一种精确补偿逆变器非线性损失的方法及系统

文档序号:1579520 发布日期:2020-01-31 浏览:24次 >En<

阅读说明:本技术 一种精确补偿逆变器非线性损失的方法及系统 (method and system for accurately compensating nonlinear loss of inverter ) 是由 樊胜利 于 2019-10-12 设计创作,主要内容包括:本发明公开了一种精确补偿逆变器非线性损失的方法,包含以下步骤:步骤S1,在电机未运转时,向电机中注入多组不同数值的电流和载波频率信号,计算每个桥臂在不同电流和载波频率信号所对应的补偿参数T&lt;Sub&gt;dly&lt;/Sub&gt;和V&lt;Sub&gt;on&lt;/Sub&gt;;步骤S2,将不同数值的电流和载波频率信号和所对应的补偿参数T&lt;Sub&gt;dly&lt;/Sub&gt;和V&lt;Sub&gt;on&lt;/Sub&gt;制成电子数据并录入逆变器的储存器中;步骤S3,在电机正常运转时,利用所述步骤S2中的电子数据和线性插值方法计算每个桥臂所对应的补偿参数T&lt;Sub&gt;dly&lt;/Sub&gt;和V&lt;Sub&gt;on&lt;/Sub&gt;,计算每个桥臂所对应的非线性损失并分别进行补偿。本发明的有益效果是:1.本发明不增加及改动现有逆变器的硬件,成本低。2.本发明考虑了不同桥臂、不同开关频率、不同电流时的特性差异,可对非线性损失进行精准的补偿。(The invention discloses a method for accurately compensating nonlinear loss of an inverter, which comprises the following steps of S1, injecting a plurality of groups of current and carrier frequency signals with different values into a motor when the motor does not run, and calculating a compensation parameter T corresponding to different current and carrier frequency signals of each bridge arm dly And V on (ii) a Step S2, the current and carrier frequency signals with different values and the corresponding compensation parameter T dly And V on Making electronic data and recording the electronic data into a storage of the inverter; step S3, when the motor is running normally, the electronic data and the linear interpolation method in the step S2 are used for calculating the compensation parameter T corresponding to each bridge arm dly And V on And calculating the nonlinear loss corresponding to each bridge arm and respectively compensating. The invention has the beneficial effects that: 1. the invention does not increase and change the hardware of the existing inverter and has low cost. 2. The invention considers different bridge arms,The nonlinear loss can be accurately compensated by the characteristic difference of different switching frequencies and different currents.)

一种精确补偿逆变器非线性损失的方法及系统

技术领域

本发明涉及电力控制技术领域,特别涉及一种精确补偿逆变器非线性损失的方法及系统。

背景技术

目前工程上一般用如图1所示的三相逆变器来构建交流电机的变频驱动系统。因为同一桥臂上下管互补导通,所以必须向驱动信号中***一段死区时间,以防止“直通”现象发生。这一人为***的死区时间会造成逆变器输出电压的损失;除了这一因素外,开关管(VT1~VT6)的开通时间、关断时间、以及开关管和续流二极管(VD1~VD6)的导通压降,都会造成输出电压的损失。以下将这些项统称为逆变器非线性损失。

因为在极低速区域逆变器输出到电机的电压甚至会低于非线性损失电压,所以若要实现电机在极低速区域的高性能运行,必须对非线性损失进行精确补偿。补偿非线性损失有两个关键点,其一是相电流(iA,iB,iC)的方向判断,其二是设置合适的补偿电压。现有技术多集中于相电流方向(或相位)的判断,以降低相电流的过零畸变;对于补偿电压的设置,现有方法一般是根据驱动器的硬件配置如开关管型号、驱动电路参数等信息计算出补偿值,在逆变器运行时调用其进行补偿。该方法对元器件的一致性要求高,不便于维护,当采购及生产环节发生变更时易出现产品性能不稳定的现象。

根据现有文献,以A相为例,非线性损失的等效时间为:

Figure BDA0002231764310000011

其中,TdS为软件设定的上下管死区时间,Ton和Toff为实际的开通延迟和关断延迟,Vsat为开关管的导通压降,Vd为续流二极管的导通压降,D1或D2为上管开通比例,Fpwm为PWM载波的频率,Vdc为直流母线电压。

在公式(1)中,当相电流的正向和反向幅值相同时,D1+D2=1.0,可知正向和反向非线性损失等效时间相同,于是工程上公式(1)可用公式(2)来代替:

Figure BDA0002231764310000021

其中,Tdly=Ton-Toff

Von=DVsat-(1-D)Vd

上述公式中D用于替代D1或(1-D2),现有已公开的方法对于非线性等效时间的辨识,尚局限于对TdE进行辨识,无法分别辨识开通关断延时Tdly以及开关管或续流二极管的导通压降Von,而且无法辨识到具体每个桥臂的非线性等效参数,这样在开关频率发生变化时补偿效果就会变差,也无法实现对每相桥臂的精准补偿。

发明内容

为克服现有技术中全部或部分的缺陷,本发明提出一种精确补偿逆变器非线性损失的方法及系统,是通过如下技术方案实现的。

一种精确补偿逆变器非线性损失的方法,包含以下步骤:步骤S1,在电机未运转时,向电机中注入多组不同数值的电流和载波频率信号,计算每个桥臂在不同电流和载波频率信号所对应的补偿参数Tdly和Von;步骤S2,将不同数值的电流和载波频率信号和所对应的补偿参数Tdly和Von制成电子数据并录入逆变器的储存器中;步骤S3,在电机正常运转时,利用所述步骤S2中的电子数据和线性插值方法计算每个桥臂所对应的补偿参数Tdly和Von,计算每个桥臂所对应的非线性损失并分别进行补偿。

进一步地,步骤S1的具体步骤为S11,在电机未运转时,关闭C相桥臂开关管,在A相桥臂和B相桥臂之间以电流闭环的方式注入电流,得到C相桥臂不工作时的等效参数Tdly1’和Von1’;S12,在电机未运转时,关闭B相桥臂开关管,在A相桥臂和C相桥臂之间以电流闭环的方式注入电流,得到B相桥臂不工作时的等效参数Tdly2’和Von2’;S13,在电机未运转时,关闭A相桥臂开关管,在B相桥臂和C相桥臂之间以电流闭环的方式注入电流,得到A相桥臂不工作时的等效参数Tdly3’和Von3’;S14,根据Tdly1’和Von1’、Tdly2’和Von2’、Tdly3’和Von3’计算每个桥臂在不同电流和载波频率信号所对应的补偿参数Tdly和Von

进一步地,在步骤S11、S12和S13中,保持电流幅值不变,注入N2组不同载波频率信号的电流,然后分别保持N2个载波信号频率不变,注入N1组不同电流幅值的电流,得到对应的N1*(N2-1)组每个桥臂不工作时的等效参数;N1为不小于3的自然数,N2为不小于2的自然数。

进一步地,在步骤S2中,所述电子数据为以电流幅值和载波频率为坐标的二维表格。

进一步地,在步骤S3中,在电机运行时,根据确定的电流幅值和载波频率分别计算不同桥臂的补偿参数,确定不同桥臂的非线性补偿时间,对不同桥臂分别进行补偿。

进一步地,所述系统可实施权利要求1所述的方法。

本发明的有益效果是:

1.本发明不增加及改动现有逆变器的硬件,成本低。

2.本发明考虑了不同桥臂、不同开关频率、不同电流时的特性差异,可对非线性损失进行精准的补偿。

附图说明

图1是现有技术中三相逆变器与交流电机的变频驱动系统电路示意图。

图2是本发明方法流程示意图。

图3是本发明电机对非线性损失流程示意图。

图4是本发明系统工作原理示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

以下具体说明本发明的实施步骤:

1.计算C相桥臂不工作时的等效参数Tdly1’和Von1’。关闭C相桥臂开关管,给A相和B相之间以电流闭环的方式注入电流,其中:iA=-iB,A相电流iA方向为正,C相电流iC为零。

步骤1.1,首先注入幅值为I1的电流,载波频率Fpwm等于F1,电流达到稳态后采样指令电压Vref1、母线电压Vdc1以及相电流Is1;根据公式(3)求得等效的非线性损失时间,记录为TdE1

Figure BDA0002231764310000041

上述公式(3)中RS为电机的定子电阻

步骤1.2,维持电流幅值I1不变,将载波频率切换为F2,电流达到稳态后采样指令电压Vref2、母线电压Vdc2以及相电流Is2;根据公式(3)求得等效的非线性损失时间,记录为TdE2

根据这两组数据,结合公式(2)建立如下方程组:

Figure BDA0002231764310000051

求解方程组(4)得到一组Tdly1’及Von1’,用Par1(1,1)表示。

步骤1.3,维持电流幅值I1不变,将载波频率切换为F3,电流达到稳态后采集数据,根据F2和F3的采样数据联立方程并求解(参考步骤1.1—1.2),得到另一组Tdly1’及Von1’,用Par1(1,2)表示。

步骤1.4,维持电流幅值I1不变,切换载波频率直到FN2,得到相应的Par1(1,3),……,Par1(1,N2-1)。Par1(1,N2-1)表示C相桥臂不工作时,电流幅值为I1,载波频率从F(N2-1)变化至FN2时,所对应的等效参数Tdly1’和Von1’。

步骤1.5,将电流幅值变更为I2,将载波频率调至F1、F2、F3、……、F(N2-1)、FN2,计算得到Par1(2,1),Par1(2,2),……,Par1(2,N2-1)。

Par1(2,N2-1)表示C相桥臂不工作时,电流幅值为I2,载波频率从F(N2-1)变化至FN2时,所对应的等效参数Tdly1’和Von1’。

步骤1.6,将电流幅值变更为I3,将载波频率调至F1、F2、F3、……、F(N2-1)、FN2,计算得到Par1(3,1),Par1(3,2),……,Par1(3,N2-1)。

Par1(3,N2-1)表示C相桥臂不工作时,电流幅值为I3,载波频率从F(N2-1)变化至FN2时,所对应的等效参数Tdly1’和Von1’。

步骤1.7,将电流幅值变更为IN1,将载波频率调至F1、F2、F3、……、F(N2-1)、FN2,计算得到Par1(N1,1),Par1(N1,2),……,Par1(N1,N2-1)。

Par1(N1,N2-1)表示C相桥臂不工作时,电流幅值为IN1,载波频率从F(N2-1)变化至FN2时,所对应的等效参数Tdly1’和Von1’。数据采集并计算完成后将电流降到零,封锁输出。

2.计算B相桥臂不工作时的等效参数Tdly2’和Von2’。

关闭B相桥臂开关管,给A相桥臂和C相桥臂之间以电流闭环的方式注入电流,iC=-iA,C相电流iC为正,B相电流iB为零。根据步骤1方法,得到Par2(i,1),Par2(i,2),……,Par2(i,N2-1),其中i表示电流幅值的索引号,i=1、2、3、……、N1

3.计算A相桥臂不工作时辨识等效参数Tdly3’和Von3’。

关闭A相桥臂开关管,给B相桥臂和C相桥臂之间以电流闭环的方式注入电流,iB=-iC,B相电流iB方向为正,A相电流iA为0。根据步骤1方法,得到Par3(i,1),Par3(i,2),……,Par3(i,N2-1),其中i表示电流幅值的索引号,i=1、2、3、……、N1

将步骤1、步骤2和步骤3所得到的Tdly1’和Von1’、Tdly2’和Von2’、Tdly3’和Von3’利用表1进行描述。

表1

4.计算每一相桥臂的Tdly和Von

由于每一相桥臂开关管的驱动电路都是单独的,开关管及续流二极管特性也可能有所差异,而且电机相电阻也并非完全一致;因此为了达到比较理想的补偿效果,需要得到每一相的补偿参数,进行分开补偿。

根据步骤1—步骤3的开关管工作方式可知,步骤1得到的等效参数实际上是A相补偿参数和B相补偿参数的平均值,步骤2得到的等效参数实际上是A相补偿参数和C相补偿参数的平均值,步骤3得到的等效参数实际上是B相补偿参数和C相补偿参数的平均值。

于是三个桥臂的补偿参数分别为:

ParA(i,n)=[Par1(i,n)+Par2(i,n)+Par3(i,n)]–2*Par3(i,n)

ParB(i,n)=[Par1(i,n)+Par2(i,n)+Par3(i,n)]–2*Par2(i,n)

ParC(i,n)=[Par1(i,n)+Par2(i,n)+Par3(i,n)]–2*Par1(i,n)

上面式子中,i=1、2、3、……、N1,n=1、2、……、N2-1。为保证补偿精度,N1取值不小于3,N2取值不小于2,计算结果如表2所示:

Figure BDA0002231764310000081

表2

5.将表2制成电子数据,并录入三相逆变器控制部分的掉电保存型存储器中。步骤1—步骤4的过程一般仅需执行一次,除非更换电机或者逆变器配置发生变更。

6.电机运行时对非线性损失进行补偿。在电机运行时,以A相为例,首先根据当前的载波频率确定在表2中所处的列号,记为n(n=1、2、3、……、N2-1),然后根据A相电流幅值|iA|选定Ii和Ii+1行(i=1、2、3、……、N1-1)、n列的值作为插值基准,按照下面公式计算A相的补偿参数;公式中,当载波频率大于FN2时,取n=N2-1,当载波频率小于F1时,取n=1。

Figure BDA0002231764310000091

式中,ParA={TdlyA,VonA}

得到A相桥臂的非线性等效参数TdlyA和VonA后,将当前的设定死区时间TdS、当前的载波频率Fpwm、当前的直流母线电压Vdc一并代入公式2中,求得A相的非线性补偿时间TdEA。

同样的方法可得到B相桥臂和C相桥臂的非线性补偿时间TdEB和TdEC。步骤6所述的过程可用图3所示的流程图描述。

得到TdEA、TdEB和TdEC之后,根据相电流的方向对每个桥臂进行非线性损失时间补偿:相电流方向为正时,非线性补偿时间为正数,相电流方向为负时,非线性补偿时间为负数。

在本发明中,容易想到步骤1、步骤2和步骤3之间为并列关系,不具有特定的顺序关系。

在具体实施例中,系统在下列条件(N1=3,N2=3;I1=0.15IN,I2=0.5IN,I3=0.8IN;F1=1kHz,F2=4kHz,F3=8kHz,IN为逆变器的额定电流)下的辨识结果如表3所示:

表3

一种精确补偿逆变器非线性损失的系统,可实施上述方法,其工作原理为:1.在电机未运转时,使能一次非线性参数辨识,此时单元5根据步骤1—3的电流指令计算出电压指令并送至单元2,单元2计算出三相占空比时间并送给单元4,单元4输出驱动信号至单元7,单元7输出电压脉冲到电机。单元7将检测的相电流及母线电压送至单元5,单元5根据检测值控制相电流大小及载频按步骤1—3的要求变化并计算非线性等效参数,辨识结束后将辨识结果存储到单元6。

2.在电机运转时,单元1产生电压指令并送至单元2,单元2计算出三相占空比时间并送至单元3,单元3根据存储器中的非线性辨识参数以及检测到的相电流、母线电压,实时计算当前的非线性补偿值,对单元2的计算结果补偿后送至单元4,单元4输出驱动信号至单元7,单元7输出的电压即为精确补偿后的输出电压。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高可靠性无刷直流电机驱动及无位置控制系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!