加压安装用ncf、其固化物以及使用其的半导体装置

文档序号:1580647 发布日期:2020-01-31 浏览:34次 >En<

阅读说明:本技术 加压安装用ncf、其固化物以及使用其的半导体装置 (NCF for pressure mounting, cured product thereof, and semiconductor device using same ) 是由 登坂贤市 福原佳英 齐藤裕美 发地丰和 星山正明 于 2018-06-12 设计创作,主要内容包括:提供适于加压安装的NCF。加压气氛下固化用半导体封装先供给型膜,其特征在于,所述加压气氛下固化用半导体封装先供给型膜在120℃下的熔融粘度为100Pa·s以下,在260℃以上加热5秒~90秒后在120℃下的熔融粘度为200Pa·s以下,并且包含:(A)固体环氧树脂;(B)在室温下为液态并含有下述式1、式2的结构中的至少一种的芳香族胺,&lt;Image he="169" wi="700" file="DDA0002304017460000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;(C)二氧化硅填料;(D)质均分子量(Mw)为6000至100000的高分子树脂,其中,上述(A)成分的环氧树脂的环氧当量为220~340,相对于上述(A)成分100质量份,含有6质量份~27质量份的上述(B)成分,相对于各成分的合计质量100质量份,上述(C)成分的含量为20质量份~65质量份,上述(A)成分和上述(D)成分的含量比((A):(D))为99:1~65:35。(An NCF suitable for press-fitting is provided. A semiconductor package pre-feeding film for curing under a pressurized atmosphere, characterized in that the melt viscosity of the semiconductor package pre-feeding film for curing under a pressurized atmosphere at 120 ℃ is 100 pas or less, the melt viscosity at 120 ℃ after heating at 260 ℃ or more for 5 to 90 seconds is 200 pas or less, andcomprises (A) a solid epoxy resin, (B) an aromatic amine which is liquid at room temperature and contains at least kinds of structures represented by the following formulae (1) and (2), (C) a silica filler; (D) a polymer resin having a mass average molecular weight (Mw) of 6000 to 100000, wherein the epoxy equivalent of the epoxy resin of the component (A) is 220 to 340, the component (B) is contained in an amount of 6 to 27 parts by mass per 100 parts by mass of the component (A), the component (C) is contained in an amount of 20 to 65 parts by mass per 100 parts by mass of the total of the components, and the content ratio ((A): D)) of the component (A) to the component (D) is 99: 1to 65: 35.)

加压安装用NCF、其固化物以及使用其的半导体装置

技术领域

本发明涉及加压安装用NCF、其固化物以及使用其的半导体装置。

背景技术

以往,在半导体安装中进行倒装芯片法(フリップチップ法):使形成有IC(集成电路)芯片的电极(凸点)的面与形成有基板的电极(电极极板)的面相对,将IC芯片的凸点和基板的电极极板(電極パッド)电连接。

在该倒装芯片法中,为了从外部保护电极彼此的连接部分,缓和由IC芯片与基板的线膨胀系数不同引起的应力,通常在电极连接后,使半导体芯片和基板之间流入被称为底部填充剂(アンダーフィル剤)的液态热固化型粘接剂并使其固化。

近年来,IC芯片的微小化正在急速发展。与此相伴,邻接的电极间的间距(ピッチ)、半导体芯片与基板之间的间隙(ギャップ)有越来越窄的倾向。因此,当利用毛细管现象使底部填充剂流入IC芯片与基板之间时,会产生空隙(ボイド),产生底部填充剂的流入需要长时间等问题。

因此,尝试了所谓的先入法(先入れ法)(参照专利文献1):预先将被称为NCP(非导电胶)的液态粘接剂或被称为NCF(非导电膜)的膜状粘接剂涂布或粘贴在基板上,然后,利用倒装芯片粘合机等通过热压粘合(Thermal Compression Bonding:TCB)使树脂固化,连接IC芯片的凸点和基板的电极极板。

作为抑制半导体安装时的空隙的方法,提出了在加压气氛下加热进行安装的加压安装(参照专利文献2、专利文献3)。

现有技术文献

专利文献

专利文献1:日本特开2015-503220号公报

专利文献2:日本特开2013-123033号公报

专利文献3:国际公开WO2016/148121号

发明内容

发明要解决的技术问题

本发明的目的在于提供适于加压安装的NCF,更具体而言,提供在加压安装中使用的情况下空隙抑制效果高的NCF、其固化物以及使用其的半导体装置。

解决技术问题的技术手段

为了达成上述目的,本发明是一种加压气氛下固化用半导体封装先供给型膜(加圧雰囲気下硬化用半導体封止先供給型フィルム),其特征在于,所述加压气氛下固化用半导体封装先供给型膜在120℃下的熔融粘度为100Pa·s以下,在260℃以上加热5秒~90秒后在120℃下的熔融粘度为200Pa·s以下,并且包含:

(A)固体环氧树脂;

(B)在室温下为液态并含有下述式1、式2的结构中的至少一种的芳香族胺,

[化1]

Figure BDA0002304017450000021

[化2]

(C)二氧化硅填料;

(D)质均分子量(Mw)为6000至100000的高分子树脂,

其中,上述(A)成分的环氧树脂的环氧当量为220~340,

相对于上述(A)成分100质量份,含有6质量份~27质量份的上述(B)成分,

相对于各成分的合计质量100质量份,上述(C)成分的含量为20质量份~65质量份,

上述(A)成分和上述(D)成分的含量比((A):(D))为99:1~65:35。

在本发明的加压气氛下固化用半导体封装先供给型膜中,优选在120℃下的熔融粘度为100Pa·s以下,在260℃以上加热5秒~90秒后在120℃下的熔融粘度上升率为50%以下。

在本发明的加压气氛下固化用半导体封装先供给型膜中,上述(D)成分的高分子树脂优选为具有双酚F结构的苯氧基树脂。

在本发明的加压气氛下固化用半导体封装先供给型膜中,上述(C)成分的二氧化硅填料的平均粒径优选为1μm以下。

此外,本发明提供本发明的加压气氛下固化用半导体封装先供给型膜的固化物。

此外,本发明提供使用本发明的加压气氛下固化用半导体封装先供给型膜的半导体装置。

有益效果

本发明的加压气氛下固化用半导体封装先供给型膜在加压安装中使用的情况下空隙抑制效果高。因此,适于加压安装用的NCF。

具体实施方式

以下对本发明进行详细说明。

本发明的加压气氛下固化用半导体封装先供给型膜(以下记载为加压安装用NCF)包含(A)固体环氧树脂、(B)后述的特定的芳香族胺、(C)二氧化硅填料以及(D)后述的特定的高分子树脂。

(A)固体环氧树脂

(A)成分的固体环氧树脂主要有助于本发明的加压安装用NCF的粘接性。

在本发明中,固体环氧树脂是指常温下为固体的环氧树脂。作为(A)成分,通过使用固体环氧树脂,能够赋予成膜能力。

作为(A)成分的固体环氧树脂,可以从常温下为固体的环氧树脂中广泛选择。具体而言,例如可以使用双酚A型环氧树脂、双酚S型环氧树脂、萘型环氧树脂、苯酚酚醛清漆型(ノボラック型)环氧树脂、苯酚芳烷基型环氧树脂、甲酚酚醛清漆型环氧树脂、联苯型环氧树脂、联苯酚醛清漆型环氧树脂、联苯芳烷基型环氧树脂、三苯基甲烷型环氧树脂、二环戊二烯型环氧树脂等。

上述物质中,联苯芳烷基型环氧树脂、苯酚芳烷基型环氧树脂、二环戊二烯型环氧树脂由于耐热性、密合性、可靠性优异而优选。

另外,作为(A)成分的固体环氧树脂,可以使用上述物质中的任一种,也可以将两种以上组合使用。

从熔融粘度的调节和反应性的观点来看,(A)成分的固体环氧树脂的环氧当量为220~340。环氧当量小于220时,在压力烘箱(加压加热)实施时NCF固化,不能抑制空隙。环氧当量大于340时,在120℃下的熔融粘度大于100Pa·s,即使进行压力烘箱安装也不能抑制空隙。

(A)成分的固体环氧树脂的环氧当量优选为220~310,较优选为225~290。

(A)成分的固体环氧树脂的质均分子量(Mw)优选为500~3000,较优选为750~2500。

(B)芳香族胺

(B)成分的芳香族胺在室温下为液态并含有下述式1、式2的结构中的至少一种。

[化3]

Figure BDA0002304017450000041

[化4]

Figure BDA0002304017450000042

通过使(B)成分的芳香族胺在室温下为液态,加压安装用NCF具有适度的韧性。

此外,通过使(B)成分的芳香族胺含有上述式1、式2的结构中的至少一种,可以将在120℃下的熔融粘度以及在260℃以上加热5秒~90秒后在120℃下的熔融粘度调整为后述的条件。

(B)成分的芳香族胺可以含有上述式1、式2的结构中的任一种,也可以含有两种。

从强韧性、熔融粘度的调整和反应性的观点来看,相对于(A)成分的固体环氧树脂100质量份,(B)成分的芳香族胺的含量为6质量份~27质量份,较优选为14质量份~26质量份。

(C)二氧化硅填料

为了提高利用加压安装用NCF安装的半导体封装体的可靠性的目的,添加(C)成分的二氧化硅填料。

从加压安装用NCF的成膜性和透明性的观点来看,相对于加压安装用NCF的各成分的合计质量100质量份,(C)成分的二氧化硅填料的含量为20质量份~65质量份。(C)成分的含量小于20质量份时,利用加压安装用NCF安装的半导体封装体的可靠性降低。(C)成分的含量大于65质量份时,成膜性和加压安装用NCF的透明性降低。

相对于加压安装用NCF的各成分的合计质量100质量份,(C)成分的含量,

为了膜平滑性、膜透明性、降低芯片损伤,(C)成分的二氧化硅填料的平均粒径优选为1μm以下,较优选为0.5μm以下。

作为(C)成分的二氧化硅填料,也可以使用经硅烷偶联剂等实施表面处理的二氧化硅填料。

(D)高分子树脂

(D)成分的高分子树脂是成膜剂,有助于加压安装用NCF的强韧性。(D)成分的高分子树脂的质均分子量(Mw)为6000至100000。(D)成分的高分子树脂的Mw小于6000时,成膜性恶化。另一方面,(D)成分的高分子树脂的Mw大于100000时,在120℃下的熔融粘度以及在260℃以上加热5秒~90秒后在120℃下的熔融粘度增加,不能满足后述的条件,并且在压力烘箱(加压加热)实施时不能抑制空隙。

从加压安装用NCF的透明性的观点来看,作为(D)成分的高分子树脂优选不存在晶核的高分子树脂。

作为(D)成分的高分子树脂,优选苯氧基树脂,其中,较优选具有双酚F型结构的高分子树脂。

(D)成分的高分子树脂的含有比例以相对于(A)成分的固体环氧树脂的质量比((A):(D))计为99:1~65:35。(D)成分的含有比例过小时,成膜性恶化。(D)成分的含有比例过大时,在120℃下的熔融粘度以及在260℃以上加热5秒~90秒后在120℃下的熔融粘度增加,不能满足后述的条件,并且在压力烘箱(加压加热)实施时不能抑制空隙。

本发明的加压安装用NCF也可以进一步含有以下成分作为任选成分。

(液态环氧树脂)

为了调节粘度的目的,本发明的加压安装用NCF也可以含有液态环氧树脂。在本发明中,液态环氧树脂是指常温下为液态的环氧树脂。具体而言,例如列举双酚A型环氧树脂、双酚F型环氧树脂。

在含有液态环氧树脂的情况下,需要注意其杂质浓度。此外,液态环氧树脂含量过多时,加压安装用NCF被赋予流动性和柔软性,操作性降低,因此,需要留意不要使液态环氧树脂的含量过多。

(偶联剂)

为了提高对IC芯片和基板的密合性的目的,本发明的加压安装用NCF也可以含有偶联剂。

作为偶联剂,优选含有环氧基或(甲基)丙烯酸酯基的偶联剂。

(固化促进剂)

本发明的加压安装用NCF根据需要也可以含有环氧树脂的固化促进剂。

(流变调节剂)

为了调节涂布适应性、流动适应性的目的,本发明的加压安装用NCF根据需要也可以含有流变调节剂。

(分散剂、防沉降剂)

为了提高(C)成分的二氧化硅填料以及任选成分的着色剂的分散性、防止沉降的目的,本发明的加压安装用NCF根据需要也可以含有分散剂、防沉降剂。

(消泡剂)

为了调节消泡性的目的,本发明的加压安装用NCF根据需要也可以含有消泡剂。

(着色剂)

为了着色目的,本发明的加压安装用NCF根据需要也可以含有着色剂。

(表面调节剂)

为了调节表面状态、润湿性的目的,本发明的加压安装用NCF根据需要也可以含有表面调节剂。

(弹性体类)

为了调节弹性模量、应力的目的,本发明的加压安装用NCF根据需要也可以含有弹性体类。

(加压安装用NCF的制造)

本发明的加压安装用NCF可以通过惯用方法制造。例如,在溶剂的存在下或不存在下,通过加热真空混合捏合机将上述(A)成分~(D)成分和进一步根据需要含有的其它成分混合,制备树脂组合物。

可以使上述(A)成分~(D)成分和进一步根据需要含有的其它成分以处于所期望的含量比的方式溶解于规定的溶剂浓度,将它们以规定量投入加热至10℃~80℃的反应釜中,一边以转速100rpm~1000rpm旋转,一边进行3小时的常压混合后,在真空下(最大1Torr)进一步混合搅拌3分钟~60分钟。

将按照上述程序制备的树脂组合物用溶剂稀释而作为清漆(ワニス),将其涂布在支撑体的至少一面上,使其干燥后,可以作为带支撑体的加压安装用NCF或从支撑体剥离的加压安装用NCF来提供。

作为可作为清漆来使用的溶剂,列举甲基乙基酮、甲基异丁基酮等酮类;甲苯、二甲苯等芳香族溶剂;邻苯二甲酸二辛酯、邻苯二甲酸二丁酯等高沸点溶剂等。溶剂的使用量不受特别限定,可以是以往使用的量,但优选地,相对于加压安装用NCF的各成分为20质量%~90质量%。

支撑体可以根据加压安装用NCF的制造方法中所期望的形态适当选择,虽不受特别限定,但例如列举铜、铝等金属箔;聚酯、聚乙烯等树脂的载体膜等。在以从支撑体剥离的膜的形态提供本发明的加压安装用NCF的情况下,支撑体优选用硅酮化合物等脱模剂进行脱模处理。

涂布清漆的方法虽不受特别限定,但例如列举狭缝模头(スロットダイ)方式、凹版(グラビア)方式、刮刀涂布方式等,根据所期望的膜厚度等来适当选择。进行涂布,使得干燥后形成的膜的厚度达到所期望的厚度。这样的厚度可以由本领域技术人员从溶剂含量得出。

干燥的条件根据清漆中使用的溶剂的种类和量、清漆的使用量和涂布的厚度等来适当设计,虽不受特别限定,但例如可以为60℃~100℃、在大气压下进行。

接着,对本发明的加压安装用NCF的特性进行说明。

本发明的加压安装用NCF在120℃下的熔融粘度为100Pa·s以下。由此,在加压安装时,芯片安装(チップマウント)时的流动性变得良好,抑制了该阶段中的空隙。

本发明的加压安装用NCF在120℃下的熔融粘度优选为50Pa·s以下。

本发明的加压安装用NCF在260℃以上加热5秒~90秒后在120℃下的熔融粘度为200Pa·s以下。由此,在加压安装时,在TCB后和芯片安装后实施回流(リフロー)时的流动性变得良好,抑制了该阶段中的空隙。

本发明的加压安装用NCF在260℃以上加热5秒~90秒后在120℃下的熔融粘度优选为180Pa·s以下。

从在加压安装时在TCB后和芯片安装后实施回流时的流动性良好来看,作为本发明的加压安装用NCF在120℃下的熔融粘度与在260℃以上加热5秒~90秒后在120℃下的熔融粘度之比求出的在260℃以上加热5秒~90秒后在120℃下的熔融粘度上升率((在260℃以上加热5秒~90秒后在120℃下的熔融粘度)/(在120℃下的熔融粘度)×100)优选为50%以下,较优选为45%以下。

接着,本发明的加压安装用NCF的使用程序如下所示。

在使用本发明的加压安装用NCF来安装半导体封装体的情况下,通过层压机等将加压安装用NCF以期望的形状粘贴到基板上的安装半导体芯片的位置处。

此外,也可以在通过层压机等粘贴到形成有半导体电路的晶片(ウエハ)上之后,通过切片机(ダイサー)等切出各个芯片。层压条件虽不受特别限定,但可以适当组合加热、加压、减压等条件。特别是为了在微小的凹凸上以无空隙等缺陷的方式粘贴,优选加热温度为40℃~120℃、真空度(減圧度)为1hPa以下、压力为0.01MPa以上。

通过层压等粘贴加压安装用NCF后,在基板上的芯片搭载位置上进行芯片安装后,加热到规定的温度进行回流。回流时的加热温度优选为220℃~280℃。然后,使用压力烘箱实施加压加热固化。加压加热固化的加热温度为165℃~185℃、压力为0.2MPa~1.0MPa,在该条件下进行30分钟以上4小时以下的加压加热固化。

通过层压等粘贴加压安装用NCF后,利用倒装芯片粘合机等通过热压粘合(TCB)在基板上的芯片搭载位置上进行芯片安装后,也可以按照与上述同样的程序实施加压安装。TCB条件虽不受特别限定,但可以根据半导体芯片尺寸、凸点材料、凸点数等适当选择TCB条件。

优选加热温度为50℃~300℃、时间为0.5秒~20秒、压力为5N~450N。

本发明的半导体装置只要是在半导体装置制造时使用了本发明的加压安装用NCF的装置,则不受特别限定。作为本发明的半导体装置的具体例,列举具有倒装芯片结构的半导体装置。倒装芯片具有被称为凸点的突起状的电极,通过该电极与基板等的电极连接。作为凸点材料,列举焊料(はんだ)、金、铜等。作为与倒装芯片连接的基板有FR-4等单层或层叠的有机基板;硅、玻璃、陶瓷等无机基板,使用铜以及在铜上形成镀金或镀锡、焊料层等的电极。作为倒装芯片结构的半导体装置,列举DRAM(动态随机存取存储器)等存储设备、CPU(中央处理单元)、GPU(图形处理单元)等处理器设备、LED(发光二极管)等发光元件、LCD(液晶显示器)等中使用的驱动IC等。

实施例

以下通过实施例对本发明进行详细说明,但本发明并不限定于这些。

(实施例1~实施例11、比较例1~比较例9)

按照下表所示的配合比例混合各原料,以混合物为50wt%的浓度的方式使其溶解·分散在溶剂中,制备涂布用清漆。溶剂使用甲基乙基酮(和光纯药工业株式会社制造)。

将涂布用清漆涂布在涂布了脱模剂的PET(聚对苯二甲酸乙二醇酯)膜上,使其干燥厚度为约20μm。然后,将涂布了涂布用清漆的经脱模剂处理的PET(聚对苯二甲酸乙二醇酯)膜在干燥机中在80℃下干燥10分钟,除去溶剂,制作20μm厚的加压安装用NCF。另外,表中关于各组成的数值表示质量份。

制作加压安装用NCF时使用的成分如下。

(A)固体环氧树脂

(A1)联苯芳烷基型环氧树脂,商品名NC3000,日本化药株式会社制造,环氧当量265~285

(A2)苯酚芳烷基型环氧树脂,商品名NC2000L,日本化药株式会社制造,环氧当量229~244

(A′1)联苯型环氧树脂,商品名YX4000H,日本エポキシレジン公司制造,环氧当量187~197

(A′2)双酚A型环氧树脂,商品名jER1001,三菱化学制造,环氧当量187~197

(B)液态芳香族胺

(B1)含有下述式(2)的结构的芳香族胺,商品名EH105,ADEKA制造

[化5]

(B′1)含有下述式(3)的结构的芳香族胺,商品名HDAA,日本化药制造

[化6]

(B2)含有下述式(1)的结构的芳香族胺,商品名Ethacure(エタキュア)100,ALBEMARLE(アルベマール)日本株式会社制造

[化7]

Figure BDA0002304017450000113

(B′2)苯酚酚醛清漆树脂,商品名CRM-953,アイカSDKフェノール株式会社制造

(C)二氧化硅填料

(C1)平均粒径0.1μm

(C2)平均粒径0.5μm

(D)高分子树脂

(D1)具有双酚F型结构的苯氧基树脂,商品名jER4250,三菱化学制造,Mw60000

(D2)具有双酚F型结构的苯氧基树脂,商品名FX316,东都化成制造,Mw45000

(D′1)双酚A型环氧树脂,商品名jER1010,三菱化学制造,Mw5500

(D′2)聚乙烯醇缩甲醛,商品名“ビニレックE”,Chisso(チッソ)制造,Mw126000

使用按照上述程序制作的加压安装用NCF,实施以下评价。

(成膜性)

按照以下所示的程序实施弯曲试验。

将按照上述程序制作的加压安装用NCF弯折180°后,确认有无裂纹。

确认实施弯曲试验后的膜中有无裂纹。在未发现裂纹的情况下设为○,在发现裂纹的情况下设为×。

(能见度)

将按照上述程序制作的加压安装用NCF层压在具有标记的芯片上(温度80℃,压力0.4MPa),通过目视进行评价。在能够确认芯片上的标记的情况下设为○,在无法确认芯片上的标记的情况下设为×。

(120℃粘度(260℃前))

将通过TA INSTRUMENTS(インスツルメント)公司制造的ARES-G2在测定条件·8mm铝平行板·频率1Hz·strain 0.0004%~1000%下测定的最低值作为在120℃下的熔融粘度。

(120℃粘度(260℃后))

在260℃下加热10秒后,按照与上述同样的程序测定在120℃下的熔融粘度。

(固化后的流动性)

使用压力烘箱在加压条件下进行加热固化后,按照以下程序评价流动性。加压条件下的加热固化在压力0.7MPa、温度175℃下实施3小时。根据针的指针,确认没有流动性。

(压力烘箱后的空隙)

按照上述程序在加压条件下进行加热固化后,使用超声波显微镜观察有无空隙。在观察区域内的空隙面积为5%以下的情况下设为合格,在大于5%的情况下设为不合格。

(可靠性(压力烘箱+回流))

按照上述程序在加压条件下进行加热固化后,加热至温度255℃使其回流后,使用超声波显微镜观察有无空隙。在观察区域内的空隙面积为5%以下的情况下设为合格,在大于5%的情况下设为不合格。

另外,关于压力烘箱后的空隙和可靠性(压力烘箱+回流),制作5个相同的样品,并对这5个样品实施了评价。

结果示于下表中。

[表1]

实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
(A1) 44.0 46.0 44.0 44.0 46.0
(A2) 43.0
(A′1)
(A′2)
(B1) 10.0 11.0 10.0 10.0 10.0
(B′1)
(B2) 8.0
(B′2)
(C1) 40.0 40.0 40.0 40.0 20.0
(C2) 40.0
(D1) 6.0 6.0 6.0 6.0
(D2) 6.0 24.0
(D′1)
(D′2)
合计 100 100 100 100 100 100
膜特性
成膜性
能见度
120℃粘度(260℃前)[Pa·s] 31 25 22 24 16 49
120℃粘度(260℃后)[Pa·s] 31 28 24 29 20 51
固化后的流动性
压力烘箱后的空隙 0/5 0/5 0/5 0/5 0/5 0/5
可靠性(压力烘箱+回流) 0/5 0/5 0/5 0/5 0/5 0/5
(A)成分 44.0 43.0 46.0 44.0 44.0 46.0
(B)成分 10.0 11.0 8.0 10.0 10.0 10.0
相对于(A)成分100的(B)成分 22.7 25.6 17.4 22.7 22.7 21.7
(A)成分 8.8 8.8 8.8 8.8 8.8 6.6
(D)成分 1.2 1.2 1.2 1.2 1.2 3.4
(A)成分+(D)成分 10.0 10.0 10.0 10.0 10.0 10.0

[表2]

实施例7 实施例8 实施例9 实施例10 实施例11
(A1) 48.0 43.0 47.0 33.0 59.0
(A2)
(A′1)
(A′2)
(B1) 11.0 11.0 7.0 7.0 13.0
(B′1)
(B2)
(B′2)
(C1) 40.0 40.0 40.0 55.0 20.0
(C2)
(D1) 1.0 6.0 6.0 5.0 8.0
(D2)
(D′1)
(D′2)
合计 100 100 100 100 100
膜特性
成膜性
能见度
120℃粘度(260℃前)[Pa·s] 6 39 23 92 16
120℃粘度(260℃后)[Pa·s] 7 42 24 105 18
固化后的流动性
压力烘箱后的空隙 0/5 0/5 0/5 0/5 0/5
可靠性(压力烘箱+回流) 0/5 0/5 0/5 0/5 0/5
(A)成分 48.0 43.0 47.0 33.0 59.0
(B)成分 11.0 11.0 7.0 7.0 13.0
相对于(A)成分100的(B)成分 22.9 25.6 14.9 21.2 22.0
(A)成分 9.8 8.8 8.9 8.7 8.8
(D)成分 0.2 1.2 1.1 1.3 1.2
(A)成分+(D)成分 10.0 10.0 10.0 10.0 10.0

[表3]

比较例1 比较例2 比较例3 比较例4 比较例5
(A1) 27.0 51.0
(A2) 40.0
(A′1) 40.0
(A′2) 40.0
(B1) 8.0 2.0
(B′1) 13.0 13.0 13.0
(B2)
(B′2)
(C1) 40.0 40.0 40.0 40.0 40.0
(C2)
(D1) 25.0 7.0 7.0 7.0 7.0
(D2)
(D′1)
(D′2)
合计 100 100 100 100 100
膜特性
成膜性
能见度
120℃粘度(260℃前)[Pa·s] 1734 25 36 18 140
120℃粘度(260℃后)[Pa·s] 1753 140 37 172 145
固化后的流动性
压力烘箱后的空隙 5/5 5/5 0/5 5/5 5/5
可靠性(压力烘箱+回流) 5/5 5/5 5/5 5/5 5/5
(A)成分 27.0 40.0 51.0 40.0 40.0
(B)成分 8.0 13.0 2.0 13.0 13.0
相对于(A)成分100的(B)成分 29.6 32.5 3.9 32.5 32.5
(A)成分 5.2 8.5 8.8 8.5 8.5
(D)成分 4.8 1.5 1.2 1.5 1.5
(A)成分+(D)成分 10.0 10.0 10.0 10.0 10.0

[表4]

比较例6 比较例7 比较例8 比较例9
(A1) 36.0 44.0 44.0 22.0
(A2)
(A′1)
(A′2)
(B1) 10.0 10.0 5.0
(B′1)
(B2)
(B′2) 18.0
(C1) 40.0 40.0 40.0 70.0
(C2)
(D1) 6.0
(D2)
(D′1) 6.0
(D′2) 6.0 3.0
合计 100 100 100 100
膜特性
成膜性 × ×
能见度 ×
120℃粘度(260℃前)[Pa·s] 38 18 318 575
120℃粘度(260℃后)[Pa·s] 38 24 324 580
固化后的流动性
压力烘箱后的空隙 0/5 0/5 5/5 5/5
可靠性(压力烘箱+回流) 5/5 0/5 5/5 5/5
(A)成分 36.0 44.0 44.0 22.0
(B)成分 0.0 10.0 10.0 5.0
相对于(A)成分100的(B)成分 0.0 22.7 22.7 22.7
(A)成分 8.6 8.8 8.8 8.8
(D)成分 1.4 1.2 1.2 1.2
(A)成分+(D)成分 10.0 10.0 10.0 10.0

实施例1~实施例11的成膜性、能见度、压力烘箱后的空隙、可靠性(压力烘箱+回流)均良好。另外,实施例2是相对于实施例1改变了(A)成分的固体环氧树脂的实施例。实施例3是相对于实施例1改变了(B)成分的液态芳香族胺的实施例。实施例4是改变了(C)成分的二氧化硅填料的粒径的实施例。实施例5是相对于实施例1改变了(D)成分的高分子树脂的实施例。实施例6是相对于实施例5改变了(D)成分的配合比例的实施例。实施例7是相对于实施例1改变了(D)成分的配合比例的实施例。实施例8、实施例9是相对于实施例1改变了(B)成分相对于(A)成分的配合比例的实施例。实施例10、实施例11是相对于实施例1改变了(C)成分的配合比例的实施例。比较例1是(D)成分的配合比例大、在120℃下的熔融粘度(260℃前、260℃后)不满足本发明的条件的例子,压力烘箱后的空隙和可靠性(压力烘箱+回流)差。比较例2是使用本发明以外的结构的液态芳香族胺的例子,压力烘箱后的空隙和可靠性(压力烘箱+回流)差。比较例3是(B)成分的配合比例小的例子,固化后观察到流动性。比较例4是使用环氧当量低的固体环氧树脂的例子,压力烘箱后的空隙和可靠性(压力烘箱+回流)差。比较例5是使用环氧当量高的固体环氧树脂、在120℃下的熔融粘度(260℃前)不满足本发明的条件的例子,压力烘箱后的空隙和可靠性(压力烘箱+回流)差。比较例6是使用酚醛清漆苯酚树脂代替(B)成分的例子,固化后观察到流动性。比较例7是使用Mw低的高分子树脂的例子,成膜性差。比较例8是使用Mw高的高分子树脂、在120℃下的熔融粘度(260℃前、260℃后)不满足本发明的条件的例子,压力烘箱后的空隙和可靠性(压力烘箱+回流)差。比较例9是(C)成分的二氧化硅填料的配合比例大、在120℃下的熔融粘度(260℃前、260℃后)不满足本发明的条件的例子,所有的评价项目都差。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:高分子化合物的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!