一种基于共价键结合的光催化剂负载织物的制备方法

文档序号:1587259 发布日期:2020-02-04 浏览:33次 >En<

阅读说明:本技术 一种基于共价键结合的光催化剂负载织物的制备方法 (Preparation method of photocatalyst-loaded fabric based on covalent bond combination ) 是由 刘保江 杨瑞祥 钟山 张漓杉 高品 晏凌峰 杨瑞颖 朱智甲 胡春艳 赵强强 朱晨 于 2019-09-09 设计创作,主要内容包括:本发明涉及一种基于共价键结合的光催化剂负载织物的制备方法,分别用硅烷偶联剂对光催化剂和棉织物进行改性反应制备。本发明中,光催化剂与棉织物是基于共价键连接的,从而使光催化剂与棉织物的结合比较牢固,具有高的循环稳定性能;同时制备方法简单,制备条件要求低,绿色环保,极大提高了光催化技术在污水处理中的应用。(The invention relates to a preparation method of a photocatalyst-loaded fabric based on covalent bond combination, which is prepared by respectively carrying out modification reaction on a photocatalyst and a cotton fabric by using a silane coupling agent. In the invention, the photocatalyst and the cotton fabric are connected based on covalent bonds, so that the combination of the photocatalyst and the cotton fabric is firmer and the photocatalyst has high cycle stability; meanwhile, the preparation method is simple, the requirement on preparation conditions is low, the preparation method is green and environment-friendly, and the application of the photocatalysis technology in sewage treatment is greatly improved.)

一种基于共价键结合的光催化剂负载织物的制备方法

技术领域

本发明属于光催化剂功能织物的制备领域,特别涉及一种基于共价键结合的光催化剂负载织物的制备方法。

背景技术

水污染已经成为制约当前社会经济发展的重要因素。其中有机污染物和重金属离子是主要污染源。传统的水污染治理方法都会产生一定的问题如二次污染、高耗能、系统稳定性差等。因此,具有绿色环保、低能耗、高稳定性性能的光催化法引起了研究者的广泛关注。

在各种半导体中,钒酸铋是一种具有无毒,高光稳定性和优异光催化性能的光催化剂;另外,通过掺杂铁金属离子,光催化活性获得了极大的改进。然而,在水溶液中,铁离子掺杂的钒酸铋粉末分散性差,容易聚集,造成光催化性能降低;更重要的是,光催化剂粉末分散在水溶液中,再处理比较困能,重复使用性差,甚至会带来二次污染。

为了解决这个问题,研究人员将光催化剂负载到合适的底物上。到目前为止,已经开发了许多技术,如悬浮液浸渍法,溶胶-凝胶法和静电纺丝。此外,已经使用了许多不同类型的基材,例如不锈钢,活性炭,二氧化硅和碳布。然而,通过悬浮液浸渍法制备的光催化剂负载棉织物,由于基底与光催化剂仅仅通过范德华力和氢键连接,因此,光催化剂的附着力很差,容易脱落。虽然溶胶-凝胶法和静电纺丝法可以解决由于连接不良引起的问题,但绝大多数催化剂都不能与污染物反应,因为它们被无用的基质包围。

CN 103194888 A公开了一种高效可见光催化功能织物的制备方法,制备的光催化织物催化剂和织物通过分子间作用力(氢键和范德华力),耐久性相对较差,循环稳定性差的问题,本发明克服现有光催化剂负载催化剂耐久性差活性低缺陷,发明了一种基于共价键结合的光催化剂负载棉织物的制备方法。

发明内容

本发明所要解决的技术问题是提供一种基于共价键结合的光催化剂负载织物的制备方法,克服现有技术光催化剂附着力差、容易脱落的技术问题,本发明中分别用含碳-碳双键和含巯基的硅烷偶联剂对光催化剂和棉织物进行改性;然后,通过硫醇-烯点击化学反应将光催化剂和棉织物连接。

本发明的一种光催化功能织物,含碳碳双键的硅烷偶联剂改性的光催化剂、含巯基的硅烷偶联剂改性的织物通过硫醇-烯点击化学反应连接获得。

所述光催化剂为Fe(III)/BiVO4;含碳碳双键的硅烷偶联剂为KH570;含巯基的硅烷偶联剂为 KH580。

本发明的一种光催化功能织物的制备方法,包括:在紫外光照射下,含碳碳双键的硅烷偶联剂改性的光催化剂和含巯基的硅烷偶联剂改性的织物进行反应连接。

上述制备方法的优选方式如下:

所述光催化剂为Fe/BiVO4,由下列方法制备(通过水热法合成Fe(III)/BiVO4光催化材料):将钒酸铵溶液滴加到硝酸铋溶液中,调节pH值为2-4进行水热反应,洗涤,干燥,得到钒酸铋,然后,将钒酸铋分散到硝酸铁溶液中,反应,洗涤,干燥,即得;其中水热反应温度和时间分别为160-200℃和4-8h;钒酸铋和硝酸铁的反应温度和时间分别为60-90℃和4-8小时。所述钒酸铵溶液为钒酸铵溶解在氢氧化钠溶液中得到;硝酸铋溶液为硝酸铋溶解在硝酸中,得到。

所述含碳碳双键的硅烷偶联剂改性的光催化剂为Fe(III)/BiVO4/KH570复合物;含巯基的硅烷偶联剂改性的织物为KH580/棉。

所述含碳碳双键的硅烷偶联剂改性的光催化剂具体为:将含碳碳双键的硅烷偶联剂加入光催化剂的水溶液中,在50-80℃的水浴中并搅拌,洗涤和干燥。

所述含巯基的硅烷偶联剂改性的织物具体为:将织物加入乙醇-去离子水溶液(体积比= 4:1-1:1)中;然后,将含巯基的硅烷偶联剂(KH580)溶液加入上述溶液中用乙酸调节pH至 2-6并继续搅拌;最后,在烘箱中固化;其中固化温度和时间为100-130℃和3-10min。

上述织物为棉织物、麻织物、涤纶织物、粘胶织物、蚕丝织物、氨纶织物、尼龙织物、维纶织物中的一种或者两种混纺而成的织物。

所述棉织物为处理后的棉织物,具体为:用丙酮和无水乙醇清洗的纯棉织物。

所述反应连接具体为:含碳碳双键的硅烷偶联剂改性的光催化剂分散在乙醇-去离子水溶液 (体积比=4:1-1:1)中,加入2,2-二羟甲基丙酸,然后浸入含巯基的硅烷偶联剂改性的织物,在400-600W紫外线辐射的下搅拌2-6h。

本发明的一种所述方法制备的光催化功能织物。

本发明的一种所述光催化功能织物的应用,如处理污水中的有机物和重金属离子、降解土壤中污染物。

有益效果

(1)相对于现有的负载方法,本发明将棉织物和光催化剂改性,通过硫醇-巯基点击化学反应将改性后的棉织物和光催化以共价键方式结合,相比较范德华力和氢键,共价键的结合能力更强,克服了以往光催化剂吸附牢度差的缺点,循环稳定性大大提高;

(2)同时本发明简单便捷,成本低,绿色环保;制备的铁离子掺杂的钒酸铋光催化剂负载的棉织物对染料降解和六价铬离子还原具有极好的效果。

附图说明

图1为制造Fe(III)@BiVO4/棉织物的示意图;

图2为KH570和KH580之间的硫醇-烯点击反应的示意图;

图3(a)所制备样品的FTIR光谱;(b)KH580/棉,BiVO4/棉和Fe(III)@BiVO4/棉的拉曼光谱;(b)中的插图显示了处理DTNB后纯棉和KH580/棉的显色反应;(c)KH570和Fe(III)@BiVO4/棉的FTIR光谱;(d)KH580/棉,BiVO4/棉和Fe(III)@BiVO4/棉的XRD图谱;

图4中(a)纯棉;(b)KH580/棉和(c)Fe(III)@BiVO4/棉的SEM图像;(d-e)为放大图像和(f)映射Fe(III)@BiVO4/棉中的O,Bi,V和Fe元素;

图5为所制备样品的Cr(VI)(a,c)和RB-19(b,d)的降解和动力学拟合;

图6(a)循环性能和(b)Fe(III)@BiVO4/棉的XRD图谱;(b)的插图显示了使用前后的SEM图像。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

本发明实施例中,中国高明纺织提供的平纹纯棉织物(5×5cm2,120g/m2),其他药品均购买自中国国药集团,所有化学品均为试剂级,无需进一步纯化即可使用。

实施例1

首先,将0.970g硝酸铋和0.234g的钒酸铋分别溶解在5mL 4M硝酸溶液和20mL 1M氢氧化钠溶液中。30分钟后,在剧烈搅拌下将钒酸铋溶液滴加到硝酸铋溶液中,并将pH调节至3.0,并在180℃下加热4小时。将高压釜冷却至室温后,将淡黄色沉淀物过滤并用去离子水和乙醇洗涤数次,并在80℃下干燥4小时。然后,将1g得到的钒酸铋溶解在含有0.506g硝酸铁的100mL水溶液中,将混合物放入90℃的水浴中并搅拌1小时。最后,将深黄色沉淀物过滤并用去离子水和乙醇洗涤数次,并在80℃下干燥4小时。

其次,将0.5g得到的Fe(III)@BiVO4粉末在25℃下剧烈搅拌溶解于30mL去离子水溶液中30分钟,然后将0.1g KH570溶液加入上述溶液中。之后,将混合物溶液放入70℃的水浴中并搅拌3小时。最后,洗涤和干燥后得到Fe(III)@BiVO4/KH570复合物。将用丙酮和无水乙醇清洗的5×5cm2纯棉织物在25℃剧烈搅拌下加入50mL乙醇-去离子水溶液(体积比=4:1)中30分钟。然后,将KH580试剂加入上述溶液中,并用乙酸将上述溶液的pH调节至3-4 并继续搅拌。最后,在120℃的烘箱中固化5分钟后得到KH580/棉。

将0.5g Fe(III)@BiVO4/KH570复合物分散在30mL乙醇-去离子水溶液(体积比=4:1) 中剧烈搅拌30分钟。然后,将0.1g DMPA加入上述悬浮液中并继续搅拌30分钟。之后,将之前获得的KH580/棉放入具有500W紫外线辐射的悬浮液中并保持搅拌4小时。最后,洗涤和干燥后得到Fe(III)@BiVO4/棉。

实施例2

所制备的样品的表征如图3和图4所示。

如图3(a)所示,与KH580反应后的棉织物在2556cm-1处显示出极弱的峰值,这可归因于-SH组的弯曲振动。为了进一步检测-SH基团和其他特殊基团的存在,采用了更高灵敏度的拉曼光谱,如图3(b)所示。在KH580/棉样品中同样检测到了2556cm-1处的S-H的振动峰,这与FTIR的结果一致。为了证实KH570中的C=C基团成功引入[email protected]表面,纯KH570和[email protected]/KH570的FTIR也给出。与纯KH570相比,所制备的[email protected] /KH570的光谱在1640cm-1处出现峰值,这可归因于C=C组的弯曲振动。此外,在3310cm-1和856cm-1处有明显的峰,这是[email protected]中的典型峰。在图3(d)中,XRD图谱显示了 KH580/棉中纯棉的(1 0 1)和(0 02)晶面峰。然而,在BiVO4/棉和Fe(III)@BiVO4/ 棉中,14.6°和16.2°的峰消失,22.4°处的另一个峰的强度显着减弱,这表明光催化剂复合物与棉织物之间的良好连接。这些结果表明,用KH570改性的光催化剂和用KH580改性的棉可以通过硫醇-烯点击反应实现优异的连接。

采用扫描电镜研究了纯棉、KH580/棉和[email protected]/棉的形态。如图4(a)所示,纯棉表面非常光滑洁净。图4(b)清楚地显示KH580/棉的表面粗糙并且在其上具有一层材料,这表明KH580成功改性。图4(c)显示了[email protected]/棉的图片,[email protected]复合材料均匀致密地分布在棉织物上,使其具有优异的光催化性能和粉末循环利用。图4(d)和图4(e) 显示了不同放大倍数下的SEM图像。如图4(e)所示,所制备的[email protected]复合材料由相对均匀的块状结构组成,具有200-300nm,由于尺寸小,表明光催化活性更好。表明[email protected] 通过硫醇-烯点击反应成功地负载在纯棉表面。

实施例3

所制备的样品的光催化性能通过Cr(VI)溶液的还原和RB-19溶液的氧化来评估,如图 5所示。

将5×5cm2光催化织物分别放入50mL的10mg/L Cr(VI)溶液和50mL的50mg/L RB-19 溶液中,在黑暗中剧烈搅拌30min,实现吸附-解吸平衡。光催化织物和目标污染。使用分光光度剂二苯卡巴肼法在540nm处测定Cr(IV)溶液的浓度,并通过UV-vis分光光度计测量590nm处的吸光度强度来检测RB-19。

如图5(a)所示,与纯棉相比,BiVO4/棉和Fe(III)@BiVO4/棉显示出更高的光催化活性。此外,Fe(III)@BiVO4/棉显示出最高的光催化活性,90分钟后Cr(VI)的去除率达到98.4%。此外,还原Cr(VI)的动力学结果,Fe(III)@BiVO4/棉,BiVO4/棉和纯棉的k值分别为0.04358min-1,0.0099min-1和2.537*10-4min-1。此外,在图5(b)和图5(d) 中也给出了RB-19氧化的类似降解。这些结果表明通过硫醇-烯点击成功地将光催化剂加载在棉织物上,增强了光催化的性能。

实施例4

所制备样品的循环性能和稳定性能通过循环降解RB-19和还原Cr(VI)来评估。

在可见光照射下显示用于还原Cr(VI)和RB-19氧化的再循环实验。(λ>420nm)对于每个循环,取出所用的Fe(III)@BiVO4/棉,用蒸馏水洗涤并在烘箱中干燥以进行下一循环。如图6(a)所示,Fe(III)@BiVO4/棉在Cr(VI)还原和RB-19循环五次后仅仅略有下降(分别约为7.36%和8.83%)。此外,6(b)展示的Fe(III)@BiVO4/棉的XRD图谱和SEM图像没有明显变化。因此,可以证明经过巯基连接后的催化剂具有极高的循环稳定性。此外,在表1中,对比了本工作中制备的Fe(III)@BiVO4/棉与其他报道的样品循环稳定性。显然,Fe(III)@BiVO4/棉在可见光照射下Cr(VI)的还原和RB-19的氧化均表现出较高的循环稳定性能,证明了经过共价键改性后的负载催化剂具有极高的循环稳定性。

表1:本发明和现有技术效果数据比较

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种耐高温耐腐蚀工业滤布制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!