超轻及超准确的便携式坐标测量机

文档序号:1549288 发布日期:2020-01-17 浏览:17次 >En<

阅读说明:本技术 超轻及超准确的便携式坐标测量机 (Ultra-light and ultra-accurate portable coordinate measuring machine ) 是由 艾伦·萨耶迪 于 2018-04-13 设计创作,主要内容包括:一种便携式坐标测量机(CMM),包括带有转动接头的铰接臂。转动接头中的至少一个包括:轴承;与轴承的内径接合的轴,所述轴配置为绕轴承的转动轴线转动;具有至少一个端口的壳体,所述端口与轴承中的至少一个的外径接合;以及至少一个转换器,所述转换器配置为输出与轴相对于壳体绕转动轴线的转动角度相对应的角度信号。所述轴没有直径大于第一轴承或第二轴承的内径的部分,或者壳体的至少一个端口没有直径窄于第一轴承或第二轴承的外径的部分。(A portable Coordinate Measuring Machine (CMM) comprises an articulated arm with a revolute joint. At least one of the rotary joints comprises: a bearing; a shaft engaged with an inner diameter of the bearing, the shaft configured to rotate about a rotational axis of the bearing; a housing having at least one port that engages an outer diameter of at least one of the bearings; and at least one converter configured to output an angle signal corresponding to a rotation angle of the shaft relative to the housing about the rotation axis. The shaft has no portion with a diameter greater than an inner diameter of the first bearing or the second bearing, or the at least one port of the housing has no portion with a diameter narrower than an outer diameter of the first bearing or the second bearing.)

超轻及超准确的便携式坐标测量机

背景技术

本公开总体上涉及一种坐标测量机,并且更具体地涉及一种高准确度、超轻量便携式坐标测量机。

坐标测量机尤其用于测量三维空间中的点。坐标测量机例如跟踪笛卡尔坐标空间(x,y,z)中的测量点。坐标测量机通常由支架和跟踪系统组成。支架可以用作参考点,跟踪系统相对于所述参考点以可测量的方式在空间中移动。便携式坐标测量机的跟踪系统可以包括在一端附接到支架的铰接臂以及在另一端的测量探头。

为了测量的有用性,其必须是准确的。然而,由于诸如温度和负载条件等因素,难以实现非常高的准确度。特别是在便携式坐标测量机中,由热变化或由负载变化所引起的臂的变形对测量的准确度产生负面影响。因此,就其性能而言,传统的便携式坐标测量机不如传统的非便携式坐标测量机准确。

可以进行准确度改进。然而传统地,这种改进伴随着坐标测量机的质量和/或重量的显著增加。改进了准确度的传统便携式坐标测量机体积庞大且笨重。对于坐标测量机,特别是便携式坐标测量机而言,这些是不期望的特性。此外,还没有实现一种用于构造和组装坐标测量机的接头(特别是长接头)的方法以具有所要求的精度,从而获得准确的测量。

发明内容

本公开提供了一种比现有技术的坐标测量机更加准确的便携式坐标测量机(CMM)。特别地,本文所公开的CMM也更加轻并且体积更小。

在本发明的第一方面,CMM包括转动接头,所述转动接头的轴没有直径大于接头的轴承的内径的部分,和/或所述转动接头的壳体具有轴承接合端口,所述端口没有直径窄于接头的轴承的外径的部分。

在本发明的另一方面,转动接头中的至少一个包括可操作地耦接到轴和壳体的转动阻尼器,并且该转动阻尼器配置为提供轴转动运动绕转动轴线的转动运动的可控阻尼。

在本发明的另一方面,转动阻尼器内置于转动接头中的至少一个内以提供轴转动运动绕转动轴线的转动运动的可控阻尼。

在本发明的另一方面,转动接头中的至少一个包括转动阻尼机构以及可操作地连接到至少一个转换器的电路,其中所述转动阻尼机构配置为提供轴转动运动绕转动轴线的转动运动的可控阻尼,并且所述电路配置为基于角度信号和时间输出与轴转动运动绕转动轴线的转动运动的速度相对应的速度信号和方向信号,所述电路进一步配置为将速度信号与预定的速度阈值进行比较以确定是否转动运动的速度过快或由过度扭矩导致。

在本发明的另一方面,转动接头中的至少一个包括转动阻尼机构和至少一个应变计,其中所述转动阻尼机构配置为提供轴转动运动绕转动轴线的转动运动的可控阻尼,并且所述至少一个应变计可操作地耦接到轴和壳体中的至少一个,并且配置为感测由于轴转动运动绕转动轴线的转动运动而在轴和壳体中的至少一个上引起的应变并输出应变信号,其中测量探头的位置可以部分基于应变信号进行校正。

在本发明的另一方面,在多个接头中的至少一个接头中,以下部件由钢制成:a)与第一轴承和第二轴承中的至少一个的内径接合的轴,以及b)壳体的接合了第一轴承和第二轴承中的至少一个的外径的端口。

在本发明的另一方面,多个接头中的第一接头通过钢结构附接到多个接头中的第二接头,其中钢结构与所述第一接头的轴承的内圈或外圈接触,或与所述第二接头的轴承的内圈或外圈接触。

在本发明的另一方面,多个转动接头中的至少一个的所有结构部分均由钢制成。

在本发明的另一方面,包括多个臂段和多个转动接头的CMM的任何结构部分均由可控膨胀合金制成,所述可控膨胀合金重量比钢轻并且具有与钢或不锈钢的热膨胀系数相匹配的、在25℃下为9.9至18μm/m℃的的热膨胀系数。

在本发明的另一方面,测量探头包括机械地但非电可操作地耦接到第一端部的手柄,所述手柄可转动地耦接到第一端部以绕测量探头的中心轴线转动,所述手柄包括无线发射器,以及至少一个可操作地连接到所述无线发射器的开关,并且所述开关配置为在激活时使无线发射器发射使得CMM进行测量的无线信号。

在本发明的另一方面,电气电路包括配置为在没有专用的捕获线的情况下接收来自CMM中其他转换器的角度信号和其他角度信号的串行通信电路,所述电气电路配置为输出角度信号和其他角度信号的聚结以提供与测量探头相对于基部的位置相对应的信息。

在本发明的另一方面,轴可以包括中间部分以及固定地附接到中间部分的端部的第一端部部分和第二端部部分。第一端部部分和第二端部部分可以在万分之一英寸(0.0001”)内为同心的。第一端部部分接合第一轴承的内径,并且第二端部部分接合第二轴承的内径。轴配置为绕第一轴承和第二轴承的转动轴线转动。第一壳体端部具有与第一轴承的外径接合的内径。第二壳体端部具有与第二轴承的外径接合的内径。第一和第二壳体端部可以在万分之五英寸(0.0005”)内为同心的。因此可以预加载第一轴承和第二轴承以消除游隙。

结合在说明书中并构成说明书一部分的附图示出了各种示例性系统、方法等,其示出了本发明各方面的各种示例性实施例。应当理解,附图中所示的元件边界(例如,框、框组或其他形状)代表了边界的一个示例。本领域普通技术人员将理解,一个元件可以设计为多个元件,或者多个元件可以设计为一个元件。所示为另一元件的内部部件的元件可以被实现为外部部件,反之亦然。此外,元件可以不按比例绘制。

附图说明

图1A-1C示出了示例性坐标测量机(CMM)的立体图。图1D示出了图1A-1C的示例性CMM的横截面图。

图2示出了图1A-1D的CMM的示例性基部和回转接头的分解图。

图3A和图3B分别示出了图1A-1D的CMM的示例性回转接头的局部分解图和横截面图。图3C和图3D示出了将壳体端部组装到示例性回转接头的外管的过程。图3E示出了将轴和轴承组装到示例性回转接头的外管的过程。

图4示出了图1A-1D的CMM的示例性回转接头的分解图。

图5A和图5B分别示出了图1A-1D的CMM的铰链接头的分解图和横截面图。

图6A示出了图1A-1D的CMM的包括转动阻尼器的示例性铰链接头的横截面图。

图6B示出了图1A-1D的CMM的示例性仪器化转动阻尼器组件的分解图。

图6C示出了图1A-1D的CMM的示例性非仪器化转动阻尼器组件的分解图。

图7A示出了图1A-1D的CMM的示例性测量探头的立体图。

图7B示出了图1A-1D的CMM的示例性可替代测量探头的立体图。

图8示出了图1A-1D的CMM的示例性臂上开关组件的立体图。

图9示出了用于图1A-1D的CMM的示例性电子设备的框图。

图10A-10F示出了用于图1A-1D的CMM的示例性电子设备的时序图。

图11A示出了示例性轨迹曲线,所述示例性轨迹曲线示出了传统长臂接头的轴的转动。图11B示出了示例性轨迹曲线,所述示例性轨迹曲线示出了本公开的CMM的长臂接头的轴的转动。

具体实施方式

图1A-1C示出了示例性坐标测量机(CMM)1的立体图。图1D示出了示例性CMM 1的横截面图。CMM 1包括铰接臂2、基部4和测量探头6。铰接臂2在一端附接到基部4,并且在另一端附接到测量探头6。基部4可以包括例如磁保持器5,以将臂2附接到例如工作表面。铰接臂2包括两个臂段8、9和多个转动接头12、14、16、18、20、22、24。CMM 1还可包括臂上开关组件10。

铰接臂2和/或臂段8、9的总长度可以根据其预期的应用而变化。在一个实施例中,铰接臂可以具有大约48英寸的总长度。所述臂尺寸提供了一种便携式CMM,非常适合现在使用通常的手持工具(例如千分尺、高度计、卡尺等)所完成的测量。铰接臂2可以具有更小或更大的尺寸。

转动接头通常包括两种类型的接头,回转接头12、16、20、24和铰链接头14、18、22。回转接头12、16、20、24大致沿着臂2轴向或纵向定位。铰链接头14、18、22通常相对于回转接头呈90°或相对于臂2的纵向轴线呈90°定位。回转接头和铰链接头通常如图1A-1D中所示为成对的,但接头可以布置在其他配置中。由于多个转动接头,臂2为可手动定位的,意味着用户可以自由地将探头6手动地移动到CMM 1的基部4处的固定半径内的几乎任何位置。这些接头中的每个总体上如图2-6A所示。

通常,基部4的磁保持器5将CMM 1附接到工作表面,基部4包括回转接头12,其附接到铰链接头14,铰链接头14附接到回转接头16,回转接头16附接到铰链接头18,铰链接头18附接到回转接头20,回转接头20附接到铰链接头22,铰链接头22附接到回转接头24,回转接头24附接到测量探头6。

图2示出了示例性基部4和回转接头12的分解图。图2还示出了其上安装有电池座26的基部外壳4a。CMM 1是便携式的,并且因此可以通过经由座26安装至CMM 1的电池(未示出)的电池电力来进行操作。CMM 1还可包括电源插座25,电源适配器可以连接至所述电源插座以为CMM 1提供电力。

回转接头12可以包括壳体28、轴30、轴承32、轴承34、编码器印刷电路板(PCB)36、编码器盘38和滑环40。回转接头12还可以包括防尘盖42a-c和各种五金件,例如螺柱44a-c和螺钉47a-c。在下文中总体上参照回转接头16对回转接头进行详细讨论。

图3A示出了示例性回转接头16的局部分解图,而图3B示出了回转接头16的局部横截面图。附图中的每个都仅示出了回转接头16的端部;未示出的回转接头的中间部分与臂段8对应。尽管回转接头可以是不同的,但是此处将使用回转接头16来对回转接头12、16、20、24进行总体上描述。回转接头16和20非常相似。除了如下所述的回转接头24具有更短的轴以外,回转接头24也类似于回转接头16和20。回转接头16的至少一些部件基本上类似于上文参照回转接头12所详细讨论的部件,因此这些相似的部件在图3A和图3B中以与图2相同的附图标记来标识。

回转接头16可以包括壳体48、壳体49、轴部分50a、50b和50c、轴承32、轴承34、编码器PCB 36、编码器盘38和滑环40。轴承32、34优选为钢或不锈钢球轴承。轴部分50a和50c可以可操作地附接到轴部分50b的端部以形成轴组件50,如下文详细描述的。相对长的轴部分50b可以由刚性但相对较轻的材料,例如碳纤维、铝等以及由钢制成。然而轴部分50a和50c可以由钢制成,以与制成轴承32、34的材料匹配。类似于相对较长的轴部分50b,所述轴部分50b位于其内的管60可以由与轴部分50b相同的、刚性但相对较轻的材料以及由钢制成。回转接头16还可以包括盖62a-b和各种五金件,例如卡环64a-c。

在回转接头16的一个端部处,壳体48具有可操作地附接到相应的臂段(就回转接头16而言为臂段8)的管60的一个端部的表面48a。壳体48还具有将回转接头16可操作地连接至先前的铰链接头(见图1A-1D)的轴连接部48c。就回转接头16而言,轴连接部48c将回转接头16连接至铰链接头14的轴。在回转接头16的另一个端部处,壳体49具有可操作地附接到相应的臂段(就回转接头16而言为臂段8)的管60的第二端部的表面49a。壳体49还具有端口49b,轴组件的端部(特别是轴部分50a)位于所述端口内。下文更详细地描述管60到壳体端部48和49的组件。

如在图3B中最佳可见,在回转接头16的一个端部处,壳体48的端口48b的内径65接合(例如,固定地附接到)轴承32的外径或外圈。壳体48的端口48b可以例如粘接到轴承32的外径或外圈。轴部分50c本身具有接合(例如,固定地附接到)轴承32的内径或内圈的外径67。轴部分50c可以例如粘接到轴承32的内径或内圈。在回转接头16的另一端部,壳体49的端口49b的内径69接合(例如,固定地附接到)轴承34的外径或外圈。壳体49的端口49b可以例如粘接到轴承34的外径或外圈。轴部分50a本身具有接合(例如,固定地附接到)轴承34的内径或内圈的外径71。轴部分50a可以例如粘接到轴承34的内径或内圈。因此,轴组件50绕轴承32和34以及壳体48和49的转动轴线a转动。

回转接头16的PCB 36上已安装至少一个转换器,所述转换器配置为输出与轴组件50相对于壳体48、49绕转动轴线a的转动角度相对应的角度信号。每个转换器包括具有两个主要部件,即读取头68和编码器盘38的光学编码器。在一个实施例中,两个读取头68位于PCB 36上。在所示的实施例中,编码器盘38与PCB 36上的读取头68间隔开并与之对齐的、可操作地附接到轴组件50的端部(例如,使用合适的粘合剂),PCB 36可操作地附接到壳体48(例如,使用合适的粘合剂)。盘38和读取头68的位置可以颠倒,由此盘38可以可操作地附接到壳体48,并且读取头68与轴组件50一起转动从而在保持光学通信的同时相对于彼此可转动。编码器是市场上可获得的,例如从Celera Motion购买商品名为例如MicroE编码器。每个PCB 36可以额外地包括用于接收和处理从读取头68接收的角度信号的处理器,以及用于将PCB 36连接到将在下文中讨论的CMM 1的通信总线和/或其他布线的连接器93和收发器。PCB 36中的每个也可以包括连接至处理器的温度传感器,以根据室温变化而提供热补偿。

盖62b可操作地附接到壳体48以覆盖和密封PCB 36和编码器盘38使其免受灰尘污染。为了外观,盖62a可操作地附接在盖62b以及壳体48的部分和管60上方。盖62b具有开口63,壳体48的轴连接部48c由所述开口突出以将回转接头16可操作地连接到铰链接头14。

回转接头16(以及CMM 1中的其他接头)可以无限制转动,这意味着其可以绕其转动轴线a转动360°。因此,使用滑环40并且提供到回转接头16的无限制的可转动电连接。在此,在回转接头中所使用的轴(例如基部回转接头12的轴30和回转接头16的轴组件50)可以是中空的(即,具有轴向开口51)。在本文中,铰链接头中所使用的轴(例如下文中所描述的铰链接头18的轴80)同样可以是中空的,并且还可以包括孔81(见图5B)。回到图3A和图3B,如图所示,壳体盖62a具有开口63,壳体62b具有开口61,壳体48具有与铰链接头18的轴80的孔81对齐的开口48d。因此,通信总线布线可以从铰链接头14的孔81穿过开口48d、穿过开口63、开口61进入回转接头16并且连接到PCB 36,其中PCB 36连接至滑环40。布线可以从滑环40穿过轴50的轴向开口51到下一个铰链接头。这种布线如下图示意性所示。

传统地,在坐标测量机的接头中所使用的轴具有一个或更多个肩部或凸缘,所述肩部或凸缘从接头的轴线径向向外延伸超出轴的、接合轴承的内径或内圈的表面。这些肩部或凸缘被认为是必要的,以将轴相对于接头的其余部分(尤其是接头的轴承)轴向地保持就位。类似地,在坐标测量机的接头中传统地使用的壳体具有一个或更多个肩部或凸缘,所述肩部或凸缘朝向接头的轴线径向向内延伸,并超出接合了轴承的外径或外圈的壳体的表面。这些肩部或凸缘被认为是必要的,以将壳体相对于接头的其余部分(尤其是接头的轴承)轴向地保持就位。例如参见美国专利No.8,607,467的图10、图12、图14和图16(其全部内容通过引用并入本文),其中轴和壳体两者都具有肩部或凸缘以将轴和壳体相对于轴承轴向地保持就位。

这些传统的轴和壳体通过机加工制造以产生肩部或凸缘。但是,即使最先进的机加工工艺也限制了对这种机加工的轴和壳体的精度。因此,所述部件显著地受到机加工工艺的精度的限制。如本申请的背景技术部分所述的,由于准确度对于坐标测量机是重要的,所以这是一个问题。

如图3B中最佳所示,轴部分50a和50c没有直径大于轴承32、34的内径或内圈的部分。轴部分50a没有直径大于接合了轴承34的内径或内圈的外径71的部分。轴部分50c没有直径大于接合了轴承32的内径或内圈的外径67的部分。类似地,接合了轴承32的外径或外圈的端口48b没有直径小于或窄于轴承32的外径的部分。接合了轴承34的外径或外圈的端口49b没有直径小于或窄于轴承34的外径的部分。因此,如本文所定义的术语,可以说轴组件50和壳体48、49是无肩部的。轴部分50a和50c没有从接头16的轴线a径向向外延伸超出接合了轴承32、34的内径或内圈的表面67、71的部分。类似地,壳体48、49没有朝向接头16的轴线a径向向内延伸超出壳体48、49的分别接合了轴承32、34的外径或外圈的表面65、69的部分。

轴部分50a和50c可以具有在其上机加工或以其他方式形成的槽72、73,而不是肩部或凸缘。卡环64b-c可以接合槽72、73以将轴组件50相对于接头16的其余部分和轴承32、34轴向地保持就位。类似地,壳体49可以具有在其上以机加工或以其他方式形成的槽74。卡环64a可以接合槽74以将壳体49相对于接头16的其余部分和轴承32、34轴向地保持就位。在一个实施例中,代替或除了槽72、73和卡环64b-c的组合以将轴50相对于接头16的其余部分和轴承32、34轴向地保持就位外,可以通过使用粘合剂将轴50固定地附接到轴承32、34的内径或内圈。类似地,在一个实施例中,代替或除了槽74和卡环64a的组合以将壳体49相对于接头16的其余部分和轴承32、34轴向地保持就位外,可以通过使用粘合剂将壳体49的表面71固定地附接到轴承34的外径或外圈。

诸如图3A和图3B中所示的无肩部的轴和壳体可以通过研磨和珩磨工艺来制造,所述工艺可以比用于制造现有技术的有肩部或有凸缘的轴和壳体的机加工工艺更精确一个数量级。因此,可以显著地更精确地构造本文所公开的无肩部的轴和壳体,从而可以在CMM1的接头16和类似接头处实现测量精度的显著改进。部分由于本文所公开的无肩部的轴和壳体,与现有技术的便携式坐标测量机相比CMM 1实现了显著更佳的准确度。

如从图1A-1D和图3A可以获知,臂段8的回转接头16与例如接头14相比是相对长的接头。轴承32和34相距较远。轴50具有三个部分,中间部分50b具有端部部分50a和50c,所述端部部分50a和50c附接到中间部分50b的彼此远离的端部。具有彼此较远地间隔开的壳体端部48和49的外管60为长的。这种相对长的接头,尤其是具有多部分轴的长接头,传统上不能构造为使得接头转动保持精确,特别是与较短的单部分轴的接头相比。

图11A示出了轨道曲线,所述轨道曲线示出了通过Orton(P.A.Orton等人,Automatic Self-Calibration of an Incremental Motion Encoder,IEEE Instrumentand Measurement Technology Conference,Budapest,Hungary,5月21-23,2001,1614,其全部内容通过引用并入本文)的记载测量的传统长臂轴的通常转动行为。所述技术不仅测量轴的角位置,还测量轴的水平运动和垂直运动。另请参见1997年1月21日发布的美国专利No.5596189,其全部内容通过引用并入本文。注意在图11A的轨道曲线上,传统轴在转动期间距离中心的水平位移和垂直位移约为20微米。此外,注意到传统轴在转动期间的水平位移和垂直位移为非圆形的,并且从一个转动到下一个转动为不一致的,变化约为5微米。实际上,传统轴(特别是长的、多部分轴)在转动期间距离中心的水平位移和垂直位移通常大于20微米、为非圆形的、并且转动到转动之间的变化大于5微米。所述距离中心的轴位移对通过传统坐标测量机进行的测量的准确度产生负面影响。造成这种不期望的距离中心的位移的至少部分原因是,到目前为止还没有一种用于构造和组装具有所要求精度的长的、多部分轴的接头的方法。

图3C和图3D示出了用于将示例性回转接头16的外管60组装到壳体端部48和49的示例性过程。如图3C中所示,固定管FT可以用于提高将外管60组装到壳体端部48和49的精度。固定管FT可以例如精确地研磨至接近完美的尺寸,使得其在万分之一英寸(0.0001”)以内为圆柱形。其外径在万分之一英寸(0.0001”)以内为同心的。壳体端部48和49可以与管60的相应的端部粘接,并且固定管FT可以用于在胶固化时将壳体端部48和49精确地相对于彼此固定就位。如图3D(中间横截面图)所示,可以利用组件内的固定管FT将壳体端部48和49固定到管60。可以使得壳体端部48和49的内壁65和69紧密(非常紧密地、几乎是干涉地)贴靠在非常精确的固定管FT的壁FTa和FTb。一旦胶水固化,可以从组件上移除固定管FT。可以为固定管FT上油以助于其移除。利用所述方法,可以使壳体端部48和49在万分之五英寸(0.0005”)以内为同心的(即,其内径共享相同的轴线a)。可以用来获得相似结果的其他方法可以包括固定到包括管60的组件时对壳体端部48和49的内部研磨。

图3E示出了用于将轴组件50和轴承32和34组装到包括外管60和壳体端部48和49的组件的示例性过程。

首先,如上所述,可以将轴端部50a和50c附接到轴部分50b以形成轴组件50。为了提高精度,可以首先对轴端部50a和50c进行尺寸超过千分之几英寸的机加工。即,可以首先使得轴端部50a和50c比其最终期望的直径更宽(更大的外径)。然后可以例如使用花岗岩台(granite table)上的v型块将轴端部50a和50c粘接到长轴部分50b的两个端部。下一步,轴组件50可以在两个端部50a和50c处进行研磨,使得两个端部在万分之一英寸(0.0001”)内是同心的(即,其外径共享相同的轴线a)。

内卡环64b和64c可以分别在槽72和73处安装到轴组件50。轴承32和34的内圈或内径32a和34a可以压入配合到轴组件50,直到其抵靠卡环64b和64c并粘接到轴组件50。外卡环64a可以在槽74处安装到端部壳体49。包括轴组件50和轴承32和34的组件可以***包括管60和端部壳体48和49的组件中。可以使用胶将轴承32和34的外圈32b和34b粘附到端部壳体48和49的内径65和69。然后可以将预载荷(例如5磅或10磅重)施加到轴承32的外圈32b以去除轴承32和34的内圈和外圈之间的游隙。在图3E中,使用预载荷施加工具PLT1和PLT2将预载荷PREL施加到轴承32的外圈32b,这确保了预载荷仅施加到外圈32b而没有施加到内圈32a。将预载荷PREL施加到外圈32b直到胶已固化并且被去除。预载荷PREL的施加使得从轴承组件中去除了游隙。

用于构造和组装长(特别是多部分轴)接头的传统方法不能够实现有效地预加载轴承以去除游隙所必需的精度,这导致了传统轴在转动期间的过度水平位移和垂直位移。尝试预加载这种不精确的传统长接头以去除游隙将导致轴承过度变形、卡住、研磨、过度磨损等(即,所述接头将无法使用或令人满意地操作),或是导致了转动期间距离中心的过度轴位移的预加载不足。

图11B示出了轨迹曲线,所述轨迹曲线示出了通过Orton的记载测量的包括了多部分轴接头16的长臂8的通常转动行为。注意在图11B的轨迹曲线上,轴50在转动期间的水平位移和垂直位移已被显著减小到距离中心1.5微米以内。此外,注意到轴50在转动期间的水平位移和垂直位移为明显的圆形,并且从一个转动到下一个转动为一致的。这是对图11A示例性示出的传统长接头所测量的位移的显著改进。与传统坐标测量机相比,所述距离中心的位移的显著改进大大提升了CMM 1所进行的测量的准确度。以上用于构造和组装包括了多部分轴50的长接头16的方法提供了实现这种显著改进所需要的精度。

图4示出了示例性回转接头24的分解图。回转接头24与上述的回转接头16和20类似,不同之处在于回转接头24具有较短的轴50,其长度对应于回转接头24与探头6之间的距离,该距离比例如回转接头16与铰链接头18之间的距离短。因此,探头6绕回转接头24的轴线a转动,并且回转接头24检测探头6的转动角度,所述探头附接到回转接头16的端部。参见图1A-1D。

图5A示出了示例性铰链接头18的分解图,而图5B示出了铰链接头18的横截面图。尽管铰链接头可以是不同的,此处将使用铰链接头18来对铰链接头14、18、22进行总体上的描述。铰链接头18的至少一些部件基本上类似于上文参照回转接头12和16所详细讨论的部件,并且因此这些相似的部件在图5A和图5B中以与先前附图中相同的附图标记来标识。

铰链接头18可以包括壳体78、轴80、轴承32、轴承34、编码器PCB36和编码器盘38。壳体78具有开口78b,先前的回转接头的轴(就铰链接头18而言为回转接头16的轴50)连接至所述开口。铰链接头18还可以包括盖82a-c和例如卡环64a-c和帽66的各种五金件。

如在图5B中最佳所示,壳体78具有接合(例如,牢固地附接到)轴承32、34的外径或外圈的端口87。壳体78的端口87例如可以粘接到轴承32和34的外径或外圈。在图5A和图5B的实施例中,壳体78具有两个端口87。轴80本身具有接合(例如,牢固地附接到)轴承32、34的内径或内圈的外径85。轴80例如可以粘接到轴承32、34的内径或内圈。因此,轴80绕铰链接头18的壳体78和轴承32、34的转动轴线b转动。

与上述回转接头类似,铰链接头18的PCB 36上已安装有至少一个转换器,所述转换器配置为输出与轴80相对于壳体78绕转动轴线b的转动角度相对应的角度信号。每个转换器包括具有两个主要部件的光学编码器,即读取头68和编码器盘38。在所示的实施例中,两个读取头68位于PCB 36上。在所示的实施例中,编码器盘38与PCB 36上的读取头68间隔开并与之对齐的、可操作地附接到轴80的端部(例如,使用合适的粘合剂),所述PCB 36可操作地附接到壳体78(例如,使用合适的粘合剂)。盘38和读取头68的位置可以颠倒,由此盘38可以可操作地附接到壳体78,并且读取头68与轴80一起转动从而在保持光学通信的同时相对于彼此可转动。

盖82b可操作地附接到壳体78以覆盖并密封PCB 36和编码器盘38使其免于灰尘影响。盖82a和82c在轴80的一端处可操作地彼此附接,并且帽66盖在轴80的相对端处以保护轴承。

通信总线布线可以从先前的回转接头的轴50的轴向开口51穿过壳体78的开口78b、78c进入铰链接头18。布线然后可以连接到PCB 36并穿过轴向开口80a和轴80的孔81离开铰链接头18。这种布线如下图示意性所示。

如上所述,在用于坐标测量机的接头中所使用的传统轴具有一个或更多个肩部或凸缘,所述肩部或凸缘从接头的轴线径向向外延伸超出接合了轴承的内径或内圈的轴的表面。这些肩部或凸缘被认为对于将轴相对于接头的其余部分(尤其是接头的轴承)轴向保持就位是必要的。类似地,在用于坐标测量机的接头中使用的传统壳体具有一个或更多个肩部或凸缘,所述肩部或凸缘朝向接头的轴线径向向内延伸超出接合了轴承的外径或外圈的壳体的表面。这些肩部或凸缘被认为对于将壳体相对于接头的其余部分(尤其是接头的轴承)轴向保持就位是必要的。例如参见美国专利No.8607467的图10、图12、图14和图16,其中轴和壳体都具有肩部或凸缘以将轴和壳体相对于轴承轴向保持就位。

这些传统的轴和壳体通过机加工制造以产生肩部或凸缘。但是,即使最先进的机加工工艺也限制了对这种机加工的轴和壳体的精度。这些部件受到了机加工工艺的精度的限制,并且如本申请的背景技术部分所述的,准确度对于CMM而言是重要的。

如图5B最佳所示,轴80没有直径大于轴承32、34的内径或内圈的部分。轴80没有直径大于接合了轴承32、34的内径或内圈的外径85的部分。类似地,接合了轴承32、34的外径或外圈的端口87没有直径小于或窄于轴承32的外径或轴承34的外径的部分。因此,如本文所限定的,可以说轴80和壳体78是无肩部的,即:1)轴50没有从接头18的轴线b径向向外延伸超出接合了轴承32、34的内径或内圈的轴80的表面85的部分,以及2)壳体78没有朝向接头18的轴线b径向向内延伸超出接合了轴承32、34的外径或外圈的壳体78的表面87的部分。

代替肩部或凸缘,轴80可以在其上以机加工或以其他方式形成槽72。卡环64b-c可以接合槽72以相对于接头18的其余部分和轴承32、34将轴80轴向保持就位。类似地,壳体78可以具有机加工或以其他方式在其上形成的槽74。卡环64a可以接合槽74以相对于接头18的其余部分和轴承32、34将壳体78轴向保持就位。在一个实施例中,代替或除了槽72和卡环64b-c的组合以将轴80相对于接头18的其余部分和轴承32、34轴向保持就位以外,可以通过使用粘合剂将轴80固定地附接到轴承32、34的内径或内圈。类似地,在一个实施例中,代替或除了槽74和卡环64a的组合以将壳体78相对于接头18的其余部分和轴承32、34轴向保持就位之外,可以通过使用粘合剂将壳体78的端口87固定地附接到轴承32、34的外径或外圈。

诸如图5A和图5B中所示的无肩部的轴和壳体可以通过研磨和珩磨工艺来制造,所述工艺可以比用于制造现有技术的有肩部或有凸缘的轴和壳体的机加工工艺更精确一个数量级。因此,可以显著地更精确地构造本文所公开的无肩部的轴和壳体,从而使得可以在CMM 1的接头18和类似的接头处实现测量精度的显著改进。部分由于本文所公开的无肩部的轴和壳体,与现有技术的便携式坐标测量机相比,CMM 1实现了显著更佳的准确度。

用于现有技术的坐标测量机的接头主要由铝或其他轻质材料制成。例如参见美国专利No.8607467公开的一种坐标测量机,其中接头由铸造或机加工的铝部件、轻质刚性合金或复合材料、或纤维增强聚合物构造而成。所述参考文献明确了相对轻的重量对于所公开的坐标测量机的正确功能行使来说非常重要。这种现有技术的坐标测量机的问题在于其铝(或类似的轻质材料)构造具有与接头的轴承显著不同的热膨胀系数,导致了接头的刚度随温度变化。这降低了在操作温度范围内进行的测量的准确度。

本发明采取了看起来反常的方法。在一个实施例中,臂2的接头的结构元件可以由与制造轴承32、34的材料相匹配的钢制成。本文中的结构元件是指壳体28、48、49和78,轴30、50和80以及轴部分50a和50c。这些是与球轴承32、34的内圈或外圈相接触的结构元件。壳体48还将回转接头附接到下一个铰链接头。本文中的钢包括不锈钢,并且在25℃下的热膨胀系数为9.9至18μm/m℃。将相对较重的钢用于臂2的接头的结构元件可能看起来有些反常,因为如上所述CMM 1的重要特征之一是其必须为轻质的。与现有技术的坐标测量机所使用的材料(例如铝)相比,钢是显著重的。然而与制造轴承32、34的材料(即钢)相匹配的结构元件将具有与轴承32、34相同(或几乎相同)的热膨胀系数(即,随着温度将以相同的速率膨胀或收缩)。这最小化了接头随温度的刚度变化,从而在CMM 1的操作温度范围内保持了测量的准确度。

在另一实施例中,臂2的接头的结构元件、诸如轴部分50b、管60等的其他结构元件、甚至CMM 1的非结构元件可以由可控膨胀合金制成,所述合金重量比钢轻但具有与铬钢或440C不锈钢相匹配的热膨胀系数(即,在25℃时为9.9至18μm/m℃)。这种可控膨胀合金的市场可获得的示例是由瑞典桑德维肯的Sandvik AB所出售的Osprey CE。由与轴承32、34的热膨胀系数相匹配的材料(即,随着温度将以相同的速率膨胀或收缩)制成的结构元件最小化了接头随温度的刚度变化,从而在CMM 1的操作温度范围内保持了测量的准确度。明显更薄的臂段8和9结合结构元件实现了在操作温度范围内比现有技术的坐标测量机明显更轻且明显更准确的CMM 1,其中所述臂段8和9由刚性但相对轻的材料(例如碳纤维或可控膨胀合金)制成,并且所述结构元件由可控膨胀合金制成。

图6A示出了示例性铰链接头14的横截面图。铰链接头22与上述铰链接头18非常相似。铰链接头14也类似于铰链接头18和22,显著的区别在于铰链接头14包括转动阻尼器组件。在图6A所示的实施例中,转动阻尼器组件是如下文详细描述的仪器化组件90a。为了简化臂2的使用,可以设置以转动阻尼器组件90a形式的平衡装置以抵消由铰接臂的重量所施加的扭矩。如果用户释放了铰接臂2,所述平衡装置防止了铰接臂由于其自身重量而迅速掉落。

传统地,便携式坐标测量机使用螺旋弹簧或扭力弹簧来平衡臂的重量。例如参见美国专利No.6904691和No.8001697,其每一个的全部内容通过引用并入本文。另一传统平衡系统包括形成了气体冲击平衡的活塞或线性致动器组件。例如参见美国专利No.8402669,其全部内容通过引用并入本文。所述传统配衡解决方案中的每个在平衡的调整和校准方面均存在问题。而且,所述传统配衡解决方案通常体积大且笨重,这对于便携式坐标测量机来说为两个不期望的特性。

图6B示出了示例性转动阻尼器组件90a的分解图。组件90a包括转动阻尼器92,其可以为市场上可获得的转动阻尼器转动阻尼器,例如由德国斯托尔贝格的Weforma

Figure BDA0002302200500000161

GmbH所制造的WRD阻尼器。在一个实施例中,转动阻尼器92是单向转动阻尼器,其提供轴绕转动轴线在一个转动方向上的转动运动的可控阻尼。组件90a还可以包括阻尼器毂94、阻尼器套筒96和扭矩传感器轴毂98,其一起形成Oldham联轴器。组件90a还可包括扭矩传感器轴100。组件90a还可包括间隔件102、安装件104以及例如螺栓107a-d和108a-d的五金件。安装件104具有四个螺纹孔110a-d和四个非螺纹孔111a-d。

如图6A中最佳所示,通过首先将扭矩传感器轴100的一部分耦接到铰链接头14的轴80来使阻尼器组件90a合在一起。扭矩传感器轴100的一部分可以***并固定地附接到(例如,通过使用粘合剂)轴80的轴向开口80a。通过将螺栓108a-d穿过孔111a-d并将其拧入壳体78中的螺纹孔中,安装件104耦接到铰链接头14的壳体78。然后依次堆叠转动阻尼器组件90a的其余部件:轴100上的轴毂98、轴毂98上的阻尼器套筒96、阻尼器套筒96上的阻尼器毂94以及转动阻尼器92的轴93上的阻尼器毂94。通过将螺栓107a-d拧入安装件104的螺纹孔110a-d,间隔件102夹在转动阻尼器92和安装件104之间。因此,转动阻尼器92可操作地耦接到轴80和壳体78。

转动阻尼器92提供轴80绕转动轴线b的转动运动的可控阻尼。由转动阻尼器92提供的用于控制阻尼的扭矩输出量可以预先调整并预先校准以满足严格规范。因此,转动阻尼器组件90a减轻了平衡的调整和校准的问题,所述问题对于便携式坐标测量机的传统平衡解决方案(诸如螺旋弹簧、扭力弹簧和活塞)来说是常见的。而且,转动阻尼器组件90a提供了平衡解决方案,与传统平衡解决方案(例如螺旋弹簧、扭力弹簧和活塞)相比,所述解决方案通常更紧凑且重量更轻。

特别是在使用转动阻尼器以提供转动运动的可控阻尼时,出现的潜在问题是使用者在移动臂2时可能向臂2施加过大的扭矩。过大的力可以有效地弯曲臂2的部分从而影响CMM 1准确检测测量探头6的位置的能力。在这些条件(其中用户实质上快速地移动臂)下进行的测量可能是不准确的。本公开提供了针对所述潜在问题的两种可能的解决方案。

在图6A和图6B的实施例中,转动阻尼器组件90a被配备为直接检测接头14处的过度扭矩。安装件104具有将安装件104的包括了螺纹孔110a-d的外环连接到安装件104的包括了非螺纹孔110a-d的内环的板或轮辐104a-d。在至少一些轮辐104a-d上安装有应变计106。类似地,扭矩传感器轴100具有将其连接到扭矩传感器轴毂98的板或轮辐100a-d。在至少一些轮辐100a-d上安装有应变计106。转动阻尼器组件90a还包括扭矩传感器PCB 112,在其上安装了接收来自应变计106的信号的电子设备。

施加到接头14的扭矩通过轮辐100a-d和104a-d传递。这样的扭矩本身表现为在轮辐100a-d和104a-d上的转动应变。因此,通过测量轮辐100a-d和104a-d处的应变,转动运动应变计106有效地感测接头14的轴80和壳体78处由于轴80绕转动轴线b的转动运动产生的应变。从此意义上,应变计106可操作地耦接到轴80和壳体78。应变计输出应变信号,PCB112中的电路或在CMM 1之内或之外的另一电路(例如,在对应接头的PCB 36中的处理器)可以用所述应变信号来检测和说明施加到接头14的扭矩。

由应变计106测量的应变对应于施加到接头14的扭矩的量。因此,所测量的应变也对应于臂2的部分的弯曲或挠曲的量。因此,所测量的应变可以与臂2的弯曲或挠曲的量和性质相关,并且进而可以在用CMM 1进行测量时考虑到所述信息以补偿过度扭矩。因此,在转动阻尼器组件90的所述仪器化实施例中,PCB 112(或接收来自读取头68的角度信号的相应接头的PCB 36中的处理器)中的电气电路可以接收来自应变计106的应变信号(或放大的应变信号),将所述信号转换为臂2的由于施加到臂2的扭矩所对应的弯曲或挠曲,并考虑到臂2的对应弯曲或挠曲来计算在测量探头6处的测量。例如,PCB 112可以包括放大器以放大来自应变计106的模拟信号,以及将放大的模拟信号转换为数字信号的模数转换器,所述数字信号可以被提供给相应接头的PCB 36的处理器。处理器可以查找表格,或者计算与测量的应变的位置和振幅相对应的臂2的弯曲或挠曲的量和方向。因此,通过测量轮辐100a-d和104a-d处的应变,不管用户是否对臂2施加过度扭矩,CMM 1都能够准确地检测测量探头6的位置。

在可替代的实施例中,当任何应变信号或应变信号的聚结超过某个应变阈值时,可以确定已向接头14施加过度扭矩。基于所述确定,CMM 1可以禁止进行测量,直到已经经过了一定时间(例如2到10秒)。这是为了使可能由于过度施加的扭矩而弯曲的臂2的任何部分恢复其原始形状。

图6C示出了示例性非仪器化的转动阻尼器组件90b。与图6A和图6B的转动阻尼器组件90a不同,转动阻尼器组件90b不配备为直接检测过度扭矩。在该实施例中,由读取头68输出的角度信号可以用于生成速度信号,该速度信号可以用来表示所施加的扭矩。施加于臂2使其移动的扭矩通常对应于臂2移动的速度。如上所述,施加到臂2的过度扭矩实质上对应于用户以过快的速度移动臂。因此,施加的过度扭矩可以以相对高(即过高)的转动速度的形式在接头处被间接地检测。读取头68输出与接头的相对转动角度相对应的角度信号。所测量的转动角度变化的速率对应于接头的转动速度。在接头处检测转动速度是检测所施加的扭矩的良好代替。在该实施例中,由读取头68输出的角度信号可以通过计算所测量的转动角度变化的速率来产生速度信号。PCB 36中(或其他任何位置)的处理器可以使用测量编码器正交信号之一的周期的高分辨率计时器(例如12.5ns分辨率)来测量速度信号(例如,每秒度数)。当速度信号超过某个转动速度阈值时,确定已施加了过度转矩。基于所述确定,CMM 1可以禁止进行测量,直到已经经过了一定时间(例如2到10秒)。这是为了使由于过度施加的扭矩而弯曲的臂2的任何部分恢复其原始形状。

组件90b类似于图6A和图6B的组件90a。组件90b可以包括转动阻尼器92。组件90b还可以包括阻尼器毂94、阻尼器套筒96、轴毂118(共同形成Oldham联轴器)和轴120。组件90b还可以包括间隔件122、安装件124以及诸如螺栓107a-d和108a-d的五金件。间隔件122除了其不需要保持PCB112之外与间隔件102类似。安装件124具有四个螺纹孔110a-d和四个非螺纹孔111a-d。安装件124除了其不需要板或轮辐104a-d之外与安装件104类似。

通过首先将扭矩传感器轴120的一部分耦接到铰链接头14的轴80来使阻尼器组件90b合在一起。扭矩传感器轴120的一部分可以***并固定地附接到(例如,通过使用粘合剂)轴80的轴向开口80a。通过使螺栓108a-d穿过孔111a-d并将其拧入壳体78的螺纹孔中,安装件124耦接到铰链接头14的壳体78。然后依次堆叠转动阻尼器组件90b的其余部件:轴120上的轴毂118、轴毂118上的阻尼器套筒96、阻尼器套筒96上的阻尼器毂94以及转动阻尼器92的轴93上的阻尼器毂94。通过将螺栓107a-d拧入安装件124的螺纹孔110a-d,间隔件122夹在转动阻尼器92和安装件124之间。因此,转动阻尼器92可操作地耦接到轴80和壳体78。

在一个实施例中(未示出),转动阻尼器代替诸如组件90a和90b之类的附加转动阻尼器组件,转动阻尼器内置于铰链接头18中。在该实施例中,a)第一轴承32或第二轴承34与b)轴80或壳体78的组合提供了轴80绕转动轴线b的转动运动的可控阻尼。

图7A示出了示例性测量探头6a的透视图。探头6a包括具有用于容纳PCB 130的内部空间的壳体126以及具有用于容纳PCB 125的内部空间的手柄128。为了说明的目的,图7A中的壳体126和手柄128示出为透明的。壳体126可操作地耦接到回转接头24(见图1A-1D)。因此,探头6a绕回转接头24的轴线a转动,并且回转接头24检测探头6a绕轴线a的转动角度。

测量探头6a也可以包括探头杆组件136,所述探头杆组件在一端具有探头连接器138并且在另一端具有探头140。探头连接器138连接到壳体126和PCB130。探头杆组件136可以是接触触发式组件,当探头140接触物体时,所述接触触发式组件触发对探头140的位置的捕获。PCB 130接收这样的触发信号并如下所述将其传输。探头杆组件136还可以容纳诸如集成电路(例如,EEPROM)之类的电子器件,其中所述电子器件内存储有序列号以在安装到CMM 1时唯一地识别探头杆组件136。

手柄128可以包括两个开关,即执行开关131和确认开关132。操作者可以使用所述开关在操作期间进行测量(执行开关131)并确认测量(确认开关132)。手柄128通常成形为类似于人的抓握,其比至少一些现有技术探头更符合人体工程学。手柄128还可以容纳开关PCB 134,开关131和132可以安装到所述开关PCB上。开关PCB 134电耦接到PCB 125主机部件以处理来自开关131和132的信号。在一个实施例中,PCB 125包括无线(例如,Wi-Fi、蓝牙等)发射器(而不是电连接到CMM 1的通信总线),所述无线发射器将与开关131和132相关联的执行和确认信号无线传输到例如通常控制CMM 1的主机PC。与开关131和132相关联的执行和确认信号的无线传输显著地简化了探头6a的构造和布线。

测量探头6a还可以包括可选设备,例如激光扫描仪(未示出),可以连接至的选项端口142。选项端口142为由测量探头6a支持的可选设备提供了机械连接。选项端口142还可以为可选设备提供电连接以与CMM 1的通信总线交互。

图7B示出了示例性可替代的测量探头6b的立体图。探头6b类似于探头6。然而探头6b包括不同的壳体127和手柄129。不同于探头6,探头6b的壳体127包括可以直接连接到铰链接头22的连接部143。因此,当使用探头6b时,没有使用回转接头24。壳体127和探头杆组件136不绕轴线a转动。壳体127和探头杆组件136绕轴线a是固定的。另一方面,手柄129包括将手柄129可转动地耦接到壳体127的连接部144。因此,手柄129绕轴线a转动。与探头6的手柄128类似,手柄129具有用于容纳PCB 125的内部空间。PCB 125可以包括无线(例如,Wi-Fi、蓝牙等)发射器(而不是电连接到CMM 1的通信总线),所述无线发射器无线地传输诸如与开关131和132相关联的执行和确认信号之类的信号。因此,手柄129可转动地耦接到臂2以绕轴线a转动,但重要的是,因为实现了无线信号传输,因此手柄129没有电耦接到臂2。

探头6b在坐标测量机领域是显著的进步,因为其减轻了对七个真实转动轴线的需求。如图1A-1D所示的CMM 1包括七个真实转动轴线(即,与接头12、14、16、18、20、22和24相关联的轴线)。包括七个真实转动轴线导致CMM 1相对更为复杂和昂贵。机械地且无线地(但非电气地)连接至臂2并因此不需要第七接头24的可转动手柄129由于其允许手柄129按手的位置所需而转动,不需要复杂的第七套轴承、转换器、电子设备,因此减轻了对于“真实”第七轴线的需求。

图8示出了示例性臂上开关组件10的立体图。开关组件10包括壳体146,所述壳体具有开口148以将开关组件10安装(例如夹持)到臂段8或可替代地安装到臂段9。壳体146具有用于容纳PCB的内部空间。类似于探头6和6b,开关组件10可以包括两个开关,即执行开关131和确认开关132,操作者可以使用所述开关在操作期间进行测量(执行开关131)并确认测量(确认开关132)。臂上开关组件10的位置,以及更重要地,开关131和132的位置是在臂2上而不是在探头6的手柄中,这允许操作者用一只手移动和定位测量探头6,并且在支撑臂的同时用另一只手致动开关131和132。现有技术的坐标测量机要求操作者用同一只手定位测量探头并致动探头中的测量开关。这是不符合人体工程学的。臂上开关组件10是坐标测量机领域中的显著进步,因为与现有技术的坐标测量机相比,其提供了显然更加符合人体工程学的解决方案。

臂上开关组件10还可容纳开关131和132可以安装至其上的开关PCB 134,或者臂上开关组件10可以包括结合了PCB 130和开关PCB 134两者的功能的PCB。在一个实施例中,臂上开关组件10中的PCB电连接到CMM 1的通信总线。在另一实施例中,臂上开关组件10中的PCB包括无线(例如,Wi-Fi、蓝牙等)发射器(而不是电连接到CMM 1的通信总线),所述无线发射器无线地传输与开关131和132相关联的执行和确认信号。

图9示出了用于CMM 1的示例性电子设备的框图。CMM 1可以包括例如通用串行总线(USB)150和无线(Wi-Fi)152的外部通信接口。CMM 1还可以包括内部通信总线(例如RS-485)154。如上所述,CMM 1的各种接头或轴各自包括其上安装有至少一个转换器的PCB 36,所述转换器配置为输出与接头的转动角度相对应的角度信号。PCB 36可以各自包括用于接收和处理来自转换器的角度信号和/或来自转动阻尼器组件90的PCB 112的应变信号的处理器70。PCB36还可以包括收发器156以与总线154交互。可以承载来自接触触发式探头140的信号的测量探头6的PCB 130也可以连接到通信总线154。总线154还可以连接到测量探头6的选项端口142以通信/控制安装至选项端口142的可选设备,例如激光扫描仪。手柄128的PCB 125可以无线地传输与开关131和132相关联的执行和确认信号。

总线154终止于优选位于CMM 1的基部4处的主PCB158。主PCB 158包括其自身的用于连接至总线154的收发器162和主处理器160。主PCB 158接收来自CMM 1中转换器的角度信号,并将接收到的角度信号的聚结经由USB 150或Wi-Fi 152输出到主机PC,使得主机PC可以基于所述信息以及与CMM 1有关的其他信息(例如,臂段的位置、长度等)来计算测量探头6的位置。内部总线154可以与RS485一致。

现有技术的坐标测量机配置为使用结合了专用捕获和触发线的RS485内部总线来传输捕获和触发信号。例如参见美国专利No.6219928,其全部内容通过引用并入本文。捕获信号是由RS485装置中的主控制器生成的同步信号。触发信号是由附接到铰接臂的设备(例如接触触发式探头附件(例如Renishaw TP20))所产生的异步信号。专用触发线从探头行进到铰接臂基部中的主控制器。通过专用触发线行进的触发信号中断主控制器。主控制器中的中断服务例程生成同步捕获信号以捕获来自编码器的角度信号。

注意,在图9中没有专用的捕获或触发线。相反,从主PCB 158的角度来看,总线154包括一对双向线164和166(A-B对、半双工)或两对单向线(A-B对和Y-Z对、全双工)。

即使如上所述,将钢用于接头的结构元件,臂2仍保持是相对轻质的,部分由于其许多部件(例如,轴、轴承、壳体、臂段等)都比现有技术的坐标测量机的部件小。例如,将本文所公开的CMM 1的轴、壳体和臂段与在美国专利No.8607467中所公开的坐标测量机的相应元件进行比较。CMM 1的较小的部件具有明显更小的质量,并且因此明显比现有技术中的相应部件更轻。可以在CMM 1中使用较小的部件,部分原因是与现有技术的坐标测量机相比,CMM 1中承载信号的线的数量已显著减少。现有技术的坐标测量机需要轴、壳体、臂段等内的大的空间来布线。由于如图9所述的电子设备的布置和如下所述的定时信号,可显著减少CMM 1中的布线,这有助于其轻的重量。

图10A示出了图9的示例性电子设备在运行中的示例性时序图。在运行中,主处理器160可以以预定间隔(例如960微秒)将捕获命令发送(经由线164和166)到编码器PCB 36的处理器70。如图10A中所示,每个处理器70接收捕获命令。作为响应,处理器70中的中断服务例程在编码器36的PCB中产生具有例如1.2微秒的固定校准时延的内部捕获。如图10A中所示,内部捕获脉冲可以为低电平有效的(或在一些其他示例性时序图中为高电平有效的),并且通常具有例如5微秒的长度。

图10B示出了图9的示例性电子设备在运行中的另一示例性时序图。在运行中,主处理器160可以以预定间隔(例如960微秒)将捕获命令发送(经由线164和166)到编码器PCB36的每个处理器70。如图10B所示,每个处理器70接收其捕获命令。在(1)处,第一编码器处理器70在接收到其捕获命令后启用串行线中断8数据字节或11μs(8*11位/数据字节*125ns/位)。在(2)处,第二编码器处理器70在接收到其捕获命令后启用串行线中断7数据字节或9.625(~9.63)μs,且对于第三至第六编码器处理器70以此类推。在(7)处,第七编码器处理器70在接收到其捕获命令后启动串行线中断2数据字节或2.75μs。在(8)处,选项端口处理器70在接收到其捕获命令后启用串行线中断1数据字节或1.375(~1.38)μs。接下来,在(9)处,主处理器160向第一编码器处理器70发送读取数据命令,在起始位的下降沿处生成硬件中断,并且处理器70中的中断服务例程在约0.19μs内产生内部捕获。如图10B中所示,内部捕获脉冲可以是高电平有效的(或在一些其他示例性时序图中为低电平有效的)并且通常具有例如4微秒的长度。

图10C示出了图9的示例性电子设备在运行中的另一示例性时序图。如图10C中所示,处理器70可以在接收到最后的捕获命令1.38微秒后发起内部捕获。该方法可能比上述的一些方法具有大的误差,主要是由于使用不同的处理器70所引入的时钟误差。

图10D示出了图9的示例性电子设备在运行中的另一示例性时序图。如图10D中所示,在双对(A-B对和Y-Z对、全双工)串行配置中,一旦编码器处理器70接收到捕获命令,每个处理器70启用串行线中断。接下来,主处理器160向第一编码器处理器70发送读取数据命令,在起始位的下降沿处生成硬件中断,并且处理器70中的中断服务例程在约0.19μs内产生内部捕获。

图10E示出了图9的示例性电子设备在运行中的另一示例性时序图。如图10E中所示,在双对(A-B对和Y-Z对、全双工)串行配置中,一旦编码器处理器70接收到捕获命令,每个处理器70能够立即发起通常具有1.63微秒时延的内部捕获。由于处理器70的时钟频率变化,所述方法比上述的一些方法较不精确。

如图10F中所示,在PCB 130上,用于捕获命令(n)的中断服务例程存储并重置间隔计时器/计数器。例如来自接触触发式探头附件的异步触发捕获并存储间隔计时器/计数器的值。在随后的捕获命令(n+1)处,间隔计时器/计数器被存储并重置。

为了在异步触发时找到探头6的位置,位置(n)和(n+1)之间的向量差可以乘以异步触发捕获值除以(n+1)位置捕获值的比,并添加到位置(n)向量。在可替代的实施例中,异步触发还可以具有固定的校准时延,可以从异步触发捕获值中减去所述校准时延以到达真位置。在另一实施例中,臂的基部处的异步触发端口(未示出)可以用来触发主处理器160中的内部计时器/计数器。

因此,通过考虑并校正每个PCB 36处的时延,CMM 1的电子设备可以在无需专用的捕获和触发线的情况下进行准确的测量。

定义

以下包括本文采用的所选术语的定义。所述定义包括落在术语范围内并且可以用于实施的部件的各种示例或形式。所述示例不旨为限制性的。术语的单数形式和复数形式都可以在定义之内。

如本文中所使用的,“可操作连接”或“可操作耦接”、或实体“可操作地连接”或“可操作地耦接”的连接方式是指连接实体以使得实体可以按预期被执行。可操作连接可以是直接连接或间接连接,其中中间实体协作或以其他方式是连接的一部分或在可操作连接的实体之间。在信号的情况下,“可操作连接”、或实体“可操作地连接”的连接方式是指可以发送或接收信号、物理通信或逻辑通信的连接。通常,可操作连接包括物理接口、电接口或数据接口,但应注意,可操作连接可以包括足以允许可操作控制的这些或其他类型的连接的不同组合。例如,两个实体通过能够直接地或经由一个或更多个中间实体(例如,处理器、操作系统、逻辑件、软件或其他实体)彼此进行信号通信,该两个实体能够为可操作地连接的。逻辑或物理通信通道能够用于创建可操作连接。

如本文中所使用的,“信号”包括但不限于一个或更多个电信号或光信号、模拟信号或数字信号、数据、一个或更多个计算机或处理器指令、消息、比特或比特流、或其他能够被接收、传输或检测的方法。

关于在说明书或权利要求中使用的术语“具有”或“包含”,其旨在为包含性的,类似于术语“包括”,该术语在权利要求中使用时被解释为过渡词。此外,关于在说明书或权利要求中使用的术语“或”(例如,A或B),其旨在表示“A或B或两者”。当申请人旨在表示“仅A或B而不是两者”时,则会使用术语“仅A或B而不是两者”。因此,本文中使用的术语“或”是包含性的,而不是排他性的。参见Bryan A.Garner所著的“A Dictionary of Modern LegalUsage 624(1995第二版)”。

尽管已经通过描述示例说明了示例系统、方法等,并且尽管已经对示例进行了相当详细的描述,但是申请人无意于将范围限制为或以任何方式限制为所做的详细描述。当然,为了描述本文所述的系统、方法等,不可能对部件或方法的每种可能的组合进行描述。其他优点和修改对于本领域技术人员将是显而易见的。因此,本发明不限于所示出的以及所描述的具体细节、代表性装置和说明性示例。因此,本申请旨在涵盖落入所附权利要求书范围内的变更、修改和变化。此外,前面的描述并不意味着限制本发明的范围。本发明的范围而是由所附权利要求及其等同物来确定。

49页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:信息处理装置和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!