一种聚苯胺/n掺杂石墨化碳复合导电膜电极的制备方法

文档序号:1564460 发布日期:2020-01-24 浏览:32次 >En<

阅读说明:本技术 一种聚苯胺/n掺杂石墨化碳复合导电膜电极的制备方法 (Preparation method of polyaniline/N-doped graphitized carbon composite conductive membrane electrode ) 是由 周利民 欧阳金波 黄国林 刘峙嵘 于 2019-10-23 设计创作,主要内容包括:一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法,以经过预处理的废弃生物质甘蔗楂为原料,通过碱活化、N掺杂、预碳化及高温碳化制备N掺杂石墨化碳;再利用N掺杂石墨化碳与导电聚合物(聚苯胺)复合,制备成聚苯胺/N掺杂石墨化碳复合导电膜电极,聚苯胺/N掺杂石墨化碳复合导电膜电极具有高比表面积和良好的导电性及化学稳定性,用于电吸附卤水提铀时,对卤水中铀提取率高、吸附选择性好,能够满足现代工业生产需求。(A preparation method of a polyaniline/N-doped graphitized carbon composite conductive membrane electrode takes pretreated waste biomass sugarcane hawthorn as a raw material, and prepares N-doped graphitized carbon through alkali activation, N doping, pre-carbonization and high-temperature carbonization; and compounding N-doped graphitized carbon and a conductive polymer (polyaniline) to prepare the polyaniline/N-doped graphitized carbon composite conductive membrane electrode, wherein the polyaniline/N-doped graphitized carbon composite conductive membrane electrode has high specific surface area and good conductivity and chemical stability, and is high in extraction rate and good in adsorption selectivity of uranium in brine when used for extracting uranium from brine through electro-adsorption, and can meet the requirements of modern industrial production.)

一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法

技术领域

本发明涉及功能材料制备技术领域,尤其涉及一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法。

背景技术

海水中含铀大量的铀资源,但海水中铀浓度低(约3ppm),且含有大量的共存离子,使直接利用海水提铀难度大,经济性较差。卤水中铀浓度是海水中铀浓度的数百倍,因此利用卤水提铀更具实际意义,但卤水提铀面临的主要问题是共存离子(Na+、K+、Mg2+)浓度高,这为卤水中铀的分离富集带来严重干扰。

利用电吸附可实现卤水中铀的高效分离,具有低能耗、低污染、经济高效的优点,通过精确控制电极电位,可排除竞争离子的干扰。电吸附时,U(VI)主要通过双电层和离子交换机理被捕获,因此可显著提高U(VI)吸附容量(吸附容量数倍于普通吸附);同时UO2 2+具有相对较高的有效电荷,在含铀卤水体系中存在竞争吸附优势。常规吸附剂对U(VI)的吸附容量多在数十至几百mg/g,而利用电吸附可使U(VI)吸附容量成倍提高;且通过在工作电极施加反向电位,U(VI)易于脱附,避免使用大量酸性脱附液。在电吸附时电极电位通常接近于U(VI)的还原电位,但仍不足以使U(VI)还原,由此可避免生成沉淀。

碳材料具有良好的耐腐蚀性和稳定性,是常用的电吸附电极材料。但目前普遍使用的碳电极材料仍存在成本高、比表面积低、导电性和电吸附性能差的缺点,严重限制其在卤水提铀领域的实际应用。

发明内容

本发明所解决的技术问题在于提供一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法,以解决上述背景技术中的问题。

本发明所解决的技术问题采用以下技术方案来实现:

一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法,具体步骤如下:

(1)制备N掺杂石墨化碳

a)原料预处理:将甘蔗楂经水洗除去可溶性杂质,再经80℃温度条件下干燥后研碎;

b)预碳化:于不锈钢反应釜中加入经步骤a)预处理后的甘蔗楂及活化剂,充分混匀,以促使甘蔗楂充分吸收活化剂,再加入适量掺杂氮源,充分搅拌,而后向反应釜通入氮气以将反应釜内的空气充分置换,再将反应釜密封后在氮气气氛下于260℃温度条件下搅拌加热预碳化;待预碳化处理完成后,自然冷却,取出获得的固相预碳化材料,最后将固相预碳化材料经水洗后,于70℃温度条件下真空干燥,得预碳化体;

c)高温碳化(石墨化):将步骤b)中获得的预碳化体置于程序升温反应炉中,在氮气保护下,升温至1100℃,在1100℃高温条件下碳化,得到N掺杂石墨化碳;

(2)制备复合导电碳膜电极

I)将定量聚苯胺溶于N-甲基吡咯烷酮中制备成聚苯胺溶液,再在聚苯胺溶液中按质量配比加入N掺杂石墨化碳,充分搅拌均匀得导电混合液,而后将导电混合液倒入玻璃表面皿中,在70℃温度条件下干燥成膜;

II)将步骤I)中干燥成的膜剪裁,即制成聚苯胺/N掺杂石墨化碳复合导电膜电极。

在本发明中,步骤a)中,在80℃温度条件下干燥时间为12h。

在本发明中,步骤b)中,以0.2mol/L氢氧化钠溶液为活化剂,以0.5mol/L碳酸氢氨溶液为掺杂氮源,此过程中,氢氧化钠主要起活化作用,而碳酸氢氨则充当氮掺杂氮源,在碳材料碳原子晶格中引入杂化氮原子。

在本发明中,步骤b)中,于不锈钢反应釜中加入预处理后的甘蔗楂20g,氢氧化钠溶液10mL,碳酸氢氨溶液30mL。

在本发明中,步骤b)中,在氮气气氛下于260℃温度条件下搅拌加热预碳化时间为2h。

在本发明中,步骤c)中,在氮气保护下,以30℃/min的升温速率升至1100℃。

在本发明中,步骤c)中,在1100℃高温条件下碳化时间为30min。

在本发明中,步骤I)中,聚苯胺与N掺杂石墨化碳的质量配比为1:0.3~0.5。

在本发明中,聚苯胺与N掺杂石墨化碳最佳质量配比为1:0.5。

有益效果:

(1)本发明在导电生物碳制备过程中,氢氧化钠主要起活化作用,而碳酸氢氨则充当氮掺杂氮源,在碳材料碳原子晶格中引入杂化氮原子,杂化氮原子具有多余孤对电子,可作为Lewis碱,有效络合铀酰离子,以此提高电吸附时铀的电吸附选择性和电吸附容量;

(2)本发明以甘蔗楂为原料所制备的N掺杂石墨化碳有优异的导电性能,由此可降低生产成本,提高材料使用性能;此外,所制备的聚苯胺/N掺杂石墨化碳复合导电膜电极具有高比表面积和良好的导电性及化学稳定性,用于电吸附卤水提铀时,对卤水中铀提取率高、吸附选择性好,能够满足现代工业生产需求。

具体实施方式

为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白清晰,下面结合具体实施例,进一步阐述本发明。

实施例1(按聚苯胺与N掺杂石墨化碳质量配比为1:0.3实施)

一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法,具体步骤如下:

(1)制备N掺杂石墨化碳

a)原料预处理:将甘蔗楂经水洗除去可溶性杂质,再经80℃温度条件下干燥12h后研碎;

b)预碳化:于不锈钢反应釜中加入经预处理后的甘蔗楂(约20g)及10mL氢氧化钠溶液(0.2mol/L),充分混匀,以促使甘蔗楂充分吸收氢氧化钠,再加入30mL碳酸氢氨溶液(0.5mol/L),充分搅拌,而后向反应釜通入氮气以将反应釜内的空气充分置换,再将反应釜密封后在氮气气氛下于260℃温度条件下搅拌加热预碳化2h;待预碳化处理完成后,自然冷却,取出获得的固相预碳化材料,最后将固相预碳化材料经水洗后,于70℃温度条件下真空干燥,得预碳化体;此过程中,氢氧化钠主要起活化作用,而碳酸氢氨则可充当氮掺杂氮源,在碳材料碳原子晶格中引入杂化氮原子;

c)高温碳化(石墨化):将步骤b)中获得的预碳化体置于程序升温反应炉中,在氮气保护下,以30℃/min的升温速率升至1100℃,在1100℃高温条件下碳化30min,得到N掺杂石墨化碳;

(2)制备复合导电碳膜电极

I)将100mg聚苯胺溶于N-甲基吡咯烷酮中制备成聚苯胺溶液,再在聚苯胺溶液中加入30mg N掺杂石墨化碳,充分搅拌均匀得导电混合液,而后将导电混合液倒入玻璃表面皿中,在70℃温度条件下干燥成膜;

II)将步骤I)中干燥成的膜剪裁成合适大小(10×15mm),即制成聚苯胺/N掺杂石墨化碳复合导电膜电极。

以上述聚苯胺/N掺杂石墨化碳复合导电膜电极为工作电极、相同大小的导电碳为对电极,控制工作电极电位-0.9V,电吸附时间2h,并以海盐生产日晒卤水(25.2°Be)为水样,电吸附实现结果表明,U(VI)提取率为67%,选择性系数分别为:SU/Na=36.5,SU/K=52.1,SU/Mg=28.7,SU/Ca=116.4。

实施例2(按聚苯胺与N掺杂石墨化碳质量配比为1:0.4实施)

一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法,具体步骤如下:

(1)制备N掺杂石墨化碳

a)原料预处理:将甘蔗楂经水洗除去可溶性杂质,再经80℃温度条件下干燥12h后研碎;

b)预碳化:于不锈钢反应釜中加入经预处理后的甘蔗楂(约20g)及10mL氢氧化钠溶液(0.2mol/L),充分混匀,以促使甘蔗楂充分吸收氢氧化钠,再加入30mL碳酸氢氨溶液(0.5mol/L),充分搅拌,而后向反应釜通入氮气以将反应釜内的空气充分置换,再将反应釜密封后在氮气气氛下于260℃温度条件下搅拌加热预碳化2h;待预碳化处理完成后,自然冷却,取出获得的固相预碳化材料,最后将固相预碳化材料经水洗后,于70℃温度条件下真空干燥,得预碳化体;此过程中,氢氧化钠主要起活化作用,而碳酸氢氨则可充当氮掺杂氮源,在碳材料碳原子晶格中引入杂化氮原子;

c)高温碳化(石墨化):将步骤b)中获得的预碳化体置于程序升温反应炉中,在氮气保护下,以30℃/min的升温速率升至1100℃,在1100℃高温条件下碳化30min,得到N掺杂石墨化碳;

(2)制备复合导电碳膜电极

I)将100mg聚苯胺溶于N-甲基吡咯烷酮中制备成聚苯胺溶液,再在聚苯胺溶液中加入40mg N掺杂石墨化碳,充分搅拌均匀得导电混合液,而后将导电混合液倒入玻璃表面皿中,在70℃温度条件下干燥成膜;

II)将步骤I)中干燥成的膜剪裁成合适大小(10×15mm),即制成聚苯胺/N掺杂石墨化碳复合导电膜电极。

以上述聚苯胺/N掺杂石墨化碳复合导电膜电极为工作电极、相同大小的导电碳为对电极,控制工作电极电位-0.9V,电吸附时间2h,并以海盐生产日晒卤水(25.2°Be)为水样,电吸附实现结果表明,U(VI)提取率为83%,选择性系数分别为:SU/Na=47.2,SU/K=55.3,SU/Mg=37.5,SU/Ca=152.8。

实施例3(按聚苯胺与N掺杂石墨化碳质量配比为1:0.5实施)

一种聚苯胺/N掺杂石墨化碳复合导电膜电极的制备方法,具体步骤如下:

(1)制备N掺杂石墨化碳

a)原料预处理:将甘蔗楂经水洗除去可溶性杂质,再经80℃温度条件下干燥12h后研碎;

b)预碳化:于不锈钢反应釜中加入经预处理后的甘蔗楂(约20g)及10mL氢氧化钠溶液(0.2mol/L),充分混匀,以促使甘蔗楂充分吸收氢氧化钠,再加入30mL碳酸氢氨溶液(0.5mol/L),充分搅拌,而后向反应釜通入氮气以将反应釜内的空气充分置换,再将反应釜密封后在氮气气氛下于260℃温度条件下搅拌加热预碳化2h;待预碳化处理完成后,自然冷却,取出获得的固相预碳化材料,最后将固相预碳化材料经水洗后,于70℃温度条件下真空干燥,得预碳化体;此过程中,氢氧化钠主要起活化作用,而碳酸氢氨则可充当氮掺杂氮源,在碳材料碳原子晶格中引入杂化氮原子;

c)高温碳化(石墨化):将步骤b)中获得的预碳化体置于程序升温反应炉中,在氮气保护下,以30℃/min的升温速率升至1100℃,在1100℃高温条件下碳化30min,得到N掺杂石墨化碳;

(2)制备复合导电碳膜电极

I)将100mg聚苯胺溶于N-甲基吡咯烷酮中制备成聚苯胺溶液,再在聚苯胺溶液中加入50mg N掺杂石墨化碳,充分搅拌均匀得导电混合液,而后将导电混合液倒入玻璃表面皿中,在70℃温度条件下干燥成膜;

II)将步骤I)中干燥成的膜剪裁成合适大小(10×15mm),即制成聚苯胺/N掺杂石墨化碳复合导电膜电极。

以上述聚苯胺/N掺杂石墨化碳复合导电膜电极为工作电极、相同大小的导电碳为对电极,控制工作电极电位-0.9V,电吸附时间2h,并以海盐生产日晒卤水(25.2°Be)为水样,电吸附实现结果表明,U(VI)提取率为95%,选择性系数分别为:SU/Na=56.4,SU/K=68.1,SU/Mg=42.9,SU/Ca=177.2。

通过对实施例1~实施例3制备的聚苯胺/N掺杂石墨化碳复合导电膜电极电吸附卤水提铀测试结果可知:聚苯胺与N掺杂石墨化碳质量配比为1:0.5时,制备的聚苯胺/N掺杂石墨化碳复合导电膜电极电吸附卤水提铀效果最佳;但在复合导电膜电极制备时,若继续增加N掺杂石墨化碳用量,则会影响复合复合导电膜成膜性能,使其易于开裂,从而不利于其实际应用。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种难混溶合金的制备方法及连铸设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!