一种耐火1200秒的生物基耐火纸及制备方法

文档序号:1553001 发布日期:2020-01-21 浏览:35次 >En<

阅读说明:本技术 一种耐火1200秒的生物基耐火纸及制备方法 (1200-second-fire-resistant bio-based refractory paper and preparation method thereof ) 是由 张磊磊 刘叶叶 李贺军 于 2019-10-08 设计创作,主要内容包括:本发明涉及一种耐火1200秒的生物基耐火纸,其特征在于包括氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒;具有定向三维网络结构的氮化硅纳米棒之间设计有铁掺杂磷酸氢钙纳米带,铁掺杂磷酸氢钙颗粒分布在铁掺杂磷酸氢钙纳米带表面和氮化硅纳米棒的表面,此外,铁掺杂磷酸氢钙颗粒还分布在复合结构的孔隙之间。有益之处是,通过构建构造棒-带-颗粒多尺度定向复合结构,可以承受1200秒不燃烧并保持形状无损伤;铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒赋予了纸的生物安全性,不会导致过敏或者诱发病变等反应,因此可以长期应用于墙纸、室内建筑装饰等与人体长期接触的应用场合。(The invention relates to a 1200-second-fire-resistant bio-based refractory paper which is characterized by comprising silicon nitride nanorods, iron-doped calcium hydrogen phosphate nanobelts and iron-doped calcium hydrogen phosphate particles; the iron-doped calcium hydrogen phosphate nanoribbon is designed among the silicon nitride nanorods with the directional three-dimensional network structure, iron-doped calcium hydrogen phosphate particles are distributed on the surface of the iron-doped calcium hydrogen phosphate nanoribbon and the surface of the silicon nitride nanorods, and in addition, the iron-doped calcium hydrogen phosphate particles are also distributed among the pores of the composite structure. The beneficial effects are that by constructing a structural rod-belt-particle multi-scale directional composite structure, the composite structure can bear 1200 seconds without burning and keep the shape without damage; the iron-doped calcium hydrogen phosphate nano belt and the iron-doped calcium hydrogen phosphate particles endow the paper with biological safety, and cannot cause allergy or induce pathological changes and other reactions, so the paper can be applied to wallpaper, indoor architectural decoration and other application occasions which are in long-term contact with human bodies.)

一种耐火1200秒的生物基耐火纸及制备方法

技术领域

本发明属于造纸技术领域,涉及一种生物基耐火纸及制备方法,尤其涉及耐火1200秒的生物基耐火纸及制备方法。

背景技术

纸是成为人类日常工作和生活中不可或缺产品。传统纸通常是采用树木或草等植物纤维为原料并加入一些添加剂和漂白剂制造出来的,传统纸的致命弱点是其具有易燃性、不耐火,从而导致书籍和纸质文件在火灾中会被烧毁,这是众多纸质文物损毁的一个主要原因,同时,在纸应用于室内装饰等环境时,会与人体长时间接触,需要纸具备生物相容性和环境友好性的特点。因此需要研究和开发生物基耐火纸。

文献1“Yu H P,Zhu Y J,Lu B Q.Highly efficient and environmentallyfriendly microwave-assisted hydrothermal rapid synthesis of ultralonghydroxyapatite nanowires[J].Ceramics International,2018,44(11):12352-12356.”报道了采用微波辅助水热法合成超长羟基磷灰石纳米线生物基耐火纸。

文献2“Xiong Z C,Yang Z Y,Zhu Y J,et al.Ultralong hydroxyapatitenanowire-based layered catalytic paper for highly efficient continuous flowreactions[J].Journal of Materials Chemistry A,2018:6,5762.”报道了羟基磷灰石纳米线/金纳米颗粒生物基耐火纸的制备方法。结果发现该纸在酒精灯火焰测试条件下,经过80秒测试后,该纸不燃烧并可以保持其初始形状无明显变化。

上述文献制备的生物基耐火纸的主要组分是羟基磷灰石纳米线,可以实现在酒精灯火焰测试条件下,经过80秒测试后不燃烧并保持其初始形状没有明显变化。但是80秒的耐火时间显然远远不够的,此外,在纸能够应用于室内装饰后,处于人体长时间接触的环境时,需要纸具备生物相容性和环境友好性的特点,同时要求生物基耐火纸的耐火时间越长越好。而耐火时间越长越好的生物基耐火纸是科学技术研究目标,需要在生物基耐火纸的结构,生物基耐火纸的材料以及制备工艺中进行不断地研究,以达到在现有技术基础上不断提高生物基耐火纸的耐火指标。

发明内容

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种耐火1200秒的生物基耐火纸及制备方法,具有棒-带-颗粒多尺度定向复合结构,该结构的示意图见图1。通过构造棒-带-颗粒多尺度定向复合结构而制备出生物基耐火纸。本发明制备的耐火纸在酒精灯燃烧测试条件下,最高可以经受1200秒不燃烧并保持形状无明显变化,该酒精灯燃烧测试的承受时间比背景技术报道数值提高了1120秒。

技术方案

一种耐火1200秒的生物基耐火纸,其特征在于包括氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒;具有定向三维网络结构的氮化硅纳米棒之间设计有铁掺杂磷酸氢钙纳米带,铁掺杂磷酸氢钙颗粒分布在铁掺杂磷酸氢钙纳米带表面和氮化硅纳米棒的表面,此外,铁掺杂磷酸氢钙颗粒还分布在复合结构的孔隙之间。

一种所述耐火1200秒的生物基耐火纸的制备方法,其特征在于步骤如下:

步骤1:将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5-1:10混合均匀形成粉末,将聚硅氮烷和二甲苯按照体积比1:1-1:4均匀混合形成液体;

步骤2:将粉末加入液体中,形成粉末浓度为10-50g/L的溶液;

步骤3:将步骤2的溶液沿着同一方向均匀涂刷于石墨纸上,之后在40-60℃烘干,然后取出后再次沿着同一方向均匀涂刷步骤2的溶液,之后再次在40-60℃烘干,重复此涂刷-烘干过程多次;

步骤4:将步骤3处理的石墨纸置于热处理炉中,在氮气保护环境下,以2-4℃/min的升温速度升温至230-300℃,并保温30-50min,再以2-5℃/min的升温速度升温至1150-1400℃,保温100-150min,体系自然冷却;

步骤5:再置于真空管式炉中,在空气环境下,以3-8℃/min的升温速度升温至600-900℃,并保温30-60min,体系自然冷却;

步骤6:再完全浸没入步骤1的粉末与水的混合溶液中,室温浸泡1-4h,取出后在温度为40-50℃的条件下烘干,得到耐火1200秒的生物基耐火纸;所述粉末与水的混合溶液中粉末的浓度为5-20g/L。

所述步骤3的涂刷-烘干过程多次为6~8次。

有益效果

本发明提出的一种耐火1200秒的生物基耐火纸及制备方法,包括了氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒三种组分,其中氮化硅微米棒的直径分布在1-10微米,铁掺杂磷酸氢钙纳米带的宽度分布在200-600纳米,铁掺杂磷酸氢钙颗粒的粒径分布在30-100纳米,氮化硅微米棒构建了定向三维网络结构,铁掺杂磷酸氢钙纳米带与氮化硅微米棒形成径向连接,铁掺杂磷酸氢钙颗粒弥散分布在氮化硅微米棒表面、铁掺杂磷酸氢钙纳米带表面以及三维网络结构的孔隙中,三种材料复合形成了棒-带-颗粒多尺度定向复合结构,该结构中材料的尺度分为1-10微米、200-600纳米和30-100纳米三级,分别由氮化硅微米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒提供,该结构中材料的形貌分为三种,分别是棒状、带状和颗粒状。通过三级尺度和三种形貌的有效复合,从而最终制备出生物基耐火纸。本发明制备的耐火纸在酒精灯燃烧测试条件下,最高可以经受1200秒不燃烧并保持形状无明显变化,该酒精灯燃烧测试的承受时间比背景技术报道数值提高了1120秒。

本发明的有益之处是,其一,通过构建构造棒-带-颗粒多尺度定向复合结构,可以显著提高纸的耐火性能,本方法制备的生物基耐火纸在酒精灯耐火测试条件下,可以承受1200秒不燃烧并保持形状无损伤,比背景技术的耐火时间提高了1120秒;其二,铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒赋予了纸的生物安全性,铁掺杂磷酸氢钙具有与人体的骨组织的无机物近似的化学成分,具有优良的生物相容性并且环境友好,不会导致过敏或者诱发病变等反应,因此可以长期应用于墙纸、室内建筑装饰等与人体长期接触的应用场合;其三,本发明制备的纸具有高柔韧性,可以满足裁剪、加工、张贴等使用要求。

附图说明

图1:本发明制备的一种耐火1200秒的生物基耐火纸的结构示意图

图2:是实例4制备的生物基耐火纸在酒精灯燃烧测试1200秒后的照片

具体实施方式

现结合实施例、附图对本发明作进一步描述:

实施例1:

(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5混合均匀,得到粉末A;

(2)将聚硅氮烷和二甲苯按照体积比1:1均匀混合,得到液体B;

(3)将粉末A加入液体B中,其中粉末A的浓度为10g/L,搅拌均匀,得到溶液C;

(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在40℃烘干,重复此涂刷-烘干过程共6次,得到样品D;

(5)将样品D置于热处理炉中,在氮气保护环境下,以2℃/min的升温速度升温至230℃,并保温30min,再以2℃/min的升温速度升温至1150℃,保温100min,体系自然冷却后,得到样品E;

(6)将样品E置于真空管式炉中,在空气环境下,以3℃/min的升温速度升温至600℃,并保温30min,体系自然冷却后,得到样品F;

(7)将粉末A和无水乙醇按照5g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡1h,取出后在温度为40℃的条件下烘干,即可得到生物基耐火纸。

实施例子2

(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:10混合均匀,得到粉末A;

(2)将聚硅氮烷和二甲苯按照体积比1:4均匀混合,得到液体B;

(3)将粉末A加入液体B中,其中粉末A的浓度为50g/L,搅拌均匀,得到溶液C;

(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在60℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在60℃烘干,重复此涂刷-烘干过程共8次,得到样品D;

(5)将样品D置于热处理炉中,在氮气保护环境下,以4℃/min的升温速度升温至300℃,并保温50min,再以5℃/min的升温速度升温至1400℃,保温150min,体系自然冷却后,得到样品E;

(6)将样品E置于真空管式炉中,在空气环境下,以8℃/min的升温速度升温至900℃,并保温60min,体系自然冷却后,得到样品F;

(7)将粉末A和水按照20g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡4h,取出后在温度为50℃的条件下烘干,即可得到生物基耐火纸。

实施例子3

(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5混合均匀,得到粉末A;

(2)将聚硅氮烷和二甲苯按照体积比1:4均匀混合,得到液体B;

(3)将粉末A加入液体B中,其中粉末A的浓度为50g/L,搅拌均匀,得到溶液C;

(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在60℃烘干,重复此涂刷-烘干过程共7次,得到样品D;

(5)将样品D置于热处理炉中,在氮气保护环境下,以2℃/min的升温速度升温至300℃,并保温30min,再以5℃/min的升温速度升温至1150℃,保温100min,体系自然冷却后,得到样品E;

(6)将样品E置于真空管式炉中,在空气环境下,以8℃/min的升温速度升温至600℃,并保温60min,体系自然冷却后,得到样品F;

(7)将粉末A和水按照5g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡4h,取出后在温度为40℃的条件下烘干,即可得到生物基耐火纸。

实施例子4

(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:7混合均匀,得到粉末A;

(2)将聚硅氮烷和二甲苯按照体积比1:3均匀混合,得到液体B;

(3)将粉末A加入液体B中,其中粉末A的浓度为30g/L,搅拌均匀,得到溶液C;

(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在50℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在50℃烘干,重复此涂刷-烘干过程共6-8次,得到样品D;

(5)将样品D置于热处理炉中,在氮气保护环境下,以3℃/min的升温速度升温至250℃,并保温40min,再以3℃/min的升温速度升温至1250℃,保温120min,体系自然冷却后,得到样品E;

(6)将样品E置于真空管式炉中,在空气环境下,以5℃/min的升温速度升温至800℃,并保温50min,体系自然冷却后,得到样品F;

(7)将粉末A和水按照10g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡3h,取出后在温度为50℃的条件下烘干,即可得到生物基耐火纸。

实施例子5

(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5混合均匀,得到粉末A;

(2)将聚硅氮烷和二甲苯按照体积比1:2均匀混合,得到液体B;

(3)将粉末A加入液体B中,其中粉末A的浓度为40g/L,搅拌均匀,得到溶液C;

(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在50℃烘干,重复此涂刷-烘干过程共8次,得到样品D;

(5)将样品D置于热处理炉中,在氮气保护环境下,以4℃/min的升温速度升温至300℃,并保温40min,再以2℃/min的升温速度升温至1300℃,保温110min,体系自然冷却后,得到样品E;

(6)将样品E置于真空管式炉中,在空气环境下,以8℃/min的升温速度升温至700℃,并保温50min,体系自然冷却后,得到样品F;

(7)将粉末A和水按照15g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡2h,取出后在温度为50℃的条件下烘干,即可得到生物基耐火纸。

实施例子6

(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:9混合均匀,得到粉末A;

(2)将聚硅氮烷和二甲苯按照体积比1:2均匀混合,得到液体B;

(3)将粉末A加入液体B中,其中粉末A的浓度为30g/L,搅拌均匀,得到溶液C;

(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在60℃烘干,重复此涂刷-烘干过程共8次,得到样品D;

(5)将样品D置于热处理炉中,在氮气保护环境下,以2℃/min的升温速度升温至240℃,并保温30min,再以5℃/min的升温速度升温至1350℃,保温140min,体系自然冷却后,得到样品E;

(6)将样品E置于真空管式炉中,在空气环境下,以5℃/min的升温速度升温至750℃,并保温45min,体系自然冷却后,得到样品F;

(7)将粉末A和水按照15g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡3h,取出后在温度为40℃的条件下烘干,即可得到生物基耐火纸。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种镀膜材料及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!