一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法

文档序号:1579513 发布日期:2020-01-31 浏览:15次 >En<

阅读说明:本技术 一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法 (improved self-adaptive trackless Kalman filtering rotational inertia identification method ) 是由 尹忠刚 汤瑞洁 张彦平 杜超 于 2019-10-23 设计创作,主要内容包括:本发明公开了一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法,首先利用预测误差向量和测量噪声协方差矩阵求解自适应因子,然后利用互协方差矩阵和测量误差协方差矩阵求解卡尔曼修正系数矩阵,与自适应因子一起构建永磁同步电机控制系统的改进自适应无轨迹卡尔曼滤波器;最后在线实时调整状态预测协方差矩阵,得到状态变量和误差协方差矩阵的最优估计值,从而提高永磁同步电机转动惯量辨识的收敛速度,优化永磁同步电机转动惯量辨识的动态性能。本发明解决了现有无轨迹卡尔曼滤波转动惯量辨识存在的收敛速度慢的问题。(The invention discloses an improved self-adaptive trackless Kalman filtering rotary inertia identification method which comprises the steps of solving an adaptive factor by using a prediction error vector and a measurement noise covariance matrix, solving a Kalman correction coefficient matrix by using a cross covariance matrix and a measurement error covariance matrix, constructing an improved self-adaptive trackless Kalman filter of a permanent magnet synchronous motor control system together with the adaptive factor , and finally adjusting a state prediction covariance matrix in real time on line to obtain an optimal estimation value of a state variable and an error covariance matrix, so that the convergence speed of the rotary inertia identification of the permanent magnet synchronous motor is increased, and the dynamic performance of the rotary inertia identification of the permanent magnet synchronous motor is optimized.)

一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法

技术领域

本发明属于伺服系统控制技术领域,涉及一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法。

背景技术

永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)由于结构简单、运行可靠、功率密度大、效率高等优点,被广泛应用于家用电器、交通工具、工业控制等各个领域。而永磁同步电机是集电气与机械为一体的器件,在运动中会受到诸多无法预知因素的影响,如外界负载扰动、摩擦力扰动或系统参数变化等。这些扰动会直接或间接影响系统精度、稳定性以及动静态特性。电机运行中,随着电机运行工况的变化,系统负载转矩和转动惯量也随之改变。当电机转动惯量增加时,会使系统调节时间增加;当电机转动惯量减小时,虽然会减小系统动态调节时间,但会使电机转速出现超调甚至振荡现象。为了提高系统的动态抗扰性能,需要相应地调节控制参数,使系统运行特性为最佳状态,而转动惯量辨识是其首要研究的问题。近年来,国内外学者对永磁同步电机控制系统的参数辨识进行了许多研究,其中离线辨识法主要用到减速法、人工轨迹规划法、转矩限幅加速度法等方法。在线辨识法主要包括最小二乘法、自适应朗道离散时间法、扩展卡尔曼滤波法、参数估计梯度校正法、蚁群算法、状态观测器法等。

扩展卡尔曼滤波器(ExtentedKalman Filtering,EKF)作为一种由最小方差意义上的最优预测估计发展起来的现代滤波方法,因其收敛速度快、估计精度高等优点而受到广泛关注。EKF适用于高性能控制系统,可以在低速运行下完成转速估计,也可对相关状态和某些参数进行估计。但EKF仍存在一些缺陷。例如在每个时间步长中,必须进行雅可比阵的计算,对于高阶系统这可能非常复杂,因而实现也变得非常困难,这就限制了EKF方法的应用。

为了弥补EKF算法的不足,人们通过对复杂非线性函数的概率密度分布进行近似,从而取代了对非线性函数的近似,利用采样点逼近的方法来解决非线性传播问题,提出了一种新的非线性滤波方法——无轨迹卡尔曼滤波(Unscented Kalman Filtering,UKF),该方法利用U变换(Unscented Transform,UT)来近似非线性函数的概率密度分布,使得UKF算法在计算精度上要高于EKF,同时UKF不需要计算状态转移矩阵的Jacobi矩阵,这使得其应用更加方便。虽然UKF能够克服EKF存在的一些问题,但在实际应用时,UKF仍然具有计算量大、实时性不高且要求噪声具有高斯分布的统计特性,收敛速度慢,鲁棒性不强,跟踪能力差的问题。

发明内容

本发明的目的是提供一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法,解决了现有无轨迹卡尔曼滤波转动惯量辨识存在的收敛速度慢的问题。

本发明所采用的技术方案是,一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法,具体按照以下步骤实施:

步骤1、利用预测误差向量和测量噪声协方差矩阵求解自适应因子;

步骤2、利用互协方差矩阵和测量误差协方差矩阵求解卡尔曼修正系数矩阵,与自适应因子一起构建永磁同步电机控制系统的改进自适应无轨迹卡尔曼滤波器;

步骤3、在线实时调整状态预测协方差矩阵,得到状态变量和误差协方差矩阵的最优估计值,从而提高永磁同步电机转动惯量辨识的收敛速度,优化永磁同步电机转动惯量辨识的动态性能。

本发明特点还在于,

步骤1具体按照以下步骤实施:

步骤1.1、对永磁同步电机非线性系统进行建模,搭建UKF算法的方程,UKF方程表示为:

Figure BDA0002244842700000031

式中,x为状态变量;

Figure BDA0002244842700000033

为状态变量x的估计值;y为观测量;

Figure BDA0002244842700000034

为观测量y的估计值;A为状态变量的矩阵;B为输入矩阵;H为观测量的矩阵;u为输入变量;K为卡尔曼修正系数矩阵,t为时间;

步骤1.2、将公式(1)、(2)离散化构建UKF数字化系统,分别计算离散后的状态变量的估计值离散后的观测量的估计值

Figure BDA0002244842700000036

Figure BDA0002244842700000037

Figure BDA0002244842700000038

计算离散后的状态变量的预测值

Figure BDA0002244842700000039

离散后的观测量的预测值

Figure BDA00022448427000000310

式中,A′为离散后的状态矩阵;B′为离散后的输入矩阵;Hk为离散后的观测量的矩阵;Kk为离散后的卡尔曼修正系数矩阵;下标“k”代表离散化采样时刻;上标“~”为预测值;上标“^”为估计值;离散后的状态变量xk=[ωmTL1/J]T;离散后的观测量yk=ωm;离散后的输入变量uk=Tem;ωm为永磁同步电机转子角速度;TL为永磁同步电机负载转矩;J为永磁同步电机转动惯量;Tem为永磁同步电机电磁转矩;

步骤1.3、定义预测误差向量即为永磁同步电机转子实际角速度与估计角速度的差值;自适应因子γk由以下公式得到:

Figure BDA0002244842700000042

其中,Py为测量误差协方差矩阵;tr(·)表示矩阵的求迹运算;

由公式(7)知,自适应因子γk对于UKF算法的改进在于:当滤波初值选取存在误差或者系统状态模型存在扰动时,γk<1,其含义表示系统的数学模型预测信息对滤波算法影响应尽量小;当永磁同步电机控制系统状态模型出现异常波动时,γk近似为0,因此,γk能够结合协方差观测值自适应地调节永磁同步电机控制系统各状态量。

步骤2具体如下:

步骤2.1,设置UKF状态方程的初始状态变量及其误差协方差矩阵,然后构造并计算UKF算法中的概率密度分布Sigma点:

初始化状态变量及其方差:

Figure BDA0002244842700000043

其中,

Figure BDA0002244842700000044

为状态变量初始均值,E[·]为求取期望运算,x(0)为状态变量初始值,P(0)为误差协方差矩阵的初始值;

采用传统对称性采样,所选取的Sigma点个数为2L+1,Sigma点的构造公式如下:

其中,χ0代表第一个Sigma采样点,χi代表第i个Sigma采样点;λ为比例因子,λ=α2(L+κ)-L;α为尺度参数,决定着Sigma点在永磁同步电机控制系统的状态变量均值

Figure BDA00022448427000000510

周围的分布状态;κ为可调参数,调整此参数可以提高逼近精度,当永磁同步电机控制系统的状态变量为多变量且是高斯分布时,κ=3-L;

Figure BDA0002244842700000052

矩阵平方根的第i行或第i列,

Figure BDA0002244842700000053

矩阵平方根的第i-1行或第i-1列,采用Cholesky分解方法求取;Px为状态误差协方差矩阵;N+为正整数集合;

根据公式(9)选取Sigma点如下:

Figure BDA0002244842700000054

其中,k代表采样时刻;

构造完Sigma点后需要对每个点赋予相应的权值,其权值系数计算方法如下:

Figure BDA0002244842700000055

其中,

Figure BDA0002244842700000056

为均值的权系数;

Figure BDA0002244842700000057

为方差的权系数;

Figure BDA0002244842700000058

分别为均值权系数和方差权系数的初值;α为尺度参数,决定着Sigma点在永磁同步电机控制系统的状态变量均值

Figure BDA0002244842700000059

周围的分布状态,10-4≤α≤1;β为非负的权系数,N+为正整数集合;

步骤2.2,求状态变量预测均值和方差,计算过程如下:

Figure BDA0002244842700000061

Figure BDA0002244842700000062

Figure BDA0002244842700000064

其中,k代表采样时刻;

Figure BDA0002244842700000065

表示经过非线性变换后的Sigma点;χi(k-1)为选取的Sigma点;f[·]为永磁同步电机非线性系统状态函数;

Figure BDA00022448427000000616

为k时刻状态变量的预测值;

Figure BDA0002244842700000066

为均值的权系数;

Figure BDA0002244842700000067

为状态误差协方差矩阵的预测值;

Figure BDA0002244842700000068

为方差的权系数;Q(k)为系统噪声协方差矩阵;为k时刻观测量的预测值;h[·]为永磁同步电机非线性观测函数;

步骤2.3,更新测量误差协方差矩阵和互协方差矩阵:

Figure BDA00022448427000000610

Figure BDA00022448427000000611

其中,k代表采样时刻;Py(k)为测量误差协方差矩阵;γk为自适应因子;

Figure BDA00022448427000000612

为方差的权系数;

Figure BDA00022448427000000613

表示经过非线性变换后的Sigma点;

Figure BDA00022448427000000614

为k时刻观测量的预测值;R(k)为测量噪声协方差矩阵;

Figure BDA00022448427000000615

为k时刻状态变量的预测值;Pxy(k)为互协方差矩阵;h[·]为永磁同步电机非线性观测函数;

步骤2.4,利用互协方差矩阵和测量误差协方差矩阵,求解卡尔曼修正系数矩阵K:

离散后的卡尔曼修正系数矩阵的计算方程为:

Figure BDA0002244842700000071

其中,k代表采样时刻,Py(k)为测量误差协方差矩阵,Pxy(k)为互协方差矩阵;

根据公式(16)、(17)、(18)得到改进后的离散卡尔曼修正系数矩阵公式,用于对状态变量和状态误差协方差矩阵进行修正更新:

其中,k代表采样时刻;K′k为改进后的离散卡尔曼修正系数矩阵;Py(k)为测量误差协方差矩阵;γk为自适应因子;

Figure BDA0002244842700000073

为方差的权系数;

Figure BDA0002244842700000074

表示经过非线性变换后的Sigma点;

Figure BDA0002244842700000076

为k时刻状态变量的预测值;

Figure BDA0002244842700000075

为k时刻观测量的预测值;R(k)为测量噪声协方差矩阵;Pxy(k)为互协方差矩阵;h[·]为永磁同步电机非线性观测函数。

步骤2.1中非负的权系数β取2。

步骤3具体如下:

步骤3.1,构造测量噪声协方差矩阵R(k)的调节方程:

R′(k)=[e(J)]2 R(k)max+R(k)min 0≤e(J)≤1 (20)

其中,R′(k)为测量噪声协方差调节矩阵,R(k)max为稳定性最好的测量噪声协方差矩阵,R(k)min为收敛速度最快的测量噪声协方差矩阵,e(J)为永磁同步电机转动惯量实际值与辨识值偏差的标幺值,

因此,公式(19)改写为:

Figure BDA0002244842700000081

其中,K′k为改进后的离散卡尔曼修正系数矩阵;R′(k)为测量噪声协方差调节矩阵;k代表采样时刻;Py(k)为测量误差协方差矩阵;γk为自适应因子;

Figure BDA0002244842700000082

为方差的权系数;

Figure BDA0002244842700000083

表示经过非线性变换后的Sigma点;

Figure BDA00022448427000000810

为k时刻状态变量的预测值;

Figure BDA0002244842700000084

为k时刻观测量的预测值;Pxy(k)为互协方差矩阵;h[·]为永磁同步电机非线性观测函数;

步骤3.2,对预测值进行修正更新,使辨识值尽快接近真实值,以提高永磁同步电机转动惯量辨识的动态性能:

对预测值修正更新得到状态变量在k时刻的估计值和状态误差协方差矩阵的方程如下:

其中,k代表采样时刻;

Figure BDA00022448427000000811

为状态变量在k时刻的预测值;y(k)为k时刻的观测量;

Figure BDA00022448427000000812

为k时刻观测量的预测值;K′k为改进后的离散卡尔曼修正系数矩阵;γk为自适应因子,为状态误差协方差矩阵的预测值,Py(k)为测量误差协方差矩阵,

Figure BDA00022448427000000813

为K′k的转置。

永磁同步电机转动惯量实际值与辨识值偏差的标幺值e(J)取值范围为[0,1]。

本发明的有益效果是,本发明一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法,通过调整卡尔曼修正系数矩阵来解决无轨迹卡尔曼滤波参数辨识收敛速度慢的问题,使辨识值尽快接近真实值。由于卡尔曼修正系数矩阵的调节是通过调节测量噪声协方差矩阵得到,因此本发明还构建了测量噪声协方差矩阵的调节方程,从而同时获得收敛速度快和辨识结果波动小的参数辨识结果,提高了永磁同步电机转动惯量辨识的动态性能。

附图说明

图1是本发明方法中永磁同步电机矢量控制系统示意图;

图2是本发明方法中求取自适应因子的过程示意图;

图3是本发明方法中构造测量噪声协方差矩阵R(k)的调节方程的流程图。

具体实施方式

下面结合和具体实施方式对本发明进行详细说明。

本发明提供了一种改进的自适应无轨迹卡尔曼滤波(Improved AdaptiveUnscented Kalman Filtering,IAUKF)转动惯量辨识方法。永磁同步电机采用矢量控制系统,如图1所示,系统采用3个PI调节器,形成转速、电流反馈控制的双闭环交流调速系统。转速外环PI调节器的输出作为电流PI调节器的输入,电流调节器的输出控制电力电子变换器。

电流信号检测电路通过霍尔传感器检测电机在三相静止坐标系下的三相电流,经过Clark变换(3s/2s),转换为静止两相坐标系下的电流值i、i,再将速度外环中的给定转速

Figure BDA0002244842700000091

与由位置传感器微分得到的反馈速度

Figure BDA0002244842700000092

相比较的误差,经过速度外环控制器调节后,输出转子旋转坐标系下的给定转矩电流

Figure BDA0002244842700000093

静止两相坐标系下的电流值i、i以及位置传感器输出的电磁角度θ经过Park变换(2s/2r)转换为转子旋转坐标系下的两相反馈计算励磁电流id和反馈计算转矩电流iq。给定励磁电流

Figure BDA0002244842700000094

与反馈计算励磁电流id相比较,经过电流PI调节之后,得到两相旋转坐标的d轴给定输出电压

Figure BDA0002244842700000095

给定转矩电流

Figure BDA0002244842700000101

与反馈计算转矩电流iq相比较之后,经过电流PI调节后,得到两相旋转坐标的q轴给定输出电压旋转坐标系下的两相给定输出电压

Figure BDA0002244842700000103

Figure BDA0002244842700000104

经过Park逆变换(2r/2s)逆变换之后转换为静止两相坐标系下的两相电压

Figure BDA0002244842700000105

经过PWM发生模块的调节,产生PWM波,经过三相逆变器之后,驱动永磁同步电机工作。反馈计算转矩电流iq与编码器的反馈速度

Figure BDA0002244842700000106

作为IAUKF转动惯量辨识模块的输入,输出即为永磁同步电机转动惯量J。

本发明一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法具体按以下步骤实施:

步骤1,利用预测误差向量和测量噪声协方差矩阵求解自适应因子γk,求解过程如图2所示,具体求解过程如下:

UKF方程表示为:

Figure BDA0002244842700000107

式中,x为状态变量;

Figure BDA0002244842700000109

为状态变量x的估计值;y为观测量;

Figure BDA00022448427000001010

为观测量y的估计值;A为状态变量的矩阵;B为输入矩阵;H为观测量的矩阵;u为输入变量;K为卡尔曼修正系数矩阵,t为时间。

将公式(1)、(2)离散化构建UKF数字化系统,分别计算离散后的状态变量的估计值

Figure BDA00022448427000001011

离散后的观测量的估计值

Figure BDA00022448427000001012

Figure BDA00022448427000001013

Figure BDA00022448427000001014

计算离散后的状态变量的预测值

Figure BDA00022448427000001015

离散后的观测量的预测值

Figure BDA00022448427000001016

Figure BDA00022448427000001017

Figure BDA0002244842700000111

式中,A′为离散后的状态矩阵;B′为离散后的输入矩阵;Hk为离散后的观测量的矩阵;Kk为离散后的卡尔曼修正系数矩阵;下标“k”代表离散化采样时刻;上标“~”为预测值;上标“^”为估计值;离散后的状态变量xk=[ωm TL 1/J]T;离散后的观测量yk=ωm;离散后的输入变量uk=Tem;ωm为永磁同步电机转子角速度;TL为永磁同步电机负载转矩;J为永磁同步电机转动惯量;Tem为永磁同步电机电磁转矩。

定义预测误差向量即为永磁同步电机转子实际角速度与估计角速度的差值;自适应因子γk可由以下公式得到:

其中,Py为测量误差协方差矩阵;tr(·)表示矩阵的求迹运算。

由公式(7)可知,自适应因子γk对于UKF算法的改进在于:当滤波初值选取存在误差或者系统状态模型存在扰动时,γk<1,其含义表示系统的数学模型预测信息对滤波算法影响应尽量小;当永磁同步电机控制系统状态模型出现异常波动时,γk近似为0。从以上分析可知,γk能够结合协方差观测值自适应地调节永磁同步电机控制系统各状态量。

步骤2,利用互协方差矩阵和测量误差协方差矩阵求解卡尔曼修正系数矩阵K,与自适应因子γk一起构建永磁同步电机控制系统的改进自适应无轨迹卡尔曼滤波器,在线实时调整状态预测协方差矩阵,得到状态变量x和误差协方差矩阵P的最优估计值,从而提高了永磁同步电机转动惯量辨识的收敛速度。

步骤2.1,设置初始状态变量及其误差协方差矩阵,然后构造并计算Sigma点:

初始化状态变量及其方差:

Figure BDA0002244842700000121

其中,

Figure BDA0002244842700000122

为状态变量初始均值,E[·]为求取期望运算,x(0)为状态变量初始值,P(0)为误差协方差矩阵的初始值;

在UKF算法中,存在不同的采样策略,本发明采用传统的对称性采样,所选取的Sigma点个数为2L+1,Sigma点的构造公式如下:

其中,χ0代表第一个Sigma采样点,χi代表第i个Sigma采样点;λ为比例因子,λ=α2(L+κ)-L;α为尺度参数,决定着Sigma点在永磁同步电机控制系统的状态变量均值

Figure BDA0002244842700000124

周围的分布状态;κ为可调参数,调整此参数可以提高逼近精度,当永磁同步电机控制系统的状态变量为多变量且是高斯分布时,κ=3-L;

Figure BDA0002244842700000125

矩阵平方根的第i行或第i列,

Figure BDA0002244842700000126

矩阵平方根的第i-1行或第i-1列,通常采用Cholesky分解方法求取;Px为状态误差协方差矩阵;N+为正整数集合;

根据公式(9)选取Sigma点如下:

Figure BDA0002244842700000127

其中,k代表采样时刻;

在构造完Sigma点后需要对每个点赋予相应的权值,其权值系数计算方法如下:

Figure BDA0002244842700000131

其中,

Figure BDA0002244842700000132

为均值的权系数;

Figure BDA0002244842700000133

为方差的权系数;分别为均值权系数和方差权系数的初值;α为尺度参数,决定着Sigma点在永磁同步电机控制系统的状态变量均值

Figure BDA0002244842700000135

周围的分布状态,通常设定为一个较小的正数10-4≤α≤1;β为非负的权系数,可以合并协方差中高阶项的误差,这样就可以把高阶项的影响包含在内,因此调节β可以提高协方差的近似精度,对于高斯分布,β取2为最优;N+为正整数集合。

步骤2.2,求状态变量预测均值和方差,计算过程如下:

Figure BDA0002244842700000136

Figure BDA0002244842700000137

Figure BDA0002244842700000138

Figure BDA0002244842700000139

其中,k代表采样时刻;表示经过非线性变换后的Sigma点;χi(k-1)为选取的Sigma点;f[·]为永磁同步电机非线性系统状态函数;

Figure BDA00022448427000001311

为k时刻状态变量的预测值;

Figure BDA00022448427000001312

为均值的权系数;

Figure BDA00022448427000001313

为状态误差协方差矩阵的预测值;

Figure BDA00022448427000001314

为方差的权系数;Q(k)为系统噪声协方差矩阵;

Figure BDA00022448427000001315

为k时刻观测量的预测值;h[·]为永磁同步电机非线性观测函数。

步骤2.3,更新测量误差协方差矩阵和互协方差矩阵:

Figure BDA0002244842700000141

Figure BDA0002244842700000142

其中,k代表采样时刻;Py(k)为测量误差协方差矩阵;γk为自适应因子;

Figure BDA0002244842700000143

为方差的权系数;

Figure BDA0002244842700000144

表示经过非线性变换后的Sigma点;为k时刻观测量的预测值;R(k)为测量噪声协方差矩阵;

Figure BDA0002244842700000146

为k时刻状态变量的预测值;Pxy(k)为互协方差矩阵;h[·]为永磁同步电机非线性观测函数。

步骤2.4,利用互协方差矩阵和测量误差协方差矩阵,求解卡尔曼修正系数矩阵K:

离散后的卡尔曼修正系数矩阵的计算方程为:

Figure BDA0002244842700000147

其中,k代表采样时刻,Py(k)为测量误差协方差矩阵,Pxy(k)为互协方差矩阵。

为了解决无轨迹卡尔曼滤波收敛速度慢的问题,使其尽快接近真实值,根据公式(16)、(17)、(18)可得到改进后的离散卡尔曼修正系数矩阵公式:

Figure BDA0002244842700000148

其中,k代表采样时刻;Kk′为改进后的离散卡尔曼修正系数矩阵;Py(k)为测量误差协方差矩阵;γk为自适应因子;

Figure BDA0002244842700000149

为方差的权系数;

Figure BDA00022448427000001410

表示经过非线性变换后的Sigma点;

Figure BDA00022448427000001411

为k时刻状态变量的预测值;

Figure BDA00022448427000001412

为k时刻观测量的预测值;R(k)为测量噪声协方差矩阵;Pxy(k)为互协方差矩阵;h[·]为永磁同步电机非线性观测函数。

步骤2.5,构造测量噪声协方差矩阵R(k)的调节方程:

R′(k)=[e(J)]2 R(k)max+R(k)min 0≤e(J)≤1 (20)

其中,R′(k)为测量噪声协方差调节矩阵,R(k)max为稳定性最好的测量噪声协方差矩阵,R(k)min为收敛速度最快的测量噪声协方差矩阵,e(J)为永磁同步电机转动惯量实际值与辨识值偏差的标幺值,范围[0,1]。

因此,公式(19)可以改写为:

Figure BDA0002244842700000151

其中,K′k为改进后的离散卡尔曼修正系数矩阵;R′(k)为测量噪声协方差调节矩阵;k代表采样时刻;Py(k)为测量误差协方差矩阵;γk为自适应因子;

Figure BDA0002244842700000152

为方差的权系数;

Figure BDA0002244842700000153

表示经过非线性变换后的Sigma点;

Figure BDA0002244842700000154

为k时刻状态变量的预测值;

Figure BDA00022448427000001511

为k时刻观测量的预测值;Pxy(k)为互协方差矩阵;h[·]为永磁同步电机非线性观测函数。

步骤2.6,对预测值进行修正更新:

对预测值修正更新得到状态变量在k时刻的估计值和状态误差协方差矩阵的方程如下:

Figure BDA0002244842700000157

其中,k代表采样时刻;

Figure BDA0002244842700000158

为状态变量在k时刻的预测值;y(k)为k时刻的观测量;为k时刻观测量的预测值;K′k为改进后的离散卡尔曼修正系数矩阵;γk为自适应因子,

Figure BDA00022448427000001510

为状态误差协方差矩阵的预测值,Py(k)为测量误差协方差矩阵,

Figure BDA00022448427000001513

为K′k的转置。

本发明是一种基于改进改进自适应无轨迹卡尔曼滤波转动惯量辨识方法。与传统自适应无轨迹卡尔曼滤波算法相比,本发明通过调整卡尔曼修正系数矩阵来解决无轨迹卡尔曼滤波参数辨识收敛速度慢的问题,使辨识值尽快接近真实值。由于卡尔曼修正系数矩阵的调节是通过调节测量噪声协方差矩阵得到,因此本发明还构建了测量噪声协方差矩阵的调节方程,从而同时获得收敛速度快和辨识结果波动小的参数辨识结果,提高了永磁同步电机转动惯量辨识的动态性能。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于永磁同步电机参数的辨识方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!