照度变为恒定的目标照度L0(例如平均照度:750lx)的方式,调整各室内照明器具2007a的LED灯的光输出。

图25是通过采光装置采光到室内的光(自然光)的照度与基于室内照明装置的照度(照明系统)的关系的曲线图。在图25中,纵轴表示桌面的照度(lx),横轴表示与窗户的距离(m)。另外,图中的虚线表示室内的目标照度。(●:基于采光装置的照度,△:基于室内照明装置的照度,◇:合计照度)

如图25所示,由通过采光系统2010采光的光引起的桌面照度为,越是窗户的附近越亮,随着远离窗户而其效果变小。在应用了采光系统2010的房间中,由于白天时从窗户的自然采光而产生这样的向房间进深方向的照度分布。因此,采光系统2010与补偿室内的照度分布的室内照明装置2007一起使用。

在室内天花板设置的室内照明装置2007通过明亮度检测部2007b检测各装置的下方平均照度,以房间整体的桌面照度变为恒定的目标照度L0的方式进行调光控制而点灯。因此,在窗户的附近设置的S1列、S2列基本不点灯,S3列、S4列、S5列随着趋向房间里侧而提高输出并点灯。作为结果,房间的桌面由基于自然采光的照明和基于室内照明装置2007的照明双方照亮,能够在房间整体范围内进行办公的基础上,实现作为充分的桌面照度的750lx(“JIS Z9110照明总则”的办公室中的推荐维持照度)。

如以上所述,通过同时使用采光系统2010和照明系统(室内照明装置2007),从而能够使光到达室内的里侧,能够进一步提高室内的明亮度,能够在房间整体范围内进行办公的基础上确保充分的桌面照度。因此,能够不受季节或天气影响,获得更加稳定且明亮的光环境。

此外,本发明的技术范围不限定于上述实施方式,能够在不脱离本发明主旨的范围内实施多种变更。

例如,采光构件及构成采光装置的各构成要素的数量、形状、尺寸、配置、材料等的具体记载不限于上述实施方式中例示的内容,能够适当变更。

另外,在上述实施方式中,举出了基材和棱镜结构体为分体构件的采光构件的例子,但也可以是由基材与棱镜结构体一体化的一个平板结构体构成的采光构件。在该情况下,例如能够通过使用具有热塑性的低波长分散材料的挤出成形法制作采光构件。

另外,上述实施方式的光扩散构件除了与包括多个采光部的采光构件组合使用以外,也可以组合使用未包括多个采光部的采光构件。

工业实用性

本发明的几个方案能够用于将太阳光等外光采入室内的采光构件及包括该采光构件的采光装置。

附图标记说明

3,35,36,37,38,314,414…棱镜结构体、21,22,23,24,25…平板结构体、31,39…母材、32…光散射粒子、33…透光部、49,51,55,57,59,101…采光构件、81、85、88,91…采光装置、82…框架(支承构件)。

35页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:显色结构体、显示体、显色结构体的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!